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ABSTRACT

The distribution of orbital period ratios of adjacent planets in extrasolar planetary systems discovered by the Kepler
space telescope exhibits a peak near ∼1.5–2, a long tail of larger period ratios, and a steep drop-off in the number
of systems with period ratios below ∼1.5. We find from these data that the dimensionless orbital separations have
an approximately log-normal distribution. Using Hill’s criterion for the dynamical stability of two planets, we find
an upper bound on planet masses such that the most common planet mass does not exceed - m10 *

3.2 , or about two-
thirds of Jupiter’s mass for solar-mass stars. Assuming that the mass ratio and the dynamical separation (orbital
spacings in units of mutual Hill radius) of adjacent planets are independent random variates, and adopting
empirical distributions for these, we use Hill’s criterion in a statistical way to estimate the planet mass distribution
function from the observed distribution of orbital separations. We find that the planet mass function is peaked in
logarithm of mass, with a peak value and standard deviation of Åm Mlog of ~ -(0.6 1.0) and ~ -(1.1 1.2),
respectively.

Key words: celestial mechanics – planetary systems – planets and satellites: dynamical evolution and stability –

planets and satellites: formation – planets and satellites: general

1. INTRODUCTION

What is the mass distribution function of planets in the
universe? In the past two decades, more than 1700 exoplanets
have been discovered; of these, 502 have measured masses
(Exoplanet Archive, http://exoplanetarchive.ipac.caltech.edu/,
as of 2014 September 16). The distribution of these planet
masses is shown in Figure 1. We observe two local peaks in
this apparent distribution, near ~ M1 J and near ~ ÅM10 :
Jupiter-mass and “super” Earth-mass planets are common in
the discovered population of planets. However, this apparent
mass distribution suffers from many difficult-to-quantify
selection biases, so we must exercise great caution in
interpreting these features. At the very least, they are of
unknown significance for the intrinsic distribution of planet
masses.

In some contrast with the less-than-30% fraction of all
exoplanets for which we have measured masses, the orbital
periods of nearly 100% of exoplanets are quite well determined
—indeed, the periodicity of the orbital motion of planets is
predominantly how they are discovered. The Kepler mission,
currently the largest systematic exoplanet survey (Borucki
et al. 2011), has provided a wealth of data on planets and
planetary systems in the Galaxy. A large subset, about 65%, of
all confirmed exoplanets are found in planetary systems
harboring two or more planets. Significantly, several studies
of the Kepler data on multiple-planet systems have concluded
that planetary systems are coplanar to within a few degrees
(Lissauer et al. 2011; Fang & Margot 2012; Figueira et al.
2012; Johansen et al. 2012; Tremaine & Dong 2012; Fabrycky
et al. 2014), and that they are likely closely packed (Fang &
Margot 2013).

Here we leverage the Kepler data on orbital periods in
multiple-planet systems, together with theoretical understand-
ing of the long-term dynamical stability of coplanar planetary
systems, to estimate the planet mass distribution function. First,
we use the observational data on orbital periods to compute the
distribution of orbital spacings in systems of ⩾N 2 planets. We

then reason that it must be possible to deduce planetary masses
from the observational data of orbital period ratios if orbital
spacings are determined by long-term dynamical stability.
Numerical studies have shown that the relationship between
orbital spacing and planet masses is necessarily statistical in
nature because multiple-planet systems exhibit chaotic
dynamics. We adopt the ansatz that the orbital spacing
measured in units of the mutual Hill radius—the so-called
“dynamical separation”—is a random variate, and we adopt an
empirical distribution for this parameter. This leads us to
estimates of the distribution of the total mass of adjacent
planets relative to the stellar host mass. We then consider two
limiting cases: that adjacent planets have a random mass ratio
or that they tend to be similar to each other in mass. Finally, we
convolve with the observed distribution of stellar host masses
to convert from planet-to-star mass ratios to planet masses, to
calculate the planet mass distribution function.
Our approach assumes that dynamical separations, total mass

