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We argue that ihe anomalously large inclination of Miranda, the postaccrelional resuor-
facing of both Miranda and Ariel, and the anomalously large eccentricities of the inner
Uranfan salellites indicate that resonant configurations onee existed in the Uranian satel-
lite system that hawe since been disrupted. Similar anomalies that cannot be accounted
for by the present resonant configurations atso exist in the Saturnian satellite system, and
we suggest that femporary resonances existed in the past in that system as well. Using
classical methods of analyzing the dynamics of resonance, we show how temporary
caplure inte o second- or higher-order resonance can prodoce large increases in ¢ and §
on comparatively short time scales. However, these methods may not provide 2 eomplete
description of resonances in the Uranian satellile system. Since values of Jy (R, fa)* for
the inaer Uranian satellites are small while their mass ratios, miM, sre large, resonances
in the Uranian system are not always well separated. For resonances that are not well
separated, it is not possible 0 analyze the dynamics using a distorbing fonction that is
truncated to the extenl that it containg enly a single resonant argument. We have made
some progress wilh this problem wsing the Cornell National Supercomputer to simulate
ihe dynamics numerically. We fnd that caplure into resonance may result in chaotic
motion. We discuss two mechanisms that ¢in be invoked to disrupt high-order reso-
pances: the “spontaneous” disruption of chaolic resonances and the distuption of reso-
nances doe to the lidal damping of o salellite’s eccentricity while the satellite is in a
nonsynchronous spin state.  © 1981 Aesdemie Pasis, Inc,

I INTRODUCTION

Since the exploration of the outer solar
system by the Yoyager spacecraft, our un-
derstanding of solar system dynamics has

! Presented at a conference celebrating the 300Uh an-
niversary af the publication of Wewlon's Principia,
heid at the Royal Greenwich Observatory in July 1987,

been changed in important ways by the fol-
lowing observations and findings. First, as
predicted by Peale e al. (1979, the Jovian
satellite Io was revealed by the Voyager
cameras to be actively volcanic (Smith et
al. 1979, while some small, icy satellitas,
particularly the Saturnian satellite Encela-
dus (Smith ef af. 1981) and the Uranian sat-
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ellites Miranda and Ariel (Smith er al
1986), show evidence of widespread melt-
ing. Second, Wisdom {1982, 1983}, Dermott
and Murray (1983), and Milani and Mobili
(1985} have drawn attention to the role of
chaos in the evolution of asterocidal orbits.
We show in this papér that in (racing the
orbital and thermal evolution of the Ura-
nian satellites, we need 10 consider both
eceentrcity damping and the role of
chaos.

While tidal heating due to the damping of
ils orbital eccentricity successfully ac-
counts for Io's voleanism, this mechanism
cannol be usefully applied to the presenmt
orbital configurations of either Miranda or
Ariel. An important consequence of the
work on the tidal heating of Io by Yoder
{1979} and Yoder and Peale (1981) is the
demonstration that the thermal output of
the satellite is ultimately determined by the
rate of tidal dissipation in the planet. Thus,
Io's volcanism provides observational evi-
dence that sipnificant tidal dissipation oc-
curs in the interior of at least one of the
giant planets, providing a mechanism for
the formation of the orbit—orbit resonances
in that system. Unlike the Jovian and the
Saturnian satellite systems, the satellite
system of Uranus is deveid of stable orbit-
orbit resonances, The simplest explanation
for this allows that the @ of Uranus is too
high to produce significant orbital evelu-
tion. However, we argue {a) that several
features indicate that resonant configura-
tions once existed m the Uranian satellite
systemn and (b) that since these configura-
lions no longer exist they must have been
disrupted. These features are (1} the anom-
alously large inclination of Miranda, {2}
the postaceretional resurfacing of both
Miranda and Ariel, and (3] the anomalous]y
large eccentricities of the inner satellites,
Miranda, Arel, and Umbriel (Dermott
1984, Squyres e of, 1985). Similar anoma-
lies are found in the Saturmian system.
These include (1) the large cccentricily of
Mimas, (2) the large initial inclinations of

Mimas and Tethys, where by “‘initial" we

mean the inclinations that the satellites had
before encountering the inclination-type
resonance in which they are now trapped
tAllan 1969, and (3) the postaceretional re-
surfacing of Enceladus. These anomalies
cannot be accounted for by the axisting res-
gnances and this leads us 1o suggest that
other resonances also existed in the Satur-
nian system before the present resonances
were established.

In Section 1, we investizate the changes
in the satellite orbital radii that ¢ould have
been produced by tidal dissipation in the
planets. There are many reasons why the
orbital histories are uncertain: (1) lack of
knowledge of the magnitude of the tidal dis-
sipation function, @y, and of its variability
with time, (2) lack of knowledge of the am-
plitude and frequency dependence of .
(3} imprecise knowledge of the satellie
masses, particularly those of Miranda,
Ariel, and Enceladus. These and other un-
certainties make it difficult to determine Lhe
exact sequence in which the vanous orbit—
orbil resonances may have been encoun-
tered. We confine our discussion to what
we consider to be the main features of the
possible evolutionary schemes.

In Section I we discuss the approaches
that have been used to study the dynamics
of orbital resonance, Previous discussions
of the orbital evelution of the Uranian satel-
lite system have been oversimple from two
viewpaoints. (1) Since the values of Jy{R /a)?
of the inner Uranian satellites are small
while their mass ratios, sifAf, are large, res-
onances in the Uranian system are not al-
ways well separated (Depmott and Murray
1983, Dermott 1984a.b), Thus, it is not al-
ways possible o analyze the dynamics of
resonance in the Uranian system using a
disturbing function that is truncated to the
extent that it contains only a single reso-
nant argument. By using the Cornell Ma-
tional Supercomputer to simulate the dy-
namics numerically, we show that capture
inlo resonance in the Uranian system may
resull in chaotic motion. (2) In Section [V
we show that the number of possibly signifi-
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cant resonances that needs to be consid-
ered has been undercstimated. Second-or-
der, third-order and, possibly, even higher
order resonances may have been strong
enough o withstand Lhe forces generated
by tidal dissipation in the planet.

In Section ¥V we demonstrate that, pro-
vided a padicular resonance is strong
enough to withstand the drag forces acting
on the satellites, the increases in the eccen-
Lricities and inclinations that oceur on cap-
ture into resonance, and the time scales on
which these increases occur, are deter-
mined largely by the tidal torques exerted
on the satellites and are not strongly depen-
dent on the order of the resonance. In fact,
counter to intuition, high-order resonances
are actually more effective than low-order
resonances at inereasing the eccentricities
and inclimations. Large increases in ¢ and [
can be produced by high-order resonances
on comparatively short time scales,

In Section VI we discuss how Miranda's
eccentricity could have been increased by
the tempaorary trapping of the satellite in a
second-order {or higher-order) resonance
with an outer satellite. We also point out
that, paradoxically, small, cold, icy satel-
lites are more likely (o be melted by eceen-
tricity damping than some of their larger
neighbors. The major dynamical problem
presented to us by the Uranian satellite sys-
tem is the anomalously large inclination of
Miranda. We discuss how a temporary res-
onance could have produced this large in-
clhination.

A detailed understanding of the orbital
and thermal evolution of Miranda requires
an appreciation of the time scales of a num-
ber of significant, somelimes competing,
processes. These are discussed in Section
VII. The processes include (1) the heating
and cooling time scales of the satellites, (2}
changes in the semimajor axes due to tidal
dissipation in both the planet and the satel-
lites, (3) increases in the orbital elements
due to resonant interactions beiween satel-
lites, and {4} damping of the eccentricities
due to lidal dissipation in the satellites,

Some of the time scales are dependent on
the spin states of the satellites,

Finally, we recopnize that temparary res-
onant trapping cannot be invoked unless
mechanisms exist that act to disrupt reso-
nances, Satellite systems are dynamically
10 to 10° times older than the planctary
system (the dynamical age of a system is
determined by the number of orbits around
the central body that the secondaries in the
system have completed) and we consider
that the stability of resonant configurations
over periods as long as 10 to 109 orbits,
particularly those configurations for which
the motion is chaotic, needs to be proved
rather than assumed. We have observed
that in the case of a chaotic resonance, dis-
ruption can be spontancous. In Section
VIII we discuss whether tidal dissipation in
the satellite while the satellite is in a nons
synchronous spin state may be important
enough to disrupt high-order resonances.

Il TIDAL EVOLUTION

The rate of change of the semimajor axis
of a satellite with time due to tidal dissipa-
tion in a planet is given by

dha ]

ﬂHu_ = gign{N — __.Lm.___ﬂ_. Hmv_.m ,m.m hﬂ___......

{1}

where & is the gravitational constant; N,
M, R, (0, and ks, are, respectively, the spin
frequency, mass, radius, tidal dissipation
function, and Love number of the planet;
and m, n, and o are the mass, mean motion,
and semimajor axis of the satellite (Munk
and MacDonald 19609, We can relate the
Love number, &5, to the dynamical oblate-
ness, Jfz, through

ks = dnGopds N2, (2)

where p, is the density of the planet. On
imegrating Eq. (1), assuming that the tidal
dissipation function is amplitude and fre-
quency independent, we oblain

ap? = al™ = sign(N — mCyme  (3)
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Fis. 1. Distribution of masses in the inner regions of the satelline systems of (a) Uranus and (b)
Saturn. IF tidal evolution has been apprecioble. then the solid curves place bounds oo the satelline
distributions. The linear portions of these curves have slopes of 2713, The masses of the small satellites
were estimuled from thede padil using densities of 1.6 g em~* for the Uranian satellites and 1.1 g cm™*
for the Souminn satellites, We asiume that these maises are unceriain by a factor of 2

when the satellite evelves from an initial
arbital radivus #; to a final orbital rmdius a. in
a time ¢, and C, is a positive constant pecu-
liar to the planct.

If tidal forces have had a significant role
in the orbital evolution of a particular satel-
lite system, then Eq. {3) places a bound on
the distribution of the satellites in that sys-
tem. On a logarithmic plot of semimajor
axis against mass, with & = &y, where
dyyne is the radivs of the synchronous orbit,
Eq. (3} defines a near-linear curve of slope
2013 that passes through that satellite for
which mfa"™? iz a maximum—see Fig. 1. If
the orbit of this satellite is tidally evolved,
then we expect the line, and its linear ex-
trapolation to points below synchronous
height, to divide the plot into two regions
(Dermott 1971). Satellites abowve synchro-
nous height can exist above or close 1o the
line, but naver balow it. For satellites below
synchronous height, the line defines the ini-
tial orbital radius of a satellite whose orbit
would decay into the planet in a lime L
Thus, satellites with initial orbital radii be-
low the synchronous orbit and below the
line would have been lost from the svstem,
although it has been sugoested that the or-
bital decay of those satellites led to the for-

matien of the Uranian rings (Dermott e/ al.
19790,

The distributions of the satellites in the
Uranian and Saturmian systems are shown
in Fig. 1. Mot only are these distributions
consislent with those expected for tidally
evolved satellite systems; in addition, the
closeness of the inner satellites to the tidal
demarcation lines suppests that sipnificant
orbital evolution due to tidal dissipation has
actually occurred in both systems. The only
anomaly is the position of 1985U1 in the
Uranian system. This satellite clearly lies
below the line that passes through Arel.
However, we have assumed that the tidal
dissipation funetion @, is independent of
the tidal frequency, 2Z(% — m). For most sat-
ellites, N = n and any variation of &, with
frequency can be neglected. The only ex-
ceptions are those satellites close to the
synchronous orbit for which & = a. Thus,
although the position of 195501 is anoma-
lous, since it is very close to synchronous
orbit we cannol use its position to place
useful bounds on the orbital evolution of
the other satellites.

If we assume that ¢ = 4.5 = 10° years,
then from the present orbit of Ariel we de-
duce that

N P ———
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O{Uranus) = 1.8 x 104, 4)
while a similar caleulation for Mimas yields
Gi{Satum) > 1.6 x 104 {5)

The chief sources of tidal dissipation in the
major planets are unknown, Howewer, if
the planets have solid cores, and this is cer-
tainly possible in the case of Uranus, then
tidal dissipation in these cores may have
been sufficient to account for the postulated
orbital evolution (Dermott 19793), If tidal
dissipation was confined to a solid core of
radius R, with tidal dissipation function g,
and Love number &, then the value of O,
needed to produce the required energy dis-
sipation is given by

Q.= @_ W Fg,. 0]

where Fy is a factor that allows for the en-
hancement of the tide in the core by the tide
in the overlying occan and for the effects of
the density contrast batween the core and
the ocean (Dermott 1979a), For the model
of the Uranian interior described by Hub-
bard (1984), we estimate thal RS8R, — 0.3,
Fr~ 3 and ks, ~ 0.25. If we assume that
orbital evolution has occwmed at i constant
rale over the age of the solar system, then
the value of Q. needed for significant orbital
evolution is ~107,

For tidal dissipation in planetary cores,
however, a constant raie of energy dissipa-
tion is unlikely. Uranus probably formed
hot and the putative rocky core may have
then been molten. Significant tidal dissipa-
tiom in the core would have occurred only
after the core cooled and solidified. Since
the & of near-solidus silicate rocks is be-
tween | and 10 (Muwrase and McBimey
1973, Sacks and Murase 1982}, our require-
menis for significant orbital evolution are
best stated as a demand that . remained at
the comparatively low value of ~10 for a
period of one-tenth the age of the solar sys-
tem rather than at the higher value of 107 for
the whole age of the system.

