SOLAR SYSTEM(S) SCIENCE WITH LSST

RENU MALHOTRA The University of Arizona

LSST will revolutionize solar systems science

Malhotra, LSST-SAC-2014-April-07

Exo-planets

- transient phenomena in protoplanetary & debris disks
 - giant impacts
- free-floating planets

Irregular Satellites

- discover >10 times more objects
- explore full Hill spheres of outer planets
- test models of irr. sat. origin, & of dynamical history of planets

Comets

- Long period comets, Halley-type comets
- Oort cloud mass = $0.1 M_{\oplus}$? $100 M_{\oplus}$?
- huge observational bias very poorly known population beyond q≥ 2.5 AU
- LSST will get comet census at ~30 AU
- NEED software for detecting * fuzzy * moving objects

Kuiper Belt

- LSST will discover 10-100 times more KBOs
- census of distant [dwarf] planets
- LSST's uniform sky coverage and subarcsecond resolution (great for orbit determination)
 - ➡ census of special dynamical populations
 - → resonant KBOs (nonuniform in azimuth)
- test models of planet migration

Asteroids

- Jupiter Trojans
 - LSST will increase discoveries >10-fold
 - discover dynamical/collisional families
 - test models of Jupiter's migration
- Main asteroid belt
 - LSST will enable rotational info: Periods, Shapes, Phase functions, Surface properties
 - "active" asteroids
 - source of NEOs, meteorites, IDPs, connection with debris disks
 - thought to be due to impacts or rotational break-up (YORP spin-up); connected to origin of close/contact binaries
 - only 2 studied thus far; LSST will discover/study 100s
 - ground truth for impact physics test theoretical models

NEOs

Near-Earth Objects

- LSST will go ~3 mags fainter than current, with sub-arcsecond astrometry
- discover/study >10x NEOs
- enable 100-yr impact hazard assessment
- meteorite-parent body relationships
- test lunar impact crater chronology