A few points
 on the dynamical evolution of the young solar system

Renu Malhotra
The University of Arizona

A few points
 on the dynamical evolution of the young solar system

Renu Malhotra
The University of Arizona

+ Late stages of planet formation - planetesimal-driven migration

A few points
 on the dynamical evolution of the young solar system

Renu Malhotra
The University of Arizona

- Late stages of planet formation - planetesimal-driven migration
- Kuiper belt \& asteroid belt \Rightarrow extent, timescale of Jupiter-Neptune migration

A few points
 on the dynamical evolution of the young solar system

Renu Malhotra
The University of Arizona

- Late stages of planet formation - planetesimal-driven migration
- Kuiper belt \& asteroid belt \Rightarrow extent, timescale of Jupiter-Neptune migration
- appears to be nearly incompatible with stability of terrestrial planets

A few points
 on the dynamical evolution of the young solar system

Renu Malhotra
The University of Arizona

- Late stages of planet formation - planetesimal-driven migration
- Kuiper belt \& asteroid belt \Rightarrow extent, timescale of Jupiter-Neptune migration
- appears to be nearly incompatible with stability of terrestrial planets
- how to save Earth?

Jupiter,....,Neptune + trillions of leftover planetesimals \Rightarrow Jupiter migrates inward, Neptune migrates outward

Fernandez \& Ip 1984

The origin of Pluto's peculiar orbit

Renu Malhotra

$$
e_{\mathrm{P}, \text { final }}^{2}-e_{\mathrm{P}, \text { initial }}^{2} \approx \frac{1}{j+1} \ln \left(\frac{a_{\mathrm{N}, \mathrm{final}}}{a_{\mathrm{N}, \text { initial }}}\right)
$$

Neptune's migration

$$
e_{p}=0.25 \Rightarrow \Delta a_{N} \gtrsim 5 \mathrm{AU}
$$

More observational evidence
 in Kuiper Belt dynamical structure

More observational evidence
 in Kuiper Belt dynamical structure

- resonances
- eccentricities
- inclinations

More observational evidence
 in Kuiper Belt dynamical structure

"Resonance sweeping" during outward migration of Neptune

- smooth migration
- adiabatic invariant (3:2 MMR): $a^{1 / 2}\left[2-3\left(1-e^{2}\right)^{1 / 2} \cos i\right]$
- Neptune migrated out $\approx 10 A U$

More observational evidence
 in Kuiper Belt dynamical structure

More observational evidence
 in Kuiper Belt dynamical structure

Planetesimal-driven migration Angular momentum conservation:

$$
\sum\left(m_{p} \mid \sqrt{ } a\right) \approx \Delta\left(m_{N} \sqrt{ } a_{N}\right)
$$

$\Rightarrow \sum m_{p l} \approx 30 m_{\oplus}$ planetesimal disk fueled
Neptune's ~10 AU migration

Energy conservation
\Rightarrow Jupiter: $\Delta\left(m_{J} / a_{J}\right) \approx \sum\left(m_{\mathrm{pl}} / a\right)$
$\Delta a_{J} \simeq-0.2 A U$

More observational evidence
 in Kuiper Belt dynamical structure

"Resonance sweeping" during outward migration of Neptune

- smooth migration
- adiabatic invariant (3:2 MMR):

$$
a^{1 / 2}\left[2-3\left(1-e^{2}\right)^{1 / 2} \cos i\right]
$$

- Neptune migrated out $\approx 10 A U$
- $\Delta \mathrm{m}($ planetesimals $) \approx 30 \mathrm{M}_{\oplus}$
- Jupiter migrated inward ~0.2 AU

BUT: This constraint fails if planets encounter MMRs

The origin of Pluto's peculiar orbit

Renu Malhotra

$$
e_{\mathrm{P} . \mathrm{final}}^{2}-e_{\mathrm{P}, \mathrm{initial}}^{2} \approx \frac{1}{j+1} \ln \left(\frac{a_{\mathrm{N}, \mathrm{final}}}{a_{\mathrm{N}, \mathrm{initial}}}\right)
$$

The origin of Pluto's peculiar orbit

Renu Malhotra

$$
e_{\mathrm{P}, \text { final }}^{2}-e_{\mathrm{P}, \text { initial }}^{2} \approx \frac{1}{j+1} \ln \left(\frac{a_{\mathrm{N}, \text { final }}}{a_{\mathrm{N}, \text { initial }}}\right)
$$

migration, the jovian planets do not encounter any strong orbital resonances amongst themselves, and therefore suffer only relatively small mutual perturbations. How restrictive this condition might be on the entire dynamical evolution described here requires further, study. (4) Finally, the role of possible planetesimal collisions with Pluto during its evolution in the $3: 2$ Neptune resonance also needs to be evaluated. This may have an important bearing on the origin and properties of the Pluto-Charon binary.