I tidal dissipation has been appreciable,

and & is both amplitude and frequency in-
dependaat, then the orbital radii of the Ura-
nian and Salurnian satellites would have
varied with time as shown in Fig. 2. In
these plots, the time should be regarded as
the integral

r i
r= [ g

where {3} is the value of the dissipation
function averaged over the total time of or-
bital evalution, . The origin of time in these
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FiG. 2. Varations of orbital radii with time due 10
tidal dissipation in the planer for the satellites of
Uranus and Satuen. All Lthe first-onder, and some of Lhe
second-order. and third-order resonances that the sar-
ellites could heve encountered are marked with veru-
cal lines. The Saturndian satellite paics, Mimas—-Tethys
and Enceladus-THone, are, at present. trapped in a
second-order (2:4) If' resonance and a first-order (1:2)
£ Tesonance, respechively.
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BLE I

Tioar TorRQUES 0N SATELLITES

Sarcllice Semimajor el A miaidt Radius  Free I Freee TS,
axis, g {107 (= [0 gpsh {km} {deg) (L years)
(% 10" km)

Miransda® 129.8 79 = 1 1.7 =033 241 4.4 00013 2z
Ariel 191.2 145 =2 LB =07 Sl LN | 0012 1
Umbriel 1860 153 & X 0.2y = 0.03 595 0.13 00039 1
Titania A35.8 Lli] * I5 0024 = 0001 805 0,079 noatn 30
Oberon 3816 149 *= |12 0.0032 = 0.0001 i 0068 00014 Al
Mimas® 155.5 0630 = 0010 00575 = 0000 198.5 1.53 0302 3
Enceladus 2380 14 = 0.5 0028 = 0ull 251 D05 0000 &
Tethys 94,7 1095 = 015 00554 = 00007 by ] L LUE1 ] |
Dioae 17T4 B35 == 035 08T = 0oiins 550 0m7 X1 e )
Bhea 5270 438 = 24 00051 = 0.0003 TE4 0,35 0003 19

2 Masses of the Uranian satellites are from Anderson er af. (1938); eceeniricities and inclinations are from

Laskar and Jacobaion (1983).

* Masses of the Saturnian suellites, eccentricitizs, and inclinations ore from Kozai (1957).

figures should not be considered fixed: for
values of 3, greater than the minimum val-
ues quoted in Eqs. (3) and (4), the origin
should be moved appropriately to the rght.
The masses of the satellites used lor these
plots are shown in Table L All of the first-
order and some of the second- and third-
order resonances that the Uranian and Sa-
turnian_satellites could have cncountered
due to tidal dissipation in the planet when
the tidal dissipation function is independent
of both amplitude and frequency are shown
in Fig. 2.

General statements aboul capture inio or
passage through resonance while tidal
torques are acting to change the ratio of the
orbital periods can be made by considering
the angular momentum exchanges necded
to maintain exact resonance (Lissauer ¢f af.
1984, Peale [987). For satellites above syn-
chronous height, the condition for the sta-
bility of a resonance demands that angular
momentum be transferred from the inner to
the outer satellite. Therefore, in discussing
the dynamics of resonance, there are two
types of orbital evolution that need to be
considered. For satellites above synchro-
nous height, permanent capturc inbo réso-

nance is possibly only if the orbit of the
inner satellite is expanding faster than that
of the ouwter satellite, that is, if the evalu-
tionary paths of the satellites in Fig. 2 are
converging with increasing time. If we
write the ratic of mean motions as #'fa
{=1}, where the primed quantity refers to
the mean motion of the outer satellite, then
for satellites on converging orbils above
synchronous height, a'fan increases with in-
creasing time whereas the converse holds
for satellites on diverging orbits. I the
paths are diverging, then permanent cap-
ture into resonance is impossible and the
satellite orbits must evolve, eventually,
through any resonance that is encountered.
Because of the strong decrease in the tidal
torque with increasing distance from the
planet, the evolutionary paths of satellites
tend to converge as lime increases. Excep-
tions Lo this rule occur when an outer satel-
lite is so massive that the value of mfa'™
for this satellite exceeds that of its interior
neighbor. This reversal probably occurs
only for the satellite pairs Enceladus—
Tethys and Miranda—Ariel.

Taking account of the strong a depen.
dence of (afal, as well as the possibility that
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{#, may pot have been constant in the past,
we gstimate conservatively that for Mimas
and Ariel

10-M < (ifal < 10712, (8}

where the vnit of time is the orbital period
of the satellite (~1=2 days).

1. DYHAMICS OF RESONANCE
Analytical Methods

To calculale the changes in the orbital
elements that occur on encounter with a
resonance, we must either use approximate
amalytical methods or resort to numerical
integration. There are problems with both
of these approaches, The approdimate anal-
ysis of the dynamics of resonance has re-
cently been very much simplified by the
work of Henrard (1982) and Henrard and
Lemaitre (1983). This analysis relies on the
averaging principle to truncate the pertur-
bation Hamiltonian to a single term con-
taining the resonant argement, as in Eq. ()
and Appendix A. Thus, clese to the reso-
nance Lhe number of degrees of freedom is
reduced to one. The phase space is there-
fore two dimensional and the Hamiltonian
system can be deseribed as moving on a
¢losed trajectory in the phase plane. The
effect of tides is to cause a slow variation of
ane of the parameters in this Hamiltonin.
If the variation is sulficiently slow, then by
the adiabatic theorem (see, ¢.g., Landau
and Lifshitz 1960) the arca enclosed by the
trajectory is an invariant of the motion. As
an illustration, consider the simple case of a
pip + g} etype resonance described by
an interaction Hamilionian of the form

G’

Fe Floe?
*x cos(ph — (p + " + Ju), (9

where &, A" are the mean longitudes, @ is
the argument of pericenier, & = ala’, and
fix) depends on Laplace coefficients.
¥hile the system is in a nonreésonant state
the area enclosed by the trajectory can be
related directly to the mean value of the

H @ =

eccentricity of the inner satellite, so that {}
remains constant as the system evolves to-
ward the resonance.

The adiabatic invariance of {¢} breaks
down when the resonance i3 encountered.
In the case where tidal dissipation causes
the orbits to diverge, {¢) increases signifi-
cantly on passage through the resonance in
a time perod of the order of the libration
period T, and remains constant thereafter.
The libration period T; of the resonant argu-
ment is gven by

7= T [3p + 97 2% (1 + gaft@er] .
(0

where

_mim’

Er "

(n

and T is the orbital period of the outer sat-
ellite (see Appendix A). In the other case,
where tidal dissipation causes the orbits 1o
converge, there are two possible outcomes:
resonant trapping or passage through res-
onance without capture, The probability of
capture can be calculated analytically [see
Malhotra (1988) and Appendix B]. If the
system passes through resonance without
capture, {¢} undergoes a significant de-
crease over one libration period and re-
mains constant thereafter, while if capture
into resonance occurs, the forces exeried
by the resonance act Lo increase (g} with
time.

The physics of the phenomenon is ex-
pected to be described well in this manner
provided that the imteraction of the satel-
lites is approximated well by the truncated
Hamiltonian. The single most serious as-
sumption that this entails is that the averags
motions of the nodes and pericenters are
such as to make only one combination of
angles have o near-vanishing frequency.
This condition that the resonances are well
separated in the frequency domain can be
roughly quantified in terms of the libration
widths, The libration width is the maximum
variation in the ratio of the semimajor axes,
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TABLE II

SATELLITE PARAMETERS

Satellite HiRJa) (B = AW %
=10

Miransda R EL] [ Xixk) &19
Ariel 0,063 0006 —
Umbriel 0.032 0,02 —
Tieanda 0.2 — —
Oberon 0,007 -— —_
Mimas L.76 .05 0.0l
Enceladus L.07 [Nkl 018
Tethys 070 oG 047
Dione 0.43 0,005 —
Rhea 0.2 [0 10 —

&, due to the resonant inleraction of the
satellites. It is given by

’ 12
Boy = 8 [$ 52 (1 + gaf(eet| . (12)

For example, the #% and the /? resonances
are well separated if the separation of the
exact resonance locations exceeds half the
sum of the libration widths, This occurs if

=7

-

" 3 TR fa)
SN tMYI + g)alVTda) + ViR

{15

where fie) and fi{e) refer to the &7 and 19
resonances, respectively, and for simplic-
ity we assume that ¢ and sin{4f) are of
comparable magnitude and denote boath by
z. The inner Uranian satellites have both
smaller values of (R /a)® and larger mass
ratios, rr/M, than the inner satellites of Sat-
urn {see Tables [ and I}, Thus, whereas the
resonances in the Saturnian system are well
separated, this is not always the case for
resonances in the Uranian system (Dermott
and Murray 1983, Dermott 1984a,b).
Resonances of particular interest in the
Uranian system are the 3;5 resonance be-
tween Ardel and Umbriel and the 1:3 reso-
nance between Miranda and Umbriel (see
Fig. 2). These resonances were probably
the most recent low-order resonances that

the satellites encountered. In fact, if @ of
Uranus is high, then they may have been
the only low-order resonances that the sat-
ellites encountered. In this paper we focus
on the 133 Miranda—Umbriel resonance,
since this is the most likely candidate rese-
nance for increasing both the eccentricity
and the inclination of Miranda. The loca-
tions and widths of the varous second-or-
der resonances near the 3:5 commensura-
bility between Ariel and Umbriel and the
1:3 commensurability between Em_u__n_w and
Umbiel are shown in Fig, 3. The ¢” and [
resonances have been omitted, since we as-
sume that these resonances have always
been comparatively weak. For the e¢* and
the fI' resonances, the vertical axis repra-
sents Vee and VIT, respectively. In using
Fig. 3, it should be realized that resonance
overlap ¢an occur between resonances of
quite disparate strengths (or libration
widths), and that the dynamical significance

Enchivarisan | gl
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Fia. 1. Variations of libration widths with increasing
eccentricities and inclinations for second-order reso-
nances in the Uranion system. The upper plane] de-
seribes the 3:5 resonances between Ariel and Umbrdel;
the lower panel refers to the 1:3 resonances belween
Miranda and Umbrel. For each satelliie pair we show
anly the libration widths of the £2. ', ¢, and £*
resonances. The 17 and ¢ resonances located be-
tween the [ and e’ resomances are omitted, In the
case of the mixed resonances, the veriical axis repre-
sents (21" and (H'P2, respectively.
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FiG. 4. Yarutions of libration widths for a second-
ofder resomance in the Satumion system. The reso-
nange is the 1:3 resonance between Mimas and Dione.
Compare this figure with that for the |:3 resonance
between Miranda and Umbriel shown in the lower
panel of Fig. 3.

of resonance overlap depends on both the
resonances involved and their relative
strengths. The widths of the 1:3 Miranda—
Umbriel resonances relative o their sepa-
rations shown in the lower panel of Fig. 3
should be contrasted with those of corre-
sponding resonances in the Salurnian sys-
tem, the 1:3 Mimas-Dione resonances
shown in Fig. 4. The effects of the bigger
values of J;{R,/a)* and the smaller mass ra-
tios, s, on the separation of the Uranian
resonances are clear. Thus, while the sin-
gle-resonance  theory described  above
would be adequate for any of the Mimas—
Dione 1:3 resonances, it may break down
for the Miranda-Umbricl 1:3 resonances
and for other low-order resonances in the
Uranian system.

Mumerical Methods

The numerical solution of the equations
of motion presents difficulties of a differant
kind. If the satellite system has evolved
over the ape of the solar system, then the
number of orbits that the satellites would
have completed in that time is — 101, Accu-
rate numerical integrations of this length

are beyond the capability of any computer
available today. We may hope to model the
tidal evolution of the system by increasing
{afu), such that the interesting phenomena
of resonance encounters in the past are has-
tened, and the number of orbits through
which the system has to be evolved 15 man-
ageable. However, if {(afa), is made too
large, then the physics of the resonance en-
counter may be quite different.

We expect that the salient features of a
resonance encounter can be reproduced
with a higher value of (a/a), as long as this
rate of evolution satisfies an adiabatic crite-
rion in the viginity of the resonance. A min-
imal requirement {adequate at least in the
case of well-separated resonances) is that
the change in the semimajor axis produced
by tides in one libration penod be much
smaller than the amplitude of the oscilla-
tions in a due to the resonance:

a7 = Aay. (14}
For an e9 resonance this condition is
; | y
@ < 8(p + @) 55 (1 + geflade,
(15}

This criterion is peculiar to each resonance
and is more demanding for small &, particu-
larly if the order of the resomance, g. is
high.

To study the dynamics of a resonance &n-
counter, numerical integrations need to be
carried out over an interval many times the
libration period. For m'fM = 1.5 » 1075,
=001, p=2 and g = | numerical inte-
grations have to be carried out for ~ 10 or-
bits. For a second-order resonance this es-
timate would have to be increased by a
factor of 10. We have calculaled the ex-
pected changes in the orbital elements on
passage through first- and second-order res-
onances using the single-resonance theory
and compared the results with these of ac-
curate numercal simulations performed on
the Cornell National Supercomputer. Fig-
ures 5 and 6 show the results of numerical
integrations in which a pair of satellites is
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Fig. 5. Mumerical results of passage through the 7.9
resopanes with (4°1a’), = 3 ¥ [0°* under conditions for
which the theory of Henrard and Lemaitee (1983) is
likely 1o apply. The unit of time is the arbital peciod of
the outer satellite. To separate the £ and f resonances,
J= was set at the high value of 0.05. The other initial
parameters were sl o= 10", mYM = 105 ¢ =
0.0032, ¢ = 0L,0023, [ = 10°, §' = 07, The armrow in Che
bottom panel marks the inslination predicled by the
theory after passage through the T:9 I* pesonance.

evolved through a seccond-order 7:9 reso-
nance on diverging orhits. The value of (a'f
a'}, was a factor of 5 lower than that neces-
sary to satisfy the adiabatic criterion near
the #* resonance. Figures Sa—-c show the
results of the integration when fr was given
a value large enough to separate the ¢* and
the It resonances. The changes in e and f
are in good agreement with those predicted
by the theory. Figures Ga—c show the
results for passage through the same reso-
nance with the same value of {a"fa'),, when
Jy was reduced o 0.00333, the value appro-
priate for Uranus. Cleardy, the theory
breaks down in this case.