and mass ratios of adjacent planets are independent random
variates, and we neglect any correlations with stellar host mass
and the age of the system. With these simplifications, we arrive
at a theoretical estimate of the planet mass function based only
on the observational data of the orbital periods of exoplanets
and the masses of their stellar hosts. We also make independent
estimates of the planet mass function based on empirical mass–
radius relations and observational data of planet radii, and we
compare these with the dynamical stability-based estimate.
The true mass distribution function will of course be

increasingly better determined with ongoing observational
efforts to measure the masses of a large population of extrasolar
planets by means of complementary techniques (transits, radial
velocities, astrometry, etc.). Our simple theoretical prediction
for the planet mass distribution function may be useful for the
interpretation of such forthcoming observations. Our work may
also be useful for the planning and interpretation of numerical
studies of the dynamical stability of planetary systems.
Knowledge of the planet mass function is important for
understanding the physics of planet formation in different mass
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regimes, as well as for assessing the abundance of planets like
our own home planet.

2. ORBITAL SPACINGS

We will use the following notation: m* is the stellar mass; the
planets’ masses, orbital semimajor axes, and orbital periods are
m a,i i, and Ti, with = ¼i 1, 2, in order of increasing distance
from the host star. We define the mass ratios,
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Note that m m< < 0 ˜ 1i i and g< ⩽0 1i . The masses of the

two nearest-neighbor planets are given by g g m+ - m(1 ) ˜ *i i i
1

and g m+ - m(1 ) ˜ *i i
1 .

We also define the period ratio for nearest-neighbor planets,
 = +T Ti i i1 . In Figure 2, we plot the distribution of i for the
ensemble of 373 multiple-planet systems discovered by Kepler;
there are 566 period ratios in these data. It is a broad
distribution, with paucity of period ratios close to 1, a peak near
1.6, and a long tail of large values. There is also interesting fine
structure within this broad distribution, particularly a trough–
peak feature near low-order resonant period ratios, such as 3/2
and 2/1, that has been discussed in several recent papers
(Lithwick & Wu 2012; Batygin & Morbidelli 2013; Petrovich
et al. 2013; Fabrycky et al. 2014). In the present work, we
attempt to understand the overall distribution of  .

Examining Figure 2, it is not difficult to be persuaded that
the steep drop in the  distribution from near  » 1.5 to
 » 1.3 and the paucity of systems with  close to unity is
likely owed to the instability of very closely spaced orbits, due
to mutual planetary perturbations: larger planet masses require
larger orbital spacings for long-term dynamical stability; higher
planet multiplicity and higher orbital eccentricities also would
tend to require larger orbital spacing for stability (with the
exception of librating resonant orbits). Therefore, if the orbital

spacings in multi-planet systems are related to their long-term
dynamical stability, the planet masses must be related to the
orbital spacings. By use of Kepler’s third law, the dimension-
less orbital spacing, i, is related to the period ratio of adjacent
planets,
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Note that < <0 2i .
The observed distribution of log for Kepler planets is

shown in Figure 3. We find that a Gaussian function, with
mean  º á ñ = -x̄ log 0.318 and standard deviation

s = 0.231, fits the data fairly well; a c2 test gives p-values
>0.1. Of course, the Gaussian must be truncated at a maximum
value,  =log log 2. Therefore, formally, the best-fit

Figure 1. Distribution of log-mass of confirmed exoplanets with measured
masses (data from http://exoplanetarchive.ipac.caltech.edu/, retrieved on 2014
September 16). The black points indicate the masses of the solar system
planets. Note that this is a semi-log plot.

Figure 2. Period ratio distribution in multiple-planet systems discovered by
Kepler. (Data from Fabrycky et al. 2014.) The dotted–dashed curve is a
smoothed version of the histogram (smoothed with a Gaussian kernel). The
black points indicate solar system values. The vertical dotted lines indicate
locations of low-order resonant values (3/2, 5/3, 2/1, 7/3, 8/3).