The origin of Pluto's peculiar orbit

Renu Malhotra

$$
e_{\mathrm{P}, \text {, inal }}^{2}-e_{\mathrm{P}, \text { initial }}^{2} \approx \frac{1}{j+1} \ln \left(\frac{a_{N, \text { final }}}{a_{\mathrm{N}, \text { initial }}}\right)
$$

The initial conditions were carefully chosen to...
ensure that during their radial migration, the jovian planets do not encounter any strong orbital resonances amongst themselves, and therefore suffer only relatively small mutual perturbations. How restrictive this condition might be on the entire dynamical evolution described here requires further, study. (4) Finally, the role of possible planetesimal co Nice Model with Pluto during its evolution in the $3: 2$ Neptune res also needs to be evaluated. This may have an important (2005) on the origin and properties of the Pluto-Charon binary.

More observational evidence
 in Kuiper Belt dynamical structure

"Resonance sweeping" during outward migration of Neptune

- smooth migration
- adiabatic invariant (3:2 MMR): $a^{1 / 2}\left[2-3\left(1-e^{2}\right)^{1 / 2} \cos\right.$ i]
- Neptune migrated out ≈ 10 AU
- $\Delta \mathrm{m}($ planetesimals $) \approx 30 \mathrm{M}_{\oplus}$
- Jupiter migrated inward ~ 0.2 AU

BUT: This constraint fails if planets encounter MMRs.

Does that mean we have NO constraints on Neptune/Jupiter migration?

Distribution of asteroids observationally complete primordial set: H<9.7 (D>50 km), N~950

Distribution of asteroids observationally complete primordial set: H<9.7 (D>50 km), N~950

Distribution of asteroids observationally complete primordial set: H<9.7 (D>50 km), N~950

Distribution of asteroids
observationally complete primordial set: H<9.7 ($\mathrm{D}>50 \mathrm{~km}$), $\mathrm{N} \sim 950$

dynamically stable regions are not uniformly filled distribution reflects "the last major dynamical event"

Sculpting of the Asteroid Belt

simulated 4 gyr of planetary perturbations

Sculpting of the Asteroid Belt

simulated 4 gyr of planetary perturbations compared to observed belt

Sculpting of the Asteroid Belt

simulated 4 gyr of planetary perturbations compared to observed belt

Missing asteroids: explained by effects of Jupiter-Saturn migration
$\Delta a_{\text {Jupiter }} \simeq-0.2 A U, \Delta a_{\text {Saturn }} \simeq+1.0 \mathrm{AU}$ migration timescale \sim a few megayears

Saturn's migration $\Rightarrow V_{6}$ secular resonance sweeping excites asteroid eccentricities

Minton \& Malhotra, 201 I

eccentricity vector:
$\mathbf{e}_{f}=\mathbf{e}_{i}+\delta \mathbf{e}$
$|\delta e|:$ controlled by $e_{6} \sqrt{ } / \mathrm{da}_{6} / \mathrm{dt}$

Saturn: $\Delta \mathrm{a} \approx 1 \mathrm{AU}, \mathrm{da} / \mathrm{dt} \gtrsim 0.15\left(\mathrm{e}_{6} / \mathrm{e}_{6 \mathrm{c}}\right)^{2} \mathrm{AU} / \mathrm{myr}$

Effects of Jupiter-Saturn migration on terrestrial planets

V_{5} secular resonance

- excite eccentricities
- multiple crossings
- low probability of cancellation
- low probability of "successful" outcomes in numerical sims, even with very fast migration, "jumping Jupiter" style

This is disturbing!

How to save the terrestrial planets?

Options?

Agnor \& Lin suggest that the terrestrial planets formed after giant planet migration was completed

- But "missing asteroids" left their imprint in the crater record
- LHB @ ~ 3.9 Ga

Strom et al., 2005

How to save the terrestrial planets?

Options?

Agnor \& Lin suggest that the terrestrial planets formed after giant planet migration was completed

- But "missing asteroids" left their imprint in the crater record
- LHB @ ~ 3.9 Ga
- Size distribution of impactors
- same as Main belt asteroids but different than younger impactors

How to save the terrestrial planets?

Options?

- other missing mass to kill V_{5} ?
- different arrangement of terrestrial planets?
- 5th terrestrial planet?
- massive leftover planetesimal population in the inner solar system?