Figure 7 shows the increases in the eg-
centricity of Miranda due to passage
through several successive resonances with
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Ariel. The increases in Fig. 7 were calcu-
lated numerically with {(d'/a’), = 1.6 % 1077,
where the unil of time is the initial orbital
period of Ariel. For e = 0.02, this value of
{r'fa’), is a factor of ~10% lower than that
needed to satisfy the adiabatic eritedon
near the frst-order resomances. The in-
creases in e at the first-order and at some of
the second-order resonances are in excel-
lent agreement with the predictions of the
theory shown in Fig. 7b. However, Fig. 7a
does show one interesting and unexpected
feature which, by repeated integrations, we
have shown to be not at all atypical. Even
though the zatellites are on diverging orbits,
on encounpter with the 9:11 resonance be-
tween the 5:6 and 4:5 resonances, the satel-
lites were trapped in an f? resonance. The
satellites remained trapped in this reso-
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Fia. & Mumerical results for passags through the
T:9 résonance with the same value of (d/a"), as that
used in Fig. 5, but with J; = 000335 (a value apprope-
ate for Uranosh. The other [ndtial pacamerers were m/
M=% x 107, m'/M = 1.5 = [0°F {these masses are
appropriste for Miranda and Ariel), ¢ = 0005, & =
00001, F = 1.0° and = 0°. Contrast the decrease in
Miranda's inclimation with the predicied incrense
shown in Fig, 5.
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Fia. 7. {a) Increases in the orbital eccentricity of
Miranda due to passage through resonanees with Ariel
found mumerically with (dfak = 1.6 % 10-T using the
Comell Mational Supercomputer {the unit of time s
the initial orbital perod of Arel). This evelution mte is
slaw enough 1o determine those inersases in ¢ thot
occural first-order resonances but oot those that oocur
at all of the weaker resonances. This integration also
includes increases in ¢ due 1o Wdes rased on the
planet, but does not include sccentricity damping due
1o tidal dissipation in the satellite. Since the satellites
are on diverging orblis, peemanent capluse ioto reso-
nance is impossible, However, we note large oscilla-
tigns in ¢ midway betwesn the 5:6 and the 4:5 reso-
nunges, These are dus to the temporary trapping of the
saiellites in a second-grder (9:11) inclination-ty pe res-
onance. {b) For companson, we show the increases in
e at firsts and second-order resonances predicted by
the theory of Hearard and Lemaitee (1983). () The
changes in Miranda's inelination. Mate in particular,
the large decrease in 1 thal occurs on lempomary raps
ping in the %211 J* resonance.
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Fic. §. Increase in the eccentricity of (a) Mirnda
and {b) Aricl due to passage through the 4:5 ¢ and ¢
resonances fovad numerically with (dfa), = 5.5 = 19-?
and dd'fa'ly = & % 107 {the unit of time is 1.15 days)
under conaditions for which the ¢ and #* resonances ars
not well separated. J; = 0.00335 (appeopriate for
Uranus}, miM = B = 10-7 (appropriate for Mimnda),
mfA = 1.5 x W07 (oppropriate for Ariel), The solid
lines show the changes predicted by the theory af
Henrard and Lemaitre {1983),

nance until the (simulated) tidal torque had
acled to reduce I, after which escape oc-
curred {see Fig, Tc). While the satellites re-
mained trapped in the F? resonance, there
wera large-amplitude forced oscillations in
the value of &.

A more detailed view of the increases in
the eccentricities of both Miranda and Ariel
on passage through the 4:5 resonance are
shown in Fig. & In this integration the
value of (d'fa’) is a factor of — 10" Jower
than that necessary to satisfy the adiabatic
criterion for the first-order £ and &' reso-
nances. The solid lines in Fig. 8 indicate the
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changes in ¢ and &° predicied by the simgle-
resonance theory. Evidently, even though
the ¢ and the ¢ resonances are not well
separated, the theory works very well in
predicting the increase in the eceentricity of
Mliranda on passage through the ¢ reso-
nance bul Fails completely lo predict the
change in Ariel’s eccentricity on passage
through the ¢’ resonance. This could simply
be a consequence of the fact that Miranda is
less massive than Ariel and the theory is
more appropriate in those circumstances.
Howewver, we note that since the satellites
are on diverging orbits and « is increasing,
the ¢ resonance is encountered before the
&' resonance. Since a sipnificant decrease in
@ occurs on passage through the e reso-
nance on a lime scale of one libration pa-
riod {see Fig. 5), one could argue that the
contribution o « generated by passage
through the ¢ resonance is sufficient to en-
sure that the adiabatic criterion is viclated
on encounter with the ¢ resonance.

The results shown in Fig. 7 lead ws to
speculate that the peculiar thermal history
of Miranda is a result of the fact that the
satellite pair Miranda—Ariel avolves on di-
verging orbits. If the orbits of these satel-
lites were much closer in the past, then tidal
forces could have drven the satellites
through a large number of first-, second-,
and higher-order resonances in such a di-
rection thal permanent caplure into reso-
nance could not have occurred. As a result
of this evolution, the eccentricity of the
smaller, inner satellite could have increased
1o a comparatively large value if we neglect
damping of the eccentricity due to tidal dis-
sipation in the satellite (sce Fig. 9. (We
dizcuss this further in Section VIL) A simi-
lar argument ¢an be made for Enceladus,
since the satellite pair Enceladus—Tethys
also evolves on diverging orbits. 1t is inter-
esling that this argument can be applied
only to Miranda and Enceladus. However,
inspection of Fig. 2 shows that the satellite
pairs Miranda—-Ariel and Enceladus-

Tethys could not have evolved through the

resonances discussed above withouot other
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Fic. 9. Increases in eccentricity due to (1) passage
through first- and second-order resonances coleulated
using the theory of Henrard and Lemaitre (1983) and
{2} tides ruised on the planet, The three seis of doia
points refer to initial ecceniricities of 0, 0,005, and
0.01. In the cose of Miranda, the final eecenricites are
virtually indistinguishable, For o given initial eccen-
teicity (0, 0005, ar 0.01) the value of the Al eccen-
trcity is determined by the starting paint of the calou-
Iation., This is indicated here by the value of g for the
firsi First-order resonance that the salzllile pisies
through: that i1, p = 5 indicates that the calculation is
started just inside the 6:5 resonance. In the case of
Miranda ond Ariel, the calcalation is cominued uatil
the satellites have passed through the 2.3 resonance.
In the cave of Enceladus and Tethys, the calculation is
continued until the satellites have passed through the
314 resononce.

satellite pairs having passed through & num-
ber of first-order resonances for which cap-
wre may have been possible and, indeed,
likely. We do not discuss these problems
here, bul note that an additional objection
to the above evolutionary history of
Mitanda is that it does not account for the
satellite’s anomalously high inclination. In-
creases in the satellite’s inclination could
have occurred only on passage through the
comparatively weak, second-order reso-
nances and we find that the increase in
Miranda's inclination that could have oc-
currad due to the orbital evolution shown in
Fig. 7 would not have amounted to mora
than a few tenths degrees. A more exact
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value cannot be quoted since the second-
arder resonances are not well separated

and the single-resonance theory cannot be

applied. The more interesting case of the
evolution of the orbital elements on capture
into a resonance is discussed in the sections
that follow,

IV, STRENGTHS OF RESONANCES

The stability of orbital resonances was
first discussed by Goldreich (1%65) who
showed that the equation of motion for the
resonant argument ¢ is approximated by
the pendulum cquation.

& = xwfsing + F, {16
where

F = piy— (p + ghn, {17
and wy i5 the libration frequency [sec Eq.
{10} and Appendix A]. F is determined by
the drag forces acting on the satellites. For
the resonance Lo be stable against the dis-

rupting effects of drag forces, the sign of 6
must change, This requires that

|F| < esf. (18)

This crlerion, which is approximately the
same ag the adiabatic crterion discussed in
the previous section, is a condition on the
eccentricities and inclinations. In general,
¥ Can write the resonant argument as

d=ph—(p+ g’ + g6
+ g’ + gt + gt (19}

In those cases in which [(afal] = |(a'fn')|
and the equation of motion of ¢ is domi-
nated by the mean motion terms, stability
of the resonance demands that

a 4 m"
Q<Fw+af
{1 + golaflolekle gyl (20}

where 5 = sin(4f).

In Table 111, we show values of the ec-
centricities and inclinations, e and Fas,
that are necessary for the stability of some
of the many resonances that pairs of Ura-

. T ——— e e -

mian and Saturmian satellites could have en-
countered in the past while evolving an
converging orbits. For odd-order reso-
nances, we eslimate f,,. from the strength
of the ef9~! resonance by assuming that e =
sin(3f). It is clear from Table 11 that sec-
ond- and even higher-order resonances can-
not be dismissed from consideration on ac-
count of their lack of strength. This raises
the question: Why are all but one of the
observed résonances in the Jovian and Sa-
turnian satellite systems of first order? One
possible answer 15 Lhat the probability of
capture into resonance tends o decrease as
the order of the réesonance increascs. In
Section VI we discuss another possibility,
that is, the disruption of high-order reso-
nanges due Lo tidal dissipation in the satel-
lite.

Capture into isolated first- and second-
crder resonances has been discussed by
Henrard and Lemaitre (1983) [see also Bor-
deries and Goldreich (1984)]. When tidal
forces cause the orbits of two satellites to
converge and to encounter a particular res-
onance, then capture into the resonance is a
probabilistic event, The probability of cap-
ture depends on the value of the eccentric-
ity {or inclination) before the resonance is
encountered and is alse a strong funetion of
both the order of the resonance and the sat-
ellite masses. Caplure inlo rcsomance is
certain il the value of # (¢, [, or F) is
smaller than a critical value, eop. A SUm-
mary of these results is given in Appendix
B, and values of e and I for particular
resonances are given in Table [T1.

The probabilities of capture into repre-
sentative first- and second-order reso-
nances are shown in Fig. 10 as functions of
e, I, and m A (see also Appendix B). Val-
ues of m'fM in the Satumian system range
from 7 ® 107" to 4 x 1075, whereas in the
Uranian system we need only consider the
case m' M ="1.5 » 107 (zee Table I), Note
in particular the difference in the power de-
pendencies of first- and second-order reso-
nances with respect to the perturbing mass
as well as ¢ {or F). Although e, for exam-
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TABLE LI

ECCERTRICITIES AHD INCLINATIONS MEEDED FOR STanlLITY aND CERTAINM CAFTURE®

Satellites pilg+ q) q Resonance . feap L [dia),
{deg)

Ariel-Umbriel { [ie] | F 2xID® — 0028 oo -7
Mirapda-Umbriel 13 2 & g * J0F == 0.0065 3 x10-
' — .01t 014" 1% 10°7

Ardel-Umbriel kR 2 el 2w 107 - 00043 8= 10"
= — 0005 R 3 x -e

Ariel=Lmbiiel a:7 3 e* b — —_ 2 10"
I — 005 — 2ox Q-

Mimas=-Enceladus 1:2 1 £ 2x [ - 0,007 9w 0
>3 1 = g 10t — 0.005 Ix 0T

Tethys—Dione x| I e 5w 10-¥ — 0.043 P |
Mimas~Enceladus 35 2 et e - 00005 1= 10¢
I _ 003 000 3x (0-?

Mimas-Tethys 1:2 1 & 1% W —_ 0.H5 ER
4 2 I - n.a® 045" & x o

Mimas=THone I3 1 et 2 = |04 —_ a3 9% 1t
I — 04" 005" 2% 10

Tethys—Dione X3 2 el 5 = 10-* — 0.002 5% (g
1 -— 0o 0.63° b [l

Done-Rhea a5 2 e? 3x 0t e 0.003 5o 10
n — 0005 005" 1= 10-1

Mimas-Enceladus 47 3 e 2% 1t -_— =% 7 x 10-®
ef* e o3 - 3w Qg

Mimas—Enceladus 5:8 2 el 2 1! - - 110
el? —_ 0.2 — 6% 10w

Tethys~Dione 4.7 3 ot | = 16 — £ 1 =108
el — 0.0 - i % 1g-®

Tethys—-Dione 58 3 o 1= 1! — - 3o Qg
ef? — o.1® —_ 2 x -

Tethys-Dione 1:16 5 <t 6 x 10 - — zxg-n
el — 0T —_ 7 x |0-"

= Ecceniricities and inclinatlons nesded for stability, oy and £, were caloulnted using {afa), = 107 and (4%
a'ly, = 0 {see Bq. [20]). For odd-order resonances (g = 3 and 51 §,0 was estimaled from the strengih of the «.?”_
resonance by pssuming that e = sin b, 2.y denates the valus of & or [ bslow which capiure into 2 resonance is
certoin. {dia), is n measure of the tidad Forge that would disrupt 3 resonance asswming that the orbital elements are

those [isted in Toble I

ple, for a frst-order resonance is much
higher than that for & second-order reso-
nance, the probability of capture falls off
much faster for higher values of ¢ in the
case of first-order resonance. Thus, as Fig.
10 shows, when ¢ is comparatively high the
probahilities of capture into first- and sec-
ond-order resonances are similar, Although
we do not discuss the theory of capture into
third- and higher-order resonances, these
resonances should not, perhaps, be ex-
cluded from consideration. 3ince the num-

ber of resonant arguments associated with a
commensurability increases markedly with
the order of the resonance, then, for some
range of ¢ (and {), the probability that the
system avoids capture inlo any resonance
may even be smaller for a higher-order res-
onance,

The above discussion cannot be applicd
to resonances that are not well separated.
This i5 the case for some second-order res-
onaznces in the Uranian system. If reso-
nances are not well separated, then, as we
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Fig. 10. The probability of coptures inle an iselued
interior resonance, {g) A first-arder ¢ resonance for
which pfip + g1 = X3, (b} A second-order ¢F reso-
nanee for which pfip + g) = 113, (&) A second order I*
resopance for which pi(p + g = 153, The probabililies
are caleulated as functions of & of I for three values of
the mass ratio M with, inexch case, the ratio of the
satellite masses pu'm’ = 0.1,

have already seen (see Fig. 7), capture can
ofcur in those circumstances in which the
above theory wounld deem capture to be im-
possible. We emphasize these uncertaintics
in the capture process singe lemporary cap-
ture im0 a weak, high-order resonamce
could have a profound influence on the or-
bital and thermal evolution of a small, icy
satellite.