Figure 3. Distribution of the orbital spacing,  (Equation (4)), of adjacent
planets in multiple-planet systems discovered by Kepler. The dotted–dashed
curve is the best-fit Gaussian function. The black points indicate solar system
values.
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probability density function (PDF) for =X log is expressed
as
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and F(·) is the cumulative distribution function of the standard
normal distribution. For the computed values of the mean and
standard deviation, we find F  0.996D . Therefore we incur
only a very small error in approximating F x( ) as an
untruncated Gaussian function.

In other words, the PDF of the dimensionless orbital spacing,
, is a nearly log-normal distribution. A log-normal is a
skewed distribution; the mean, median, and mode of  are
0.554, 0.481, and 0.362, respectively. Note that a log-normal
distribution can resemble a power-law distribution over a fairly
wide range of the parameter away from the peak.

We remark that the dimensionless orbital separations of solar
system planets (indicated by the black dots in Figure 3) are not
dissimilar to those of the Kepler planets.

3. DYNAMICAL STABILITY

Let’s consider the dynamical stability of a pair of adjacent
planets in the simplest case, that of a two-planet system. For
nearly coplanar and initially circular orbits, the smallest orbital
spacing that is dynamically stable is given by Hill’s criterion:

 m
=

æ
è
ççç

ö
ø
÷÷÷ =K K

˜

3
, with 2 3 . (7)

1
3

Note that this stability criterion is insensitive to how the total
planet mass is partitioned between the two planets. It is
independent of the actual distance of the planets from the
host star.

For systems with more than two planets, there is no known
analytic criterion for dynamical stability, but we expect that in
close-packed systems of ⩾N 3 planets, orbital spacings must
exceed those required by Hill’s criterion, i.e., K must exceed
2 3 . We can look to numerical studies of dynamical stability
of planetary systems for insights. Several such investigations
have been published, many focused on particular systems, but a
few on the broader theoretical question of the dynamical
lifetimes of multiple-planet systems as a function of planet
masses and orbital spacings. Numerical results for nearly
coplanar, low-eccentricity multi-planet systems (of

⩽ ⩽N3 20 equal-mass planets with m- -⩽ ⩽10 10i
9 5) show

that dynamical stability times in excess of ~ T108
1 require that

pairs of adjacent planets must have K 8 and that this lower
limit on K is only weakly dependent on planet mass and planet
multiplicity (Chambers et al. 1996; Smith & Lissauer 2009).
For higher planet masses  m- -(10 10 )i

3.4 2.4 , the critical K
is somewhat smaller, K 5 (Marzari & Weidenschilling 2002;
Chatterjee et al. 2008). The notation “Δ”, “β,” and K has been
used by various authors for the same parameter; here we have
adopted K. This parameter, which is the orbital separation in

units of the mutual Hill radius, is often called “dynamical
separation.”
An important insight from these studies is that the chaotic

nature of multiple-planet systems necessitates a statistical
description of the relationship between planet masses, orbital
separations, and the system’s dynamical stability time, i.e., that
K depends sensitively on initial conditions and is better
described as a random variate. The distribution of K depends
upon the planetary architecture. For the singular but well-
studied example of the solar system, investigations of its long-
term dynamics have concluded that it is marginally stable on
timescales comparable to its age (Laskar 1996; Hayes 2008;
Hayes et al. 2010; Lithwick & Wu 2014; Batygin et al. 2015).
Taking adjacent pairs of solar system planets, we find that K
ranges from ∼8 (for Jupiter–Saturn) to ∼63 (for Mercury–
Venus), with a mean value of 26 (see Table 1). These values
are larger than required by the two-planet Hill’s stability
criterion, and reflect the effects of non-trivial orbital eccentri-
cities, mutual inclinations, unequal planet masses, and planet
multiplicity. With this as motivation, we adopt a heuristic
criterion for the long-term stability of systems with more than
two planets: a straightforward generalization of Equation (7) in
which we treat K as an independent random variate. We will
denote by P (·)K the PDF of K, and denote by F (·)K the PDF of

Klog .