¥. EVOLUTION ON CAPTURE

Evolution on caplure into resonance was
first discussed by Allan (1969). He dis-
cussed the case of the well-separated, sec-

ond-order, inclination-type resonances be-
tween Mimas and Tethys, However, his
analysis is easily extended to any other
type of isolated resonance in which the
equation of motion of the resonant argu-
ment ¢ is dominated by the mean motion
terms. For the purposes of this paper, these
are the only cases of interest. Once capture
into resonance occues, the orbils of the sat-
ellites evolve while the ratio of their mean
motions remains constanl. This requires
that the satellites exert a mutual torque that
transfers angular moementum from the inner
to the ouler satellite at a rate determined by
the tidal torques acting on the satellites. It
i5 important to realize that the magnitude of
the resonant torque between the satellites is
independent of the strength of the reso-
nanee: if the order of the resonance is high,
then the lag angle in the pendulum-fike mo-
tion of the resomant argument is corre-
spondingly large,

If, before the resonance is encountered,
the orbits of the satellites are converping,
then Fin Eq, (16} is negative and evolution
an capiure always results in an increase in
the orbital elements. For the resonant argu-
ment given by Eg. {19}, the rates of change
of the elements, to lowest order in ¢ and 7,
are

€ Zalfms o
€l - ._mzs_% 22)
ﬁu == ...q_.qan.ma‘n.ulﬂ (24)
where g 15 a positive constant given by
e=r S S )

We note that these rates are Jargely inde-
pendent of the strength of the resonance, in
the sense that the rates do not vary, for
example, as e9: the resonant argument
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Fig. 11. Evolulion of # and £ on irapping in iselated,
second-arder resonances for which pip + g1 = 175
The initial parameters wsed were JS; = (02 (lorge
encurgh 1o semarale the sceentrieily. and inelination.
type resonances), mid = B % [077, m¥M = 3 = 107!
1a factar of 20 larger than the mass of Umbriel), fehal,
=4 % [0-* and {d% e, = 0 {the unit of time 13 the Bitial
arbital peried of the ouler satellite), The varations in
alpha (= ala") shown in the sop panel are for two
separate pumerical ntegratons. Mote that these varia-
tions are bess than the separstions of the varfous sec-
ond-order resonances. The middle panel shows the in-
grease In o on teapping in the ee® resonamce; the
barcam panel shiows the inerease [n f on trapping in the
1 resonance. The whils curves show the increases in ¢
and § predicted by & low-order analylic theory {see
Appendin A}

merely determines which elemeants are sub-
ject to change,

It is often the case that the torgue on the
inner satellite is much bigger than that on
the outer satellite, in which case we can
make the following approximations.

F = pd, = —3f2 pnald/a), (26}

g = pHm'fMn‘a. (27}
Equation (21} then reduces o
@_1afd
s Anv (28)

Similar approximations can be written for
the other elements. It is evident that the
ccoentricity increases significantly on a
time scale that can be very much shorter
than the time scale over which tides act to
expand the orbits of the satellites. This is
discussed further in Section V1L

We also note that £ is proportional to the
order of the resonance, q. It would appear
that high-order resonances are more effec-
tive at increasing the orbital elements than
low-order resonances. Since glp = afn’
— 1, it is correct Lo state that, so long as the
stability condition described by Eq. {18) is
salisficd, € is large when afn’ is large, that
is, when the separation of the satellite or-
bits is large. This surprising resull instructs
us net o assume that interactions between
near neighbors dominate the dynamical
evolution of satellite systems: some dis-
want, outer saiellite couwld hove a marked
influence on the dyvnamical evolution of an
inner satetlite.

In Fig. 11 we show the results of a nu-
merical siraulation of the evolution that
would occur on capture into a 133 reso-
nance. In this integration we used a large
value of 3 to ensure that the sum of the
resonance half-widths was Jess than the
separation of the resonances. Also, by us-
ing a relatively large mass for the outer sat-
ellite [~20 times larger than that of Um-
briel) we were able to use a comrespondingly
high value of (afa) (3 % 10-%)and thus pro-
duce large increases in € and f in a reason-
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Fi. 12, Evolution of ¢ and F on wrappiog in second-
order resonances p/ip + g) = 143 thal mre not well
separated, The parameters used were J; = 0,003 {ap-
propriate For Uranus), np M = § ¢ 1077, and mM = 3
104 (a factor of W lurger than the nass of Umbriel).
Int (ad=feh, Gibfa), = 2 = [0-% apd {7 a'), = & The unit
of time is the inlixd orbial period of the outer saellie.
{d)-([y show 1 repeat of the evalution feam arbil num-
e SO0, 000 but with {tfa) increased to 10°% The inte-
gration was discontinued after the resonance dis-
rupted.

able computation time. In Figs. [1b and
the system is trapped in the ¢¢' and the I3
resonances, respectively, (Mote that Fig. 11
shows the results of two quile separate nu-
merical integrations.) In this case we find
that the increases in e and f are in very good
agrecment with the analysis given above,
In the above discussion, the various reso-
nances are well separated. Mext, we inves-
tigate the other situation in which the #* and
It resonances are of comparable strength
but their separation is Jess than the sum of
their half-widths. Figure 12 shows the
results of a numerical integration simulating

this case for a [:3 resonance. The values of
all quantities were the same as those in Fig.
11, except J3 = 0003 (similar to that of
Uranus). In this case we find that the evolu-
tion is chaotic. Although the mean motions
of the satellites remain near commensurate,
the behavior is irregular and can best be
described as a **hopping" from one type of
resonance to another. As Fig. 13 indicates,
the arguments corresponding to the differ-
ent types of resonance exhibit inlermittent
circulating and librating motions. Figures
12b and ¢ show the changes that occur in
the eccentricity and inclination of the inner
satellite while the near commensurability of
mean motions (s maintained.

Cn a closer examination of the evolution
{see Fig. 14) one may make the [ollowing
observations about this chaotic state of the
system. The argement of the e? resonance,
@i, librates whenever ¢y {the argument of
the I resomance) circulates, and vice versa,
although sometimes ¢ (the argument of the

P S

o= o
Rerisgr o atins 0¥ |
FiG. 13, Varations of the phases of the resopan
argements corrgsponding to the vafations in ¢ and §
shown in Figs. 12band [2e, respectively, by and &, are
the arguments of the ¢ and {* resonances, pespec-
tively. We aore that when the argument of the #f reso-
mance i% libmting, the argument of the I* resonance
tends 1o be circulating, and wice versa,
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Fie:, 14, An cxpanded view of the evolution of alpha
between orbits 932,000 and %42,000 shown in Fig. 12a_
The upper solid ling in the top panel shows the location
{or vilue of alpha) of the ¢ resopance, while the
dashed Jine immediarely belaw it shaws the location of
the e¢' ¢esonance, Similarly, the lower solid line
shows the locotion of the [* resonapce, while the
dashed line immediately above [t shows the bocation of
the 1" resomance. d, and @, ore the arguments of the £2
amad 17 resonances. respectively, We note that when
the argument of the #* resonance is librating, the argu-
ment of the 2 resonance s circulating, and vice versa,

ee’ resonance) and ¢ (the argument of the
I resonance) librate simultaneously with
either ¢y or ¢, respectively, The mean
value of the eccentricity ¢ increases pre-
dominantly during those times when g li-

brates, whereas the inclination increases
predominantly during those times when gy
librates. However, we note that the eccen-
tricity shows excursions to very small val-
ues for periods of time of the order of a
libration period. We make the following
empirical estimate for the changes in ¢ and £
that occur in this chaotic state:

Ag? = ALY (29

where r is determined by the ratic of the
total time spent in the £ resonance Lo the
total Lime spent in the 17 resonance. While
the numerical ¢xperiments we have per-
formed do not permit us to calculate the
exact value of r, we estimate that its value
is of the order of 1. We point out that this
hopping behavior is quite surprising be-
cause, to second order in e and J, there is
no coupling between the ¢* resonance and
the £? resonance. Thus, an analytical or nu-
merical investigation restricted to this order
would not predict this phenomenon,

The single-resonance theory of Allan
{1965) also describes the variation with time
of the amplitude of libration of the respnant
argument. The depth of the potential well
that governs the pendulum-like motion of
this arpument is determined by the magni-
tude of g, ', f, or I*. Thus, the time scale of
the rate of change of the amplitude of libra-
tion i3 always comparable to the lime scale
of the rate of change of the appropriate or-
bital element or elements which, in turn, is
described by Eqs. (21)-(24). Figure 13
shows that when the resonances are not
well separated and the motion is chaotic,
this description of the evolution breaks
down completely; large changes in the am-
plitude of libration occur on comparatively
short time scales in a manner that cannot be
described by the single-resonance theory. It
is interesting, therefore, that while the pen-
dulum-like description is clearly inade-
quate, the rates of change of e and I, after
allowances have been made for the
amounts of time spent in the appropriate
resonant states, remain comparable to the
rates predicted by the simple theory.
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It is worth remarking on the locations of
the exact resonances shown in Fig, 14, The
predicted locations of the £* and I reso-
nances in this figure do not wake into ac-
count the contributions to the pericenter
and node rates arsing from the resopant
terms in the disturbing function. These con-
tributions depend on the amplitude of libra-
tion of the resonant argument, and result in
4 decrease in the value of opsonnce which
may be significant if the amplitude of libra-
tion is not too large. We have satisfied our-
selves that these terms account for the dis-
crepancies betweesn the predicted and the
observed resonant locations thal are appar-
ent in the figure. We digress to remark that
in the case of a first-order resonance, the
resonant contribution to the pericenter rate
can be large and the effect that this term
may have on the evolution of a resopance
needs careful consideration, particularly in
those cases in which tidal dissipation in the
satellite acts to damp the eccentricity. Dis-
cussion of this is reserved for another pa-
per.

In Figs. 12d=f we show the results of an
integration in which the evolution shown in
Figs. 12a—¢ was continued. This evolution
was slarted at orbit number 900,000 with {4/
aly = 10°% In this run we observe the dis-
ruption of the resonance. Figure 15 showsa
more detailed picture of this phenomenon.
Just before disruption, while ¢y, was librat-
ing, £ reached the relatively low value of
0.02. With this value of e, (afa) is still a
factor ~10° smaller than the critical value
given by Eq. {20). We note that on dismup-
tion of the resonance, the inclination re-
mained at the large value that it acquired
duting the chaotic state,

¥l. THE MIRANDA-UMBRIEL 1:3
RESOMANCE

The two cases studied in the previous
section, in which the resonance widths are,
respectively, smaller and grealer than the
separation of the resonances, are used here
to describe the dynamics of the Miranda—
Umbriel 1:3 resonance. If this resonance
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Fic. 15. An expanded view of the evolution of al-
pha, ¢ amd I between arbits 842,000 and 952,000
shown in Figs. 12d-f in which we observe the spanta.
neous disrupiion of the resonance, The upper solid line
in the 1op pane] shows the lacation {or valee of alpha)
of the ¥ resonance, while the dashed ling immediately
betow it shows the location of the #¢” resonance. Simi-
lardy, the leawer solid line shows the location of the £
resonance, while the dadhed ipe immediately above il
shaws the location of the 7' resonance. We nate that
disnaption oceurs when & is baw {0.02], and thai the
value of § remains high afiee the disruption.
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was respansible for increasing both the ec-
centricity and the inclination of Miranda,
then it is probable, but not certain, that ¢
and f were small before the resonance was
encolntered, As Fig. 3 indicates, for e and £
small enough, the resonance widths are
smaller than the separation of the reso-
nances, so that the single-resonance theory
is a good approximation. Tidal evoelution to-
ward this commensurability on converging
orbits (& increasing) results in the I reso-
nance being encountered first. Capture into
this resonance is certain if T = 0.14%, a value
comparable to the present inclinations of
the outer satellites. If capture occurs, then f
increases at a rate given by Eq. (23). How-
ever, Tittemore and Wisdom {1987, Pasa-
dena DPS Meeting) have found that, in the
approximation of circular orbits, interfer-
ence with the £ resonance may result in
the /? resonance being disrupted when /
reaches a value ~4°, similar to Miranda’s
present inclination. (This increase in f
would occur in a time —6 % 1@, = 107
years). Indeed, Fig. 3 indicates that, if I is
small (but not zero), then resonance overs
lap between the F2 and £ resonances could
occur when I exceeds a value —4°. Thus,
we have a strong suggestion that Miranda's
present inclination is the signature of this
orbital resonance and that chaotic motion
arising fram resonance overlap led 1o the
disruption of the inclination-type resonant
state. According o the single-resonance
theory, capture into the I'’ resonance is
certain only if ' < 0.005°. Thus, it is proba-
ble that capture inlc that resonance was
avoided.

After escaping from the inclination-type
resonances, the system evolves toward the
eccentricity-type resonances. The ¢’ reso-
nance is the first cocentricity-type resos
nance that would have been encountered,
but capture into this résonance is certain
only if &' = 0.0002. In contrast, for ¢' =
0.004 (the present value of Umbriel's ec-
centricity) captire inlo the ¢’ resonance is
certain if ¢ < 0.008 (Malhotra 1988}, while
capture into the e* resonance is certain if

< 0.0065. On capture into cither of thesc
resonances ¢ must incréase, although the
rate of increase of 2 in the 2 state is twice
as preat as that in the ee’ state. As dis-
cussed in Section VI, if the satellite is
cold, then in the isolated resonance approx-
fmation, the final eccentricity reached
could be ~i.1-0.2, However, from Fig. 3
wi see that a modest increase in ¢ resulls in
the overlap of the e! and e¢’ resonances.
For example, provided ' is not oo small,
interference between the ¢f and ee’ reso-
nanses becomes significant for e = 0.03.
Figures 16 and 17 show examples of the
types of behavior that could occur in the
Miranda—Umbriel 1:3 resonance once reso-
nance overlap eccurs. In both of these inte-
grations, Miranda's inclination was taken
to be 4* and we have used the known
masses of the satellites and a realistic value
of {afa)., that is, 10-1%

In Fig. 16 the initial value of e is compar-
atively small. Thus, the eccentricity reso-
nances are iselated from the inclination res-
onances and we observe chaolic hopping
only between the ¢? and ¢’ states. For the
integration shown in Fig. 17, Miranda's ini-
tial eccentricity is high, 0.165. In this case,
the e and f? resonances overlap and we
observe hopping between these, and the
other, resonant states. The transition
shown in Fig. 17 is particularly interesting:
the system is seen to hop out of the f7 reso-
nance into a state in which the mean value
of @ is greater than that appropriate for any
of the other possible resenant states. In this
particular run, this transition did not lead to
the disruption of the resonance; rather, the
system hopped out of the nonresonant state
back into the f? resonance. However, we
consider it eatirely probable that this type
of transition could, eventually, result in the
total disruption of the resonance.

In the following section we show that val
wes of the eccentricity as high as 0.1-0.2
may not be unrealistic, However, the total
length of the evolution of the 1:3 resonance
between Miranda and Umbrie] that we have
investigated, some of which is shown in
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Fia. 16. Evolution of the Mimnda—-Umbriel 1:3 res-
onance when Miranda's scoentricity is high emough to
cause overlap between the e and the ce' retanances.
All the other parameters of the int=gration are com-
parable to those of the real system: sl = 7.9 % 107,
MM = 153 % 1073, {(dfak = 102, and (4'Fa"), = 0.
Far this integration, the initial valoes of ¢, &', and !
werz 0.04, 0.004, and 4%, respestively,

Figs. 16 and 17, docs not permit us to draw
a clear conclusion about the likely final in-
crease in Miranda's eccentricity. Although
it is reasonable to assume that the eccen-
tricity increases while the systam remains
in resonance and exhibils hopping between
the various resonances, it is not possible for
us to determine from these limited investi-
gations the length of time that the reso-
nance will avoid disruption. In particular,
although we expect that resonance overlap
does lead, eventually, to the total disrup-
tion of the resonance, at this stage of our
work we do not know if this is likely to
aecur while there is overlap merely be-
tween the #2 and 22 resonances, in which
case the expected increase in e is modest,
~0.03, ar whether the resonance is likely to
survive until the e? and J* resonances begin
to overlap, im which case the expected in-
crease in @ would be large, =0.1. It is evi
dent that the dynamics is complex and re-
quires 2 more detailed investigation than
that attempted here. Wumerical investiga-
tions for periods of 10° orbits can give only
limited insight inte the dynamical history of
a system that is 10" orbits old, particularly
when that system is chaotic.

VIL. TIME S5CALES

To determine the effects that the reso-
nance epcounters described in the previous
sections may have had on the orbital and
thermal histories of the Uranian and Satur-
nian satellites, we need to evaluate the time
scales of & number of significant processes.
Heating a satellite by tidally damping its ec-
centricity may be an effective means of
melting and resurfacing a satellite. How-
ever, before attempting to reach a conclu-
sion on this matler we need to compare (3)
the rate at which the eccentricity increases
duge to the action of the resonance with the
rate of eccentricity damping due Lo tidal
dissipation in the satellite and (b) the rate of
heating in the satellite due to tidal dissipa-
tion with the rate at which heat is lost from
ils surface. For small, icy satellites, it is
particularly important to realize that the
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Fig. 17. Evolution of the Miranda—Umbeel 123 res-
onance when Miranda’s ecoentricity and inclination, ¢
and f, are both high. All the sther parameters of the
iategration are compasable 10 those of the real system:
prAf = 7.9 5 10T, oM = 133 % 1070, (dla), = 1077,
anad Gi'fk = 0. For this integmmtion, the initiol vabees
of ¢ and [ wers 0. 163 and 47, respectively. In this case.

tidal dissipation function may be tempera-
ture and thus time dependent.

Heating and Cooling

The heat generated in a satellite by the
total damping of an eccentricity e is deter-
mined by the potential energy of the satel-
lite in the gravitational field of the planet
and is given by

. GMm
AE =l .

We estimate that this heat is sufficient to
raise the mean, internal temperature of
Miranda by

{30}

AT=2X 10" K (30
and that of Enceladus by
AT = 6 x 10¢* K. (32)

Here we have assumed that the mean spe-
cific heat of an icy satellite is ~8.5T J kg™
deg™!, where T is the satellite’s mean tem-
perature (Hobbs 1974), and that T~ 150 K.
Since AFE decreases inversely with distance
from the planct, eccentricity damping is a
particularly effective heating mechanism
for satellites close to the planct.

The temperature increases necded o
trigger endogenic processes such as satel-
lite resurfacing depend on the satellite’s
composition, particularly its complement of
volatiles. A eutectic melt of NHi-H.O
forms at 175 K (Lewis 1971, Stevenson
1982). Thus AT ~ 100 K could result in an
interesting thermal event, whercas AT =
200 K may be necessary lo produce signifi-
cant melting in a satellite composed of pure
water-ice. For Miranda, these temperature

we ghserve chaotic hopping betwesn 1 state in which
the argument of the e? resonance, dy, is lbratiag ta o
state in wihich the argument of the 7 resanance, ¢y, 5
librting, We alio observe hopping fram a state in
which the argument af the I* resanance, &, is librating
fo & stabe in which alpha 3 above the libmtion zone
and all the possible resonant arguments are circulat
ing. In this case, however, the sysiem then hops back
into the £ resonance and disruption of the resonance
does nol oeour.
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increases require initial eccentricities of
0.07 and 0.1, respectively, whereas the
same temperature  increases would be
achieved in Enceladus for initial eccentrici-
ties as low as 0.04 and 0.06, respectively.
However, these lemperature increases are
achieved only if the eccentricity damping
time scales of the satellites are considerably
less than their characteristic cooling time
scales.

The center of a homopeneous satellite
cools by conduction on a time scale

R

T 33

where x is the thermal diffusivity (Carslaw
and Jaeger 1947). Stevenson (1982) csti-
mates that x at 100 K for impure water-ice
that contains dust particles, defects, and
amorphous and vitreous phases is ~2 X
1078 m? see-!, g factor of 2 lower than that
of pure ice. Hence, for icy satellites with
radii comparable to those of Miranda and
Enceladus, r. ~ 10? years. Once the central
temperature cxooeds about half the melting
point of water-ice, then convection deter-
mines the heal transfer rate in the central
regions of the satellite. However, we esti-
mztc that the overall cooling rate is not sig-
nificantly affected unless the thickness of
the nonconvecting mantle is less than about
one-third the satellite mdius,

For these comparatively small satellites,
there are several reasons for arguing that
the above cooling time scale is an underes-
timate. Recent papers by Klinger (1982),
Smoluchowski (1983), Ahrens and O'EKeafe
{1985}, and Lange and Ahrens (I987) have
emphasized the effects of amorphous and
purous ices on cooling time scales. The
thermal conductivity of amorphous ice is
lower than that of crystalline ice by at least
a factor of 10. Amorphous ice forms on
condensation from the vapor at tempera-
tures below 150 K and could be a by-prod-
uct of cratering events. It is likely that the
debris produced by impacts is also highly
porows. Dermott and Thomas (1988) have
recently determined the moment of inertia

of Mimas and shown that it is consistent
with a deep, highly porous regolith. Poros-
ity is retained in a cold. icy satellite until
the overburden exceeds 50 bar and this oc-
curs on satellites the size of Miranda only at
depths greater than many tens of kilome-
ters. A deep, porous regolith on a small, icy
satellite could increase its cooling time
scale by a factor of 10 or more. Thus, for
Miranda and Enceladus we estimate, con-
servatively, that

I0f = 5, = 10" years, (34}

Excitation and Damping of Eccenirivities

Tidal dissipation in both the satellite and
the planet resulis in a change in the cccen-
tricity at 8 rate fue given by
4Bl g

T Er

i) = ¢y + €, = —

where &, is the rate of change of eccentric-
ity due to tidal dissipation in the satellite
alone and v, is the associated eccentricity
damping time scale (Peale er af, 1980), &, is
the rate of chamge of cccentricity due o
tidal dissipation in the planet, and 7, is the
time scale of orbital evolution due to tidal
dissipation in the planet. Mote that this
equation is general in that we have not
specified the spin state of the satellite; the
subscript s is used merely to refer to the
satellite. .

On trapping in 2 resonance, the eccen-
tricity changes at a rate ¢, determined by £
[see Eqs. (17} and (21)]. For simplicity, we
neglect {a'fa’), here and write

., _1aqgpd

4= 250 (ol 36
The rate at which the eceentricity increases
when a satellite is trapped in a resonance is
determined largely by the rate at which
tidal enmergy is dissipated in the planet.
However, there is 2 contribution to (dfa )
due to tidal dissipation in the satellite. If the
satellite is in either a synchronous or a cha-
otic spin state, and energy is dissipated in
the satellite while the total anpular momen-
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tum of the system is conserved, then it fol-
lows that

(5), = 2e6, = - w]m E_

Thus the total 4 is given by

@-L0-202) o

I tidal dissipation in the satellite is signifi-
eant, then the eceentricity will be driven by
the resonant torgue to an equilibriem value
¢4q For which éyan + & = 0. From Egs. (35},
(36}, and (37), we oblain

3 iq Fea (1 _ 190 Teay”!
_m_naﬂwﬁr_u._..aw o H_ m_”.mn__.au ._._"_,u :
{39

Mote that ¢, is proportional to g, the order
of the resonance. Thus, a high-order reso-
nance produces a higher final eccentricily
than a low-order resonance.

For a satellite in synchronous rotation 7.
= o apne. Where

_ 38g?
Teaym = 3. R

7l (4

where g, gy, R., and @, are the rigidity,
density, radius, and tidal dissipation func-
tion of the satellite, respectively. This
equation assumes that the deformation of
the satellite is determined by elastic forces
rather than by self-gravitation, i.e., that g
# 1 where

5
* = EnGpiRy

(41)

For an icy satellitc of density 1.2 g em™ and
radius 250 km, this requires that g = 3 =
107 dyn em=2. In calculating the values of
Teane listed in Table I, we have taken the
rigidity of ice tobe 4 % 10" dyn cm ™. How-
ever, the “effective’ rigidity of a satellite
may be considerably less than that of ice
duoe to (1) the existence of a liquid core
(Peale e af. 1979) and (2} the fact that the
satellite may have been disrupted by come-

tary impacts and thus lack cohesive
strength.

On trapping inan eccentricity resonance,
the variation of the eccentricity with time is
given by

2l
e R e o e
E° = £ T nxﬂﬁ = (42}
where, for a satellite in synchronous rota-
tion, the time scale

=TI+ @)

__w_m_ ﬂnrun U
(1= gprg a) o @

The eccentricity damping time scales,
Teanes for small, icy satellites the zize of
Mimas, Enceladus, Miranda, or Ariel are
~3 x 1060, years (see Table I). The aver-
age value of r, is ~3 % 10 years. How-
ever, resonances are most likely to be en-
counterad when 7, 15 a minimum, IF we
assume that =, ~ 109 years and that g, ~
02, then we estimate that for a 153 reso-
nance, for example, e — 0.1 and that the
eccentricity would have increascd 1o a
value 0.8 ¥ e inatime 1., ~ 5 % 107 years,
However, the above arpument makes no
allowance for the temperature dependence
of 0.. If the satellite is cold throughoul
when the resonance is encountered, and
this is particularly likely for small satellites,
then . may be considerably greater than
10? and e.; may be in the range 0.1 to 0.1.
Eccentricity damping would _“_nn.”___._n in-
creasingly significant as the eccentncily -
creases and heat would be deposited in the
satellite, preferentially in those locations
where the strain rates are high—that is, at
the center of the satellite, The melling of Io,
as originally described by Peale er al,
{1979}, relied on a thermal runaway pro-
cess. When the interior of the satellite
started Lo melt, its “effective’” rigidity was
thereby reduced with the result that the __m__.m.
sipation rate in the remaining m_u_u..m portion
of the satellite was enhanced. This proccss
could also occur in icy satellites. However,
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it is cnhanced by an even more effective
process that does not depend on the interor
being moltén. Since the ¢ of ice decreases
markedly with increasing lemperaturs,
mast heat is produced in those portions of
the ice Lhat are warmest. This lcads 1o a
further decrease in the local value of @ and
a thermal runaway. Once the above process
is initiated in a satellite there is a marked
decreaze in its eccentricity damping lime
scale, with the result that the heat produced
by the damping of its eccentricity is
dumped in the satellite on a time scale lass
than or al least comparable to its cooling
lime scale, even after allowance has been
made for the decrease in the latter due wo
the onset of convection in the interior.