4. ANALYTICAL ESTIMATES OF THE DISTRIBUTION
OF TOTAL MASS OF ADJACENT PLANET PAIRS

The following rearrangement of Equation (7) will be useful
for our analysis:

m = - +Klog ˜ 3(log log ) log 3. (8)

We can then estimate the PDF mF ( · )˜ of mlog ˜, as a convolution
of the PDFs of log and of Klog ,
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3 3 log 3 , (9)

K K K
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˜

where d x( ) is the Dirac delta function. One challenge we face is
that the published numerical studies have not reported the PDF
of K, nor have they explored the large parameter space of
systems containing unequal-mass planets. This requires
systematic numerical investigation, which is feasible with
modern computers, but has yet to be undertaken. In the absence
of such knowledge, we will adopt some plausible ansatzs for
the PDF of K.
As a simple illustration, let’s first consider =F x( )K K

d -x K( log *)K . Then, with the best-fit Gaussian function

Table 1
Solar System Planets

Planet Pair m̃  γ K

Venus–Mercury 2.61E-06 2.55 0.678E-01 63.4
Earth–Venus 5.45E-06 1.63 0.815 26.3
Mars–Earth 3.33E-06 1.88 0.107 40.1
Jupiter–Mars 9.55E-04 6.31 0.338E-03 16.0
Saturn–Jupiter 1.24E-03 2.48 0.299 7.90
Uranus–Saturn 3.29E-04 2.85 0.153 14.0
Neptune–Uranus 9.52E-05 1.96 0.848 14.0
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for the PDF of log (Equation (5)), it is straightforward to
determine that the distribution of mlog ˜ is also Gaussian, with
mean má ñ = - - Klog ˜ 0.48 3 log * and standard deviation
s =m 0.693˜ . If we set =K* 2 3 , the minimum value needed
for dynamical stability of two planets, then mlog ˜ has a
Gaussian distribution of mean má ñ = -log ˜ 2.09 and standard
deviation 0.693. The corresponding distribution of m̃ is log-
normal, with median value -10 2.09 and mode -10 3.20. Because
this describes the maximal m̃ that is dynamically stable, we can
conclude that the most common planet mass does not exceed

- m10 *
3.20 , or about two-thirds of Jupiter’s mass for solar-mass

stars.
For a more realistic estimate, let’s consider a broad

distribution of K values. We are inspired to consider a
Gaussian distribution for its simplicity, because it follows
from Equation (8) that mlog ˜ has a Gaussian distribution if

log and Klog are both Gaussian variates. We are also
motivated by the K values in the solar system (Table 1): Klog
is in the range 0.9–1.8, with mean á ñ =Klog 1.32 and
standard deviation s = 0.31K . Although the sample is small, its

Klog distribution is not inconsistent with a normal distribu-
tion. For F x( )K K , we therefore adopt a Gaussian function,1 with
the mean and standard deviation chosen to match the values
found for the solar system. Then, it is straightforward to
compute that the resulting Gaussian PDF for mlog ˜ has mean

má ñ = -log ˜ 4.44 and standard deviation s =m 1.16˜ . The

median value of m̃ in this case is -10 4.44; the mode is
~ -10 7.5, about three orders of magnitude smaller than the
upper bound derived above with =K* 2 3 .

It is evident that dynamical stability implies that the PDF of
mlog ˜ has small probability density at both small and large

values and a peak at an intermediate value. This shape is
inherited from the nearly Gaussian distribution of log ,
which in turn is derived from the observed distribution of
period ratios. In particular, the drop-off at small masses is
inherited from the steep drop-off in the number of observed
systems with period ratios smaller than ∼1.5.

We remark that the mean value of mlog ˜ decreases with
increasing mean K. However, the peaked shape of the PDF of

mlog ˜ is not severely dependent on the particular functional
form of the K distribution that we adopted. For example, a flat,
uniform random distribution of K in a range ⩾K 2 3min –

=K 95max (slightly wider than the range found in the solar
system) also yields a peaked distribution of mlog ˜. The
skewness of the m̃ distribution does depend on the dispersion of
the K distribution, and, consequently, the most probable value
of m̃ depends upon this dispersion as well. Our choice of the
PDF of K is of course motivated by the solar system and could
be considered biased; we discuss this point further in Section 6.

5. NUMERICAL ESTIMATES OF THE PLANET MASS
DISTRIBUTION FUNCTION

To determine the distribution of individual planet masses
requires additional considerations: are the masses of adjacent
planet pairs correlated or are they independent?

Let mP x( ) be the PDF of mi (planet mass as fraction of stellar
mass). Let us consider the limiting case in which adjacent pairs
of planets have a mass ratio that is a fixed constant, g g= *i .
Then the PDF of mi is straightforwardly derived from that of m̃,

g g

g g

= é
ëê + +

+ + + ù
ûú

m m
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( )( ) ( )P x P x

P x

( )
1
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At the other extreme, if the masses of adjacent planet pairs are
considered independent, then we have the following relation-
ship between mP and mP˜:

ò= -m m mP x dy P y P x y( ) ( ) ( ). (11)
x

˜
0

We will not attempt to solve this implicit equation for mP , but
we can note that, depending on its functional form, the mass
ratio, γ, of planet pairs may or may not be independent of m̃,
even if the masses of adjacent planets were independent.
In reality, adjacent planet masses are likely to be neither

perfectly correlated nor perfectly independent. We therefore
consider γ to be a random variate, and for simplicity, we
assume that it is independent of the total mass of the planet
pairs. We consider two cases: (i) a uniform PDF for γ,

=gP x( ) 1 or (ii) a PDF with peak at 1. For the latter, we chose
gP to be a Gaussian with mean 1, standard deviation 0.3,
truncated at 0 on the left and 1 on the right; in this distribution,
approximately half of all planet pairs have g< ⩽0.8 1. This
distribution is similar to the assumption that neighboring
planets tend to have similar masses, whereas the uniform
distribution allows any value of their mass ratio with equal
probability.
We carry out the numerical calculation of the planet mass

distribution function as follows. Starting with the observational
data of the period ratios, i, of the Kepler planets, we first
calculate i. Then we calculate m̃i with the help of Equation (8)
and a random value of K from its prescribed PDF; we adopt a
Gaussian PDF of Klog with mean 1.32 and standard deviation
0.31, as discussed in the previous section. Next we compute the
individual miʼs with the help of Equations (2) and (3) and a
random value of γ from its prescribed PDF. We average over
1000 realizations of the random choices of Klog and γ. We
take one additional step: to compute the individual planet
masses, m=m m*i i , we adopt the stellar host masses of the
Kepler multiple-planet systems (obtained from estimates of the
stellar surface gravity and stellar radius by Batalha et al. 2013,
as reported in Fabrycky et al. 2014).
The results are shown in Figure 4, where we plot as a

continuous line the case of a uniform random distribution of γ
on (0, 1), and as a dotted–dashed line the case of γ having a
half-Gaussian PDF peaked at 1. We observe that (a) the
estimated planet mass function is not very sensitive to the
choice of gP , and (b) the PDF of the logarithm of planet mass
does not increase monotonically as the mass decreases. The
distribution of Åm Mlog is found to be peaked, with mean 0.64
(0.72) and standard deviation 1.21 (1.17) for γ uniform
random (half-Gaussian peaked at 1).
The above analysis is based on the observed orbital period

ratios of Kepler planets. We can ask about the selection biases
and incompleteness of the observed distribution of  . If a more
sensitive survey, analogous to the Kepler survey, were to be