¥IIL. CHAOTIC SFIN STATE

While a satellitc is in cither a nonsyn-
chronous or a chaolic spin state, its tidal
heating rate is increased by a factor of /e
Moting this, Marcialis and Greenberg (1987)
have proposed that episodes of chaotic spin
may have been responsible for partially
melting Miranda, In this section we show
that it is possible that some of the small,
inper satellites of Uranus and Satum were
knocked out of synchronous rotation by im-
pacls not energetic enough to cause their
disruption. However, il is not obvious that
this will have any appreciable effect on the
ultimate thermal state of the satellite, If the
eccentricity damping time scale is less than
the cooling time scale, then the temperature
increase is anly weakly dependent on these
time scales. It must also be realized that we
have no evidence or reason to believe that a
satellite will remain in a chaotic spin slate
for a period much longer than its tidal de-
spinning time scale {(Wisdom 1987). Since
the despinning time scale is less than the
eccentricity damping time seale in the cha-
otic spin state by a factor ~10%, it follows
that the effect of an episode of chaotic spin
on the thermal history of a satellite 15 prob-
ably minor, However, while the satellite is
in a chaotic spin state, tidal dissipalion in
the satellite may appreciably enhance the

orbital evolution rate and it is worth consid-
ering whether these enhanced orbital evalu-
tion rates could ever have been high enough
to disrupt any of the possible orbit—orbit
resonances.

We note that for 2 moderately deformed
salellite, eccentricities of ~0.1 are compa-
rable with the eccentricity ¢, necessary for
the overlap of the synchronous spin state
with the 3:2 spin-orbit resonance. Using
the resonance-overlap criterion (Chirlkov
1979, Wisdom er al. 1984), we estimate that

ﬁn u
ii
where the frequency of small-amplitude li-
bration about the synchronous spin state,
g, is given by

B E_s A (49

;uT C

A, B, and € are the principal moments of
inertia of the satellite. Values of e, for
some of the Uranian and Saturnian satel-
lites are shown in Table I1. The values of (8
— AMC in this table are those expected for
lidally and rotationally distorted satellites
in synchromous rotation and near-hydro-
static equilibium (Dermott and Thomas
1988).

The validity of the resonance overlap eri-
terion can be determined by studying the
appropriate surfaces of section. The sur-
faces of section shown in Fig. 18 depict the
structure of the phase space for spin-orbit
coupling for various values of (B — A)C
and ¢. The spin axis of the satellite is as-
sumed to be normal to its orbital plane—
see Wisdom ef al. (1984) for a detailed dis-
cussion of spin—orbit coupling. In Figs. 18a
and b, (B — AYC = 0.06, a value appropri-
ale for Mimas, and perhaps Miranda too
when il was closer to the planet. In Fig.
183a, ¢ = 0.02, a factor of 2 greater than the
value e, = 0,009 needed for resonance
averlap, and we find that the island where
libration about the synchronous spin state
is possible is surrounded by an extensive
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Fic. 1B, Surfaces of section show the values of @ and §at pericenter passage for variows _..m__nﬂuom_“__m
e, ande. (1 (B — AVC = 0,06, ¢ = D.02 (appropriate for Mimas). (b} (8 = AWC =006, = 0.1,

{c) (B — ANC = 0.03 {oppropriate for Enceladus),
Tethyih ¢ = 0.1.

region where the spin is chaotic. For higher
walues of the eccentricity, the region of reg-
ular librations shrinks while the chaotic re-
gion expands, In Fig. 18b, ¢ = __W__L and we
find ihat the amplitude of libration cannot
exceed 32° without the spin becoming cha-
otic. In Figs. 15c and d we show surfaces of
section for very small values of {8 — ,hr:n.
and ¢ = 0.1. The width of the chaoclic re-
gion grows lincarly with e, but it has an
exp{—mnf2yy) dependence as well m:.m.ﬁ
thug highly sensitive to (B — AWC. In _.u_m.
I, (B — ANC = 0,03, a value appropnale
for Enceladus, while in Fig. 18d, (B — A)}C
= [L015, a value appropriate for Tethys. Ia
hath of these cases, ¢ is substantially less
than eq, and yet we find that the EE..H_
where libration about the synchronous spin
state is possible is surrounded by an exten-
sive chaotic sea. The amplitude of libration
cannot exceed —42° without the spin be-
coming chaotic.

e = 01, (d) [ = ANEC = 0.015 {appropriate for

That the motion of highly irregular satel-
lites like Hyperion may be chaotic has been
clearly demonstrated by the work of Wis-
dom et ai. (1984). The implications of Fig.
1% are that when {8 — AMC is very mau__.
the resonance-overlap criterion _pnn_n:wwcw
mates the extent of the chaotic sea. Even il
a satellite is near spherical, we must con-
sider the possibility that if in Lthe _n_m.ﬂ its
eecentricity was high, then its spin may
have been chaotic. We do not imply by this
that small-amplitude libration about the
gynchronous spin state is not ___um.ﬁ!n for
satellites in highly eccentric orbits. How-
ever, even a modestly deformed satellite
could not be despun from a nensynchro-
nous state without passing through a sub-
stantial chaotic zone. This would occur not
only on accretion (Wisdom 1987}, but also
on reaccretion if the satellite has _.unmn a__m.
rupted since the time of its formalion. This
may have been the case for some of the
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small inner satellites of Uranus and Saturn
(Smith er al. 1981, 1985). Another possibil-
ity, a5 we discuss below, is that impacting
comets may have had sufficient angular mo-
mentum to knock the satellite into a chaotic
spin state without the satellite being dis-
mupled.

The effects of impacts on the spin rate of
g satellite have received considerable atten-
tion recently. A review of this work has
been given by Lissaver (1985) and by Chap-
man and McKinnon {1986). The increment
Av in the spin rate of a satellite due to the
impact of & comet of mass »r and impact
velocity o i given by

_ fmw
Ay = gy

sin ¢ sin @, {44a)
where By is the angle between the impacting
comet’s trajectory and the line from the sat-
ellite’s center of mass to the point of im-
pact, and 0y is the angle between the satel-
lite"s rotation axis and the plane defined by
the impactor's trajectory and the line from
the center of the satellite to the impact
point (Lissauer 1983). §; = 90" implies an
impact at grazing incidence. F{=<1) is a fac-
tor that allows far the possibility that angu-
lar momentum may not be conserved in the
impact, in the sense that material may be
knocked off the satellite in the direction of
motion of the impactor, particularly if 6 is
close to 907 (Gault and Wedekind 1978).

Lissauer (1985) has shown that an impact
will desynchronize a satellite if Av > vy, the
librational frequency of the satellite’s spin
[see Eq. (45)]. If we assume that the satel-
lite is in mear-hydrostatic equilibrum, as
Dermott and Thomas (1988) have shown to
be the case for Mimas, then

where g = In*MdmGp,, and H (=1} is a di-
mensionless constant determined by the
satellite™s  imternal  density  distribution
{Dermott 1979b). For the purposes of this
paper we assume £ = 0.85, the value deter-
mined by Dermott and Thomas (1983} for
Mimas.

47

A simple extension of Lissauer’s argu-
ment shows that an impact will destabilize
the spin of a satellite if

Ay = vy sin de, (48}

where . is the critical amplitude of libra-
tion derived from the width of the stable
island associated with the synchronous spin
state. This condition 15 satished if

3 (15 ysind,  maRat
E:Vu A fw b,.mm__mummh_wwnmﬁ..___ﬁ.

(43}

Since sim ¢ < 1, this condition is less de-
manding than that of Lissaver (1985 and
becomes increasingly less demanding as ¢
increases and the width of the stable island
shrinks.

If we require that the satellite not be dis-
rupted by the impact, then the impact ve-
locity must be less than the limit w given by

1 5 . 3Gml
2SR

where the right-hand side of the incqueality
iz the .satellite’s gravitational binding en-
crgy. Since we have neglected the kinetic
energy that (s converted into heat, this must
be regarded as an underestimate of o For
heuristic purposes, let us consider a “'typi-
cal" impact for which & = 45°, 8, = 60°, [
= 1, and ¢, = 32°. Values of mv and ¢ for
some of the small, inner satellites of Uranus
and Saturn are shown in Table IV, The im-

{50

TABLE IV
ImpacTs Neepen 1o DISRUPT THE S¥YNCHROMOUS
ST STATE?
Sarellite it R in Uart
4 fen g see~'h  fkm) (ke osce~'h (kmeosee™?)
Mimas 1.6 X P 12 i 4
Enceladus 9.3 % [0°* 13 2 13
MeErznda T8 R 12 % ¥

= milt Is the momentuen of an mpactod necdied 1o dorupl ke
synchromsons spin slate. The mdius of 1he impactor, K., was
ealeulyied ssuming 2 density of 1 glem! and an impact velos-
Ity of 10 kmfuse, An dmpact with welocity less than o and
ML e Wil net disaapt the satellite. gy is the speed of
the satelling in fos oebit,
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pactors necded to disrupt the synchronous
spin slates are certainly very large, but it is
not clear to us that such impacts can be
ruled oul. For an impact speed of ~10 km/
sec, for example, an impactor capable of
disrupting the synchronous spin state must
have a radius =12 km. In the cases of Ence-
ladus and Miranda, such an impact would
have insufficicnl ensrgy to disrupt the satel-
lite. Howewer, even if the satellites were
disrupted, then reaccretion wolld have oc-
curred on a time scale less than that needed
to circularize an eccentric ring of debris and
the satellite would have been reformed ina
nonsynchronous spin state with its orbital
coeentricity intact.

A brief period of chaotic spin would have
little effect on the thermal evolution of &
satellite. However, while the satellite is not
in the synchronous spin state, (@/ako. may
be dominated by the term due Lo tidal dissi-
pation in the satellite, From Eg. {38), we
ahbtain

hmv.ﬁ =T m B 4»..“:" L

If @, — 10, then (diahoa ~ 4 = 101" and
could be as high as 107" if the interior of
the satellite is warm. These drag rates are
probably not high cnough to disrupt any of
the first- or second-order resonances, but
they could be high enough to vivlate the
stability condition [Eq. (20}) for some of the
third- and higher-order resonances—see
Table 111.

From the equation of motion for the reso-
pant argument, Eq. (16}, we sec that when
|F| = wi,

|lein = |F| — et (52

Therefore, __w_ must increase monatonically
with time at least as fast as

4] = 4F| — i, (53)

For the resonance to be distupted, | F| must
remain gremter than wf for a time t long
enough to change || by an amount =2ey, s¢
that in the subsequent evolution ¢ must cir-
culate even if |F| = 0. ¢ is given by

Zuy

|F] — wf

If the high value of |[F] is due to an episode
of chaotic spin, then this high value will be
sustained for a time of the order of the de-
spinning time scale, ~10* years, For lafe| ~
1071 ¢ is of the order of tens of years for a
third-order resonance, Thus, an episode of
chaotic spin could ensure the &»En_:nﬂ. of
high-order resonances. This could be an im-
portant reason for the complete absence of
third- and higher-order resonances among
the satellites.

1%, DSCUSSI0N
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Matiwaiton

The work described in this paper was
motivated by the following considerations.
In the Uranian satellite system, the high or-
bital inclination of Miranda is clearly anom-
alous. It is unlikely that an inclination as
high as 4° and 30 times bigger than the
inclinations of the other satellites is primor-
dial. Further, the eccentricities of the inner
Uranian satellites, Miranda, Ariel, and Um-
briel, are anomalously high considering
their small eccentricity damping time
gcales, These time scales range from 1 %
106Q, vears for Ariel 10 7 % 10°Q, years for
Umbriel. If the tidal dissipation function of
the satellite, (0, is ~10%, then the ohserved
eccentricities must be recent. It could be
argued that this SUggests & sﬁan....u_:n of
Q,. However, since . tends to unity as the
melting point is approached, this argument
is difficult to maintain for satellites such as
Miranda and Ariel that have expericnced
major thermal events. o

For these small, icy bodies, radipactive
heating is an inadequate source of heat and
we are aware of no other heating mecha-
nism apart from eccenlricity damping due
to lidal dissipation in the satellite. Thus, the
fact that the small, inner satellites have
been resurfaced since the times of their
last major bombardments also SUBEEsis
{hal their eccentricities were consider-
ably higher in the past,
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Similar anomalies exist in the Satumnian
satellite system. The eccentricity damping
time scale of Mimas is 3 % 105Q, years, yet
its ecoentricity is as high as 0.02. The small
satellite Enceladus has clearly experienced
a dramatic thermal event. The inclinations
of Mimas and Tethys are 1.53° and 1.09°,
respectively. These satellites are al present
trapped in a second-order £ resonance,
and Allan [196%) has demonstrated that the
inclinations weére probably smaller in the
past. The initial inclinations of the satellites
can be calculated from the present ampli-
tude of libration of the resonant argument
which is & well-determined quantity
(%7.0:40°). Since the initial amplitude of li-
bration could not have exceeded 1807, it
can be shown that the initial inclinations of
Mimas and Tethys must have been greater
than .4° and 1.0°, respectively (Allan
1969). We regard these initial inclinations.
particularly that of Tethys, as anomalous,
althowgh, admittedly, they are not as ex-
tracrdinary as the inclination of Miranda.