1 Formally, the PDF of Klog must vanish for <K 2 3 , to satisfy the Hill
criterion (Equation (7)) for the limiting case of two-planet systems. This means
that we should adopt a truncated Gaussian PDF, analgous to the case of the
PDF of Dlog (Equation (5)). For the parameters of interest here, the
normalization factor is nearly unity, so we neglect the truncation.
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carried out, we might expect that smaller planets would be
discovered in greater numbers, over the same range of orbital
periods (limited by the length and cadence of the survey). It is
not immediately obvious how this would affect the distribution
of  . Steffen (2013) has compared the distribution of  of the
high-multiplicity and the low-multiplicity systems within the
Kepler sample and concluded that the period ratio distribution
of Keplerʼs harvest of multi-planet systems is a fair sample of
the intrinsic distribution, at least for   5 or 6. Steffen &
Hwang (2015) have analyzed the incompleteness of the
observed  distribution due to planets missed by the Kepler
data reduction pipeline as well as due to geometric bias against
detection of non-coplanar planets. The authors assumed that the
mutual inclinations of planetary orbits have a Rayleigh
distribution with width parameter s = 1.5°. Their debiased 
distribution is broadly similar to the observed distribution, but
has higher probability densities for larger period ratios (see
their Figure 4). Using this debiased  distribution, we repeated
our calculation of the planet mass distribution; the results are
plotted in blue in Figure 4. We find that the resulting
distribution of Åm Mlog has mean 0.91 (0.98) and standard
deviation 1.18 (1.14) for γ uniform random (half-Gaussian
peaked at 1). J. H. Steffen (2015, personal communication)
also provided us with a debiased  distribution based on a
model Rayleigh distribution of the mutual inclinations with
width parameter s = 3 ; the resulting planet mass distribution
is insignificantly different than that for s = 1.5°.

In summary, we find that the planet mass distribution derived
from use of the heuristic dynamical stability criterion and the
observed and debiased distribution of period ratios of Kepler
planets is peaked in logarithm of planet mass, with a peak value
of Åm Mlog of 0.6–1.0 and standard deviation 1.1–1.2.

6. COMPARISON WITH OTHER ESTIMATES

All the planets discovered by Kepler have fairly well
determined values of their planetary radii, with uncertainties of
about 30% (Silburt et al. 2015). Several studies have proposed
empirical relations between planet masses and planet radii.
Lissauer et al. (2011) have proposed the following, based on

the well-known properties of the solar system planets:

= a
Å Å( )m M R R , (12)

where ÅM and ÅR are the mass and radius of Earth, a = 2.06 if
> ÅR R and a = 3 if Å⩽R R . Wu & Lithwick (2013) have

proposed a slightly different relation, based on observational
data of a subset of Kepler planets whose masses have also been
determined observationally:

=Å Å( )m M R R3 . (13)

Weiss & Marcy (2014) report a slightly different empirical
mass–radius–density relation, based on an updated list of
Kepler planets of radius < ÅR R4 whose masses have been
measured; this can be expressed as follows:

=

ì

í
ïïï

î
ïïï

+ <

<

Å

Å Å Å

Å Å Å⩽

( )( )
( )

m M

R R R R R R

R R R R R

0.441 0.615 if 1.5 ,

2.69 if 1.5 4 . (14)

3

0.93

Using each of these mass–radius relations and the data for
planetary radii (reported in Fabrycky et al. 2014), we computed
the masses of the 939 Kepler planets in multiple-planet
systems, and then used Gaussian kernel density estimation to
compute the PDF of the logarithm of masses. For Å⩾R R4 , we
supplemented Equation (14) with Equation (13).
As an aside, we note that, having computed the planet

masses by using mass–radius relations, we then computed K
values for the adjacent planet pairs. From these values, we
estimated the PDFs of Klog using Gaussian kernel estimation;
these are shown in Figure 5. We find that the three empirical
mass–radius relations yield similarly peaked distributions of

Klog , with mean values 1.32, 1.29, and 1.31, and standard
deviations 0.24, 0.23, and 0.23, respectively. The mean values
are similar to that of the solar system planets; the standard
deviations are somewhat smaller. This provides support for the
PDF of Klog that we adopted by ansatz.
The mass distributions obtained by use of the mass–radius

relations (Equations (12)–(14)) are shown in Figure 6. We see

Figure 4. Distribution of log-mass of Kepler planets, derived from their period
ratios and a heuristic criterion for dynamical stability. The continuous curve
and dotted–dashed curve are the results obtained by assuming a uniform
random and a half-Gaussian distribution, respectively, of the ratio of adjacent
planet masses, γ (Equation (3)). The black curves are based on the observed
period ratios, while the blue curves are based on the debiased distribution of
period ratios. The black points indicate the masses of solar system planets.