The spectacular tidal heating of lo was
predicted on the basis of the resonant forc-
ing of its eccentricity by Europa. As we
have shown in Section ¥, an orbital reso-
nance 15 an effective means of increasing
the orbital elements. However, the features
that we regard as anomalous in the Satur-
nian system cannot be accounted for by the
present orbital resonances., while in the
Uranian system there are no orbital reso-
nances at all. It is our hypothesis that thesge
features point to the existence of roso-
nances in the past, in both of these systems,
that have since been disrupted.,

In the case of the Saturnian satellite sys-
tem, further support for this sugpestion can
be obtained from consideration of (a) the
formation of the observed resonances in-
volving the satellite pairs Mimas-Tethys
and Enceladus-Dione and (b) the satellite
mass distribution. Goldreich (1965) sue-
gested that the ratios of the orbital periods
of thesc satellite pairs were originally ran-
dom and that differential expansion of the
satellite orbils was responsible for the for-

mation of the present resonant configura-
tions. However, inspection of Table I and
Fig. 2 shows that the values of mia™? for
these satellites are such that tidal evolution
{with an amplitude-independent dissipation
function (J,) is quite ineffective in changing
the rarios of their orbital periods. It is not
possible to allow that the ratios of the peri-
ods of the satellite pairs Mimas=Tethys and
Enceladus-Dione were more than a few
percent different From their present values
without also allowing that other satellite
pairs evolved through a number of low-or-
der resonances for which the probabilitics
of capture are high.

Evoluiion on Diverging Orbits

Differential tidal expansion of orbits
causes satellites o encounter resonances
on either converging or diverging paths.
Since tidal torques decrease markedly with
increasing distance from the planct, most
pairs of satellites evolve on converging or-
bits. The two possible cxceplions are the
satellite pairs Miranda-Ariel and Encela-
dus—Tethys. These pairs of satellites could
have evolved through resonances without
permanent capture. Our numerical investi-
gations show that when resonances are well
separated, the increase in the eccentricity
{or inclination) thal occurs on passage
through a resonance agrees well with the
prediction of the approximate analytical
theory. However, we find that when reso-
nences are nol well separated, as in the
case of Miranda and Ariel, the increase in
the eccentricity of the inner satellite is {in
most cases) as predicted by the theory, but
the theory breaks down completely in the
case of the inclinations as well as in the
case of the eccentricity of the outer, morc
massive satellite.

The increases in the eccentricities of
Miranda and Enceladus that could have
been produced by passage through 2 num-
ber of low-order resonances are high
enough to be interesting. For a cold satel-
lite, damping of the eccentricity between
resonance encounters due to tidal dissipa-
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lion in the satcllite may not be significant
until ¢ is large. However, a problem with
this seenario is that while these pairs of sat-
ellites could have passed through many res.
onances without capture to arrive at their
present configurations, this evolution could
not have occurred without other pairs of
satellites encountering resomances for
which capture would have been highly
probable and may even have becn certain.
A further consideration is that this type of
evolution, by itself, cannot account for the
high inclination of Miranda.

Evolution on Converging Orbils

The existing resonances in the Saturnian
system are all low order and well separated
from nearby resonances with the same ratio
of mean motions. Present theories of the
tidal origin of these resonances appear 1o
provide an adequate description of the evo-
lution on caplure. Howewer, we have
shown that many second- and higher-order
resonances arc also strong cnough to with-
stand the forces excrted by tides, We need,
therefore, to consider why all but ane of the
resonances in the satellite systems arc first
order [even the exception is only a second-
order resonance). One possibility is that the
probability of capture into a high-order res-
onance is small. On the other hand, there
are many more resonances associated with
a high-order commensurability than with a
low-order one and the possibility that cap-
ture into a high-order resonance occurred
in the past should be explored. In the work:
presented here we have focused on the 1:3
commensurability because this appears to
be the most likely candidate for influencing
Miranda's thermal and dynamical history.
It iz by no means the only high-order reso-
nance of interest in the satellite systems of
Saturn and Uranus. We have shown that
once caplure into a resonance occurs, then
high-order resonances involving distant
outer satellites are more effective than low-
order resonances at increasing Lhe eccen-
tricities and inclinations.

Heating of Small Satellites

The evolution of the orbital eccentricity
on capture into a resonance is determincd
by several competing processes. The time
scales that determine this evolution are the
eccentricity damping time scale due to tidal
dissipation in the satellite, the cooling time
seale, and the time scale on which the ec-
centricily increases due to the resonance,
These time scales are comparable with each
other, interrelated, and time {or tempera-
ture) dependent, They also determine the
final, equilibrium value of the eccentricity,
assuming that disruption of the resonance
does not oocur.

The eccentrizity forced on the orbit of Io
by Europa is low (0.0041). However, the
eccentricity damping time scale of the satcl-
lite is also low (between 10°Q, and 1070,
years) and the dramatic volcanism on lo
has arisen because the resonance has, pre-
sumably, existed for a period much longer
than many eccentricity damping time
seales. The tidal heating of small, icy satel-
lites demands a different scenario. We ar-
gue that on cncounter with a resonance.
satellites, particularly small satellites, may
be cold throughout and that the valee of &,
may then be high {=107). Resonances an:
most likely to be encountered when the ot-
bital expansion rate is at a maximum. These
factors could operate together to ensure
that the cquilibrium cccentricity is high
{=0.1). While the eccentricily damping rate

is low, Lhe resonance increases the eccen-
tricily at a rate é/e that is a factor of et
greater than the orbital expansion rate, {df
a),. Thus, large eccentricities could have
been achieved on comparatively short time
scales  without significant  cccentricity
damping or heating of the satellite. The sub-
sequent damping and warming of the satel-
lite could lead to a marked reduclion in
both &, and the eccentricity damping E.:n
scale, with the result that significant heating
could then occur on a time scale less than
the cooling time scale.

If the satellite is in & nonsynchrongus ot
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chaotic spin state, then the eccentricity
damping time seale is drastically reduced.
However, until we have evidence that a sat-
cllite is likely to remain in & chaolic spin
state for periods substantially greater than
the tidal despinning time, we cannot argue
that episodes of chaotic spin are likely to
have had a major influence on the thermal
history of a satellite.

Chaotic Resonance

For eccentricilies & = (.03, the dynamics
of resonance in the Uranian and Saturnian
satellite systems arc quite different. The
bigger values of the mass ratios m/M and
the smaller value of J; in the Uranian sys-
tem result in resonance overlap. Analytical
theories that rely on a truncated Hamilto-
nian are no longer useful and we must re-
sort to numerical methods. We have found
that when resonance overlap occurs the
sysiem can exhibit several types of behav-
ior.

In our first investigation we studied the
case of a 1:3 resonance in which the ¢ and
I? resonances were of comparable strength
and the separations of the resonances were
smaller than their widiths. We found that
capture took place in the f* resonance, and
that the first transition into the #? resonance
occurred when f had increased to a value
sufficient for the overlap of the ¢* and j*
resonances, Thereafter the system hopped
between these resonant states, although 1i-
bration of some of the other arpuments
sometimes occurred at the same time.
While in this chactic state, the eccentricity
and inclination increased at comparable
rates, not too different from those rates ex-
pected on the basis of the isolated reso-
nance theory. We also observed the “*spon-
taneous™  disruption of this chaotic
resonance. This occurred when &4, had a
value appreximately 100 times smaller than
that required, on the basis of the simple
steength criterion, Eqg. (20), to disrupt the
resonance.

The 1:3 resonance between Miranda and
Umbriel, which may have been responsible

for increasing both the cccentricity and the
inclination of Miranda, was investipated
upder two different sets of circumstances.
Using the simple analytical theary appro-
priate for isolated resonances, we de-
scribed the order in which the resonances
would have been encountered and those
circumstances in which caplure into the
various resonances is likely to have oc-
curred. If the initial inclination of Mimnda
was small {<{.14%), then capture into the I?
resonance would have occurred first, On
capture, the inclination f would have in-
creased o ~4° in ~10° years, after which
overlap of the J? and the ff resonances
would have cceurred. Assuming, following
Tittemore and Wisdom (1987}, that chaotic
hopping between these resonances results
in the disruption of the inclination-Lype res-
onances, then further tidal evelution in-
creases o unlil the eccentricity-type reso-
nances are encounterad,

If the eccentricities are small and the e
and ¥ resonances are well separated, then
the single resonance theory is valid. It pre-
diels certain caplure into the ce’ resonance
if ¢ < 0.008 when ¢ ="0.004, and ¢ertain
capture into the ¢® resonance if ¢ < 0.0065.
If Miranda is cold throughout, then it {5 rea-
sonable to neglect tidal dissipation in the
satellite in the first instance. In that case,
Miranda's eccentricily increases to 0.03 in
~10%, years = 2 = |07 years. Oweclap
between the ¢! and ee' resonances is likely
to occur when ¢ reaches this value. We
have shown that once overlap between &*
and #¢' resonances occurs, then the motion
15 chaotic and the syslem hops between
these eccentricity-lype resonances. IF dis-
ruption does not occur, then we expect that
Miranda's eccentricity increases to —~0.1 in
—~10%2, years = 2 x 10* years. Once the
eccentricity of Miranda 15 as high as 0.1,
while its inclination is ~4°, then the ¢¥ and
I* resonances overlap and we have shown
that hopping can then occur between the
eceentricity- and  inclination-type  resos
mances. For ene set of initial conditions we
observed a curious hopping between the f2
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resonance and a state in which all the possi-
ble second-order rcsomant arpuments are
circulating. In this state the mean value of &
is greater than the maximom value of & that
is consistent with libration in the ¢* state,
We think that it is this type of transition
that results in the total disruption of the res-
onance. However, further investigations
are required to determine if this is the case,
Numerical integrations of the full equations
of motion are valuable but their value is al-
ways limited by the fact that even with ad-
vanced computers it is difficult to explore
the full range of solutions in & system that is
dynamically very old.

The conditions under which the total dis-
ruption of the Miranda—Umbrigl resonance
is likely to occur are of particular interest
since they probably determine the thermal
history of Miranda. If it is necessary for the
¢! and % resonances to overlap, then on
disruption ¢ would be large, =0.1, and ec-
centricity damping would result in & dra-
matic thermal event. Conversely, if averlap
of the ¢ and ee’ mesonances is sufficient to
ensure the total disruption of the reso-
nance, then on disruption ¢ is likely to be
small, ~0.03. Damping of an eceentricity of
this magnitude would result in a global tem-
perature increase ~20 K. However, this ar-
gument assumes that tidal beating is uni-
form throughout the satellite. In fact, tidal
strain rates are certainly not uniform. Fur-
thermore, since the (@ of ice s lemperature
dependent, a monuniform tidal strain rate
is sufficient to cnsbre that tidal heating is
localized. The observed resurfacing on
Miranda is confined largely o three co-
ronae and i thus more suggestive of local-
ized rather than global volcanism. IF the
heat derived from the damping of an eccen-
tricity e — 0.03 iz confined to 10% the vol-
urme of the satellite, then this is probably all
that is required to account for the observa-
tions.

Disraption of a Resonance

The existence of various striking anoma-
lies in the Uranian and Saturpian satellite

systems has led us to suggest thal roso-
nances existed in the past in both of these
systems that have since been distupted.
This hypothesis is untenable unless mecha-
nisms exist for disrupting resonances. Tao
put this problem in its proper context, we
remark (a) that satellite systems are, dy-
namically, ~10¢ older than the planetary
system and thus the long-term stability of
satellite orbits may be less assured than
those of the planets, and (b) that we are not
concermed with the long-term stability of
satellites in mundane orbits, but of those in
resonant configurations. The long-term sta-
bility of these configuritions, particularly
those in which the resgnances overlap and
the motion is chaotic, is not known. This
alone may account for the complete lack of
orbit=orbit resonances in the Uranian sys-
cm.

We have observed several spontanesus
disruptions of chaotic resonances. One ex-
ample is shown in Fig. 12. It would appear,
howewer, that this and the other disruptions
were partly a consequence of the high val-
wes of (afa) that were used in some of our
integrations. In Fig. 12 we observe that
from time to time the eccentricity has ex-
cursions Lo very low values and that escape
from the resonance oceurrcd when £ was al
one of these lows. This and other numerical
experiments suggest that the stability con-
dition described by Eq. (20) overestis
mates. by a factor of ~10°, the value of
(afa), that a resonamee can withstand.
However, again we must emphasize that
this conclusion has been reached on the
basis of investigations over — 0% orbils
and that we do not know what value of
{afa), would effect the disruption of a cha-
otic resonance over a period as long as,
say, 10V orbits,

It is likely that the average value of (afa),
for tidally evolved inner salellites in W_E._u
the Uranian and Saturmian systems 15
—~10"'2, Many high-order resonances,
which tend to be well separated, particu-
larly in the Saturnian satellite system, may
be able 1o withstand these drag forces.
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However, we have pointed out that from
time to time cometary impacts may dis-
lodge small, monspherical satellites from
the synchronous spin state. We have shown
that while the satellite is in a nonsynchro-
nous spin state, (d/a), can be high enough to
disrupt third- and higher-order resonances,
even in the Satummian satellite system.

Another mechanism for disrupling reso-
nances that we have not diseussed but that
needs investigation involves the dynamics
of satellites in one particular resonant con-
fipuration encountering other resonznt con-
figuratiens, Such a situation is likely to oc-
cur if a satellite system has undergonc
appreciable tidal evolution. This could he
particularly important in the Saturmian sat-
ellite system. We must also remark that it is
not known if the history of the 113 reso-
nance between Miranda and Umbriel was
divorced from that of the 3:5 resonance be-
tween Arel and Umbrel. If these reso-
nances were once exact, then the satellites
would have been involved in a Laplace-
type resonance for which

my — 3 + 2y =10 {55}

where my, 4, 2nd 1y are the mean motions
of Miranda, Ariel, and Umbriel, respec-

tively. Since the above relation is at present
almest exact, we should consider the possi-
Lility that an exact Laplace-type tesonance
existed in the past.

To conclude, we consider that the
present quiescent states of the satellite sys-
tems, particularly that of Uranus, are a
poor guide to their orbital histories. It is
plausible that some of the eccentrcities
were very much larger in the past and that
the tidal damping of these enhanced eceen-

tricilies determined the dramatic thermal
historics of some of the small, icy satellites.

AFPENDIX A; ORBITAL EVOLUTION ON
CAFTURE INTO RESONAMCE

Consider two satellites of masses mr and
m" and position vectors r and ¢ with re-
spect to a planet of mass M. Let a, e, 1, @.
1, and A denote the semimajor axis, eccen-
tricity, inclination, longitude of pericenter,
longitude of ascending node, and mean lon-
gitude, respectively, of the mass m with
similar primed quantities for the orbital ele-
ments of the mass m°, where we assume a°
= a. Lagramge's equations for the vatiation
of the orbital elements of the mass m with
time are given by (see, eg. Brouwer and
Clemence 1961)

dn Ioal

AR (A1)
de _ Vi-& o —— U VI-Sau

dr - T T nate i=vi=e) 3 nale o (A2}
af tandf  salf 2 1 ats

— - —_— ] = it

dr natVl = g AE_. mEc.u ] — et gin 7 94 (A3)

de 230 VI—eil —VI-eal

tan 47  alf

dt  nada 2 mate Be s At — et af (Ad)
m@.ﬂ{_lnuﬁ+ tan ff  au

et Ha’e d¢  palvl—e2 M (AT)
g I aLt

= — e

dr na? V1 — ¢ sin f o

(A6)
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where .

A= ._.an__ + &, (AT)

1 is the mean motion of the mass m, and
is the disturbing function given by

. 1 r-r
v=w(r=m- T s
with
= Gmi'. (A9
There are similar equations for the varia-
tion of the orbital elements of the mass '
involving the disturbing function L' defined
by
I I re¥

U=~ 5 - ) (AID)

r— T r

with
(All)

{} and U can be expanded as a Fourier
series in terms of the orbital elements of the
masses moand m' (see, eg., Kaula 1962,
Allan 1969, Murray 1982),

With the exception of a few terms, which
can be trealed separately, the series expan-
sions of I/ and U have a similar form and a
general resonant lerm can be written,

I=pu'Scosd [AT2)
= uf§ cos o, (Al3)

where, to lowest order in the eccentricities
and inclinations,

u = 4m.

5= L2 uigraigmisto, (A1)
and
d=ph— (p + gk + quid
+ i + @il + )’ (AlF)

with the D"Alembert relation requiring that
i

q= M i

Throughout this paper we will be consid-

ering only the lowest-oeder terms in the ex-
pansion of the disturbing function since we

{AlG)

are interested only in applications to natu-
ral satellite orbits where the eccentricitics
and inclinations are small,

The function (o) depends on the ratio of
the semimajor axes of the two bodies and
on the particular resonance thatl is being
considered. The sign of fle), and hence the
sign of 5, determines the location of stable
libration points. Although the sign can be
determined by an analysis of the signs of
the various functions, thers is no simple
rule for the general case (Ellis and Murray
19891,

For any given gth-order commensurabil-
ity of the form g:p + g, a number of differ-
ent resanances can exist, their exact loca-
tions being determined by their particular
combinations of pericenters and nodes. As
an example we will consider the 1:3 com-
mensurability. There are six possible reso-
nant angles in such a second-order reso-
nance which we will number & to & in
order of increasing values of o

dy=h— 3+ 202 {2 resonance
= h=3a"+ 0+ If' resonance
by = A = 33+ Y I’ resonance
da=h— 3"+ 2& ¢’ resonance
ds=h—3x +a+a ge' TRSOMANCE
dg = h— 30"+ 2w #7 resonance

(AT

As the satellites evolve outward with in-
creasing « they will encounter each of these
resonances in turm.

If we denote the variation in the mean
motions of m and m" due to tidal effects as
a, and #;, respectively, then, from Eags.
(Al (A12), and (Al3) we have

LT L Al8
it 5 sin o + 4, (AL
% = ||u|u_._ﬁ * Ssind + . (ALY
a
Hence,
$=pi—(p+agn+aqe+ g
+ guft + i)’ + pE = (p + )&’ (AZD)
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The terms on the right-hand side of Eqs.
(A20} which involve second time deriva-
tives are penerally negligible and will be ig-
nored for the moment. Thus,
¢ =3gS5sind + F, (A)

where

g=pi= +_..u+qmlm (A2

and

._m..__..“w.lu I__..__.h|.._lm.ﬁa_+_an_ !3Lm

(A23

In resonance, the mean value of the second
deriative of ¢, {¢) is zero, henee

(Ssin ) = —(F/3g) (A2

and it is this equation that determines the
lag angle. Using this result and Egs. (Al)-
{AB) we can derive expressions for tha av-
craged values of the other orbital elements
when a resonance condition holds, We find

F=pi — (p+ guiy.

el (AZ5)
@ _aVIg| —
i Ll (p+ qil 1-¢ ,h__ 3 (AZE)
P AT #' — eafl £
sinl - naVi- sl g ﬁm Q_ﬁ A1)
(i _ “ : I F
sin £ H'a’ VT — ¢ sindr T. * g = p - g sin® nﬂw b “L ig (A28)
To lowest order in the orbital clements, form
Eqs. (AZ3)-(A28) become .An“_
; S=(~1p eq, {A3d)
L S . i
¢ e UM 3g where fle) is always taken to be positive
(e" | i F and g(>0) i5 the order of the resonance.
i ﬁﬂ:i. i (A3D)  (The analysis can easily be extended to in-
. clude more peneral resonances.) Equation
oy _ Ihﬁﬁ:nh (a3 (A20 becomes
.h. PR d=pn—(p+ g+ g+ ps [AIT)
] il iR il ; )
Aﬂ -—a E na'o. (A3D)  UsingEqs. (AD=(A6) and (A34) with g >

We will now eonsider the question of the
magnilude of the second-order derivatives
that were neglected in derving Eq. (A21).
To simplify the analysis we will consider a
general, internal, eccentricity resonance
with resonant angle & of the form

do=ph = (p+gh’ +gd (AR

In this case it can be shown that the sign of
5 is determined purely by g, and 5 has the

0 we have, to lowest order in e,

Sy

g = m?mu sin2 (A3

and

=i AT
{?ﬂﬂ sin 2¢. (A7)

mete
Since d ~ &/e?, the o term will always dom-
inate over the £ term in Eq. {A20) and the
variation in £ can be ignored. Hence,
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&~ e, {A38)
which implies that provided g = 2 (i.e., 2
second- or higher-order resonance is being
considerad), the & term is nealigible. If g =
I (i.e., a first-order resonance) then the mo-
tion of the pericenter can dominate the vari-
ation in ¢ for sufficiently low cccentricity.
The critical value of e is given by

P R
For p* & p we have
E” Pinia {4407
and
afla) ~ (Ad1)
for large values of p. Hence,
1
& __m.q L.L . (A42)
For m'iM = 1.5 x 1079, &; < 0.00 when
pE2

The square of the libration frequency
[see Eq. {10} in the paper] is given by 3g5.
Thus, our expression for the libration pe-
riod assumes that the equation for i is dom-
inated by the mean motion terms. The
equation for &, Eq. (A21), can be integrated
to obtain the energy integral and this can be
used to place bounds on the variation of the
semimajor axis [see Eq. (12) in the paper].

APPENDIX B; DYNAMICS OF RESONAMCE

PASSAGE

We present here a summary of the results
of the application of the adiabatic invariant
theory to the analysis of orbital resonances.
For a review of the details sec Peale (1986)
and Malhotra (198%),

First-Order Resonance
We define the quantities

VB M afl) e

Corit = Fu g :H?aafu {BL)
2VBRmiM e fle)

e = P... +{p + _u._n___z,___auﬁb » 1B2)

where & = afa’; fle) is a function of La-
place coefficients that has 1o be evaluated
for each resonange; e, m°, and M arc the
masses of the inner satcllite, the outer satel-
lite, and the planct, respectively; and p and
P+ 1 are integers describing the first-order
resonance,

In the case where (afa), < (d'a’), the
orbits of the satcllites are diverging and
capture into rescnance is impossible, Pas-
sage through the ¢ resonance resulls in an
increase in e, while passage theough the &
resonance results im an incresse in &',
These increases are given here for the two
limiting cases

X & Xerih Xp = Xy &...Wu_..'
3

NEB I xeaf+ i MMV. (rxa'?

(B4)

where x denotes ¢ or &, and the subseripts i
and f refer to values befors and after pas-
sage through resonance.

In the other case when (afa), = (d'fa"),
and the orbits of the satellites are converg-
ing, capture into resonance is possible. The
probability of capture, P, is given by

A= Xy Fr=1 [(BS)

Pomsie (5] (mg)

£ B Xonpt .n.
i

Second-Order Resonance

In this case we define the following criti-
cal values:

3203(m" I M)af(a)

o = A T+ ip+ mu.,___s_:z.__nuv (B7)
813 (m'fM Jefler)

I~ e o o) Y

— h 3243(m! M o flex) v_

fedt = \TT 3 (g + 2P(mima’
BIMmiM e fle) 2

fere = Fu Fip+ Egaqaun.v L

If the orbits are diverging then capture mﬂmu
resonance is impossible and the increase in
the element x {= e, &', f or /") on passage
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through the appropriste resonance is given
by

X R Kol X X — Xl (BI1)
X B X! xr=1x + F.__.M..nnm_. (B12)

W

If the orbits are converging then capture
into resonance is possible. The probability
of capture is given by

P.o=1

Fﬁ;\%v (B14)

Xi < Xeppt (B13)

o P =
1 cnc c Fr

AFFENDIX C; NUMERICAL METHODS

There are several methods available in
the literature for the numerical integration
of ordinary differential equations. Fox
(1984} has compared several different sin-
gle-step integrators for their performance in
the integration of the equations of moticn of
celestial mechanics, He reported that
among the more efficient routines were the
Eunge—Kuotta—Dormand and the Gauss—
Jackson methods, Since that comparative
study was published, Everhart {1985) has
presented another integrator based on the
Gauss—Radan method, We have compared
the Everhart and Runge—-Kutta—-Dormand
routines (obtained from Fox} and found
that Everhart's routine is somewhat supe-
rior in speed for the same level of accuracy.

The numerical inteprations presented in
this paper vsed Everhart's routine for the
purpose of integrating a set of coupled dif-
ferential equations of the specific form

a..,n

7 = Fir), iy

where r denotes a position vector. This rou-
ting uses Causs—Radua spacings on each
time step of the evolution. The integrator
can be used in a constant-step-length or a
variable-step-length mode. For the rela-
twely small eccentricities and inclinations
that we deal with in our application, and the
relatively low accuracy that is required
{since we are not doing ephemeris calcula-

tions we do not need global accurcy in the
mean longitudes) the constant-step-length
mode is very well suited. We used a step
size of 1/20ch of the orbital period of the
innermost satellite. We performed checks
on the accumulated global error in the time
evolution of a single point-mass satellite in
a Keplerian orbit about a point-mass planet.
The emror in the enargy accumulates near-
linearly with time.

For a system consisting of a “fixed”
planet of mass M and two point-mass satel-
lites, 5, of mass my and £; of mass e, the
muiual gravitational forces lead to the fol-
lowing equations of motion for 5

: GIM + )
= -ty

where Lhe origin of the coordinate system is
fixed at the center of mass of the planet and
the x=y plane is the equatorial plane of the
planet.

The effect of the oblateness of the planet,
gy, is to _z.nn_..nn a force per unil mass on
the satellite 5; given by

== m_..a ,m_.r ﬁw%? ~5 MIE x,

e (C3)
e DA (-5
(C4)
e B 19
(Cs)

where R, is the radius of the planet.

The effects of planctary tides were simu-
lated by assuming that each satellite is afl-
fected only by the tide it alone raises on the
planet. The tidal foree per unit mass was
taken to be

A=~ T, (C8)
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=+ Ty ©
=0 (CR)

where C, is a constant depending on the
planet's parameters. Thus, the equations of
mation for the satellite §, are

f=FP o+ (C9)

All the integrations were performed on the
Corpell Mational Supsrcomputer using the
highest level of optimization. A typical run
of 10° orbits took about 1 hr of CPU time,
which is equivalent to about 100 hr of CPU
lime on a VAXS780 machine.
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