Figure 5. Comparisons of the distribution of Klog , where K is the orbital
spacing in units of the mutual Hill radius. The dark gray, light gray, and
dotted–dashed curves are the results obtained from the mass–radius relations of
Equations (12)–(14), respectively. The black continuous curve is the Gaussian
distribution that we adopted, with mean and standard deviation matching those
of the solar system planets. The black points indicate solar system values.
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that these yield strongly peaked PDFs of Åm Mlog , with mean
values 0.66, 0.80, and 0.68, respectively. For comparison, we
also plot our theoretical estimates based on dynamical stability.
The PDFs derived independently from the mass–radius
relations peak near similar values to our dynamical stability-
based PDFs. The latter have significantly larger dispersion,
however. The smaller dispersions of the former are not entirely
surprising, as the mass–radius relations describe empirical best-
fits and do not reflect the uncertainties and dispersion in the
observational data. Weiss & Marcy (2014) note that the
observational data have significant scatter about their empirical
mass–radius relation, and that the scatter is not merely due to
observational errors but may reflect intrinsic compositional
diversity of planets.

Overall, in comparison with the estimates based on mass–
radius relations, the dynamical stability-based estimate has a
shallower power-law slope of the planet mass function at planet
masses larger than about ten Earth masses and a steeper slope
for masses below about one Earth mass. These discrepancies
may reflect an overestimate of the width of the empirical
distribution of Klog adopted in our dynamical stability-based
estimate, or they may reflect observational incompleteness (due
to undetected small and/or long-period planets) and the
intrinsic scatter about the best-fit mass–radius relations. Future
studies can test these alternative hypotheses.

7. DISCUSSION AND SUMMARY

A quantitative description of the architectures of planetary
systems requires at least the following: the degree of orbital
coplanarity, the distribution of their orbital periods and
spacings, and the distribution of planetary masses. The large
number of planetary systems discovered by the Kepler mission
allows a statistical assessment of these properties that have long
eluded the theory of the formation and evolution of planetary
systems. Several studies of the Kepler data suggest that
planetary systems are flat, to within a few degrees, similar to
our own solar system (Lissauer et al. 2011; Fang & Margot
2012; Tremaine & Dong 2012; Fabrycky et al. 2014). Orbital
spacings have also been the subject of several studies (Lissauer
et al. 2011; Steffen 2013; Fabrycky et al. 2014; Steffen &
Hwang 2015), as have planet masses (Howard et al. 2010; Wu
& Lithwick 2013; Weiss & Marcy 2014). In the present work,

we studied the distribution of orbital spacings and used
dynamical stability to estimate planet masses in a statisti-
cal way.
Regarding their orbital spacings, we found that the Kepler

planets’ dimensionless orbital spacings,  (Equation (4)), have
a nearly log-normal distribution (Figure 3). How can we
understand this distribution of ? In qualitative terms, a log-
normal distribution is generated in a multiplicative random
process, that is, when a positive definite variable v suffers
random increments in proportion to its value, d µv v( ) . If the
successive increments are independent and large in number,
then by the central limit theorem vlog will be approximately
normally distributed. We conjecture that the log-normal
distribution of  arises in the late stages of the dynamical
evolution of planetary systems when the planetary architecture
is shaped (or reshaped) by secular chaos (Lithwick &
Wu 2014), or possibly it arises in an earlier stage when a
small number of planets emerge from their natal protoplanetary
disk but are still embedded in a leftover disk of a large number
of planetesimals. As a consequence of mergers or ejections of
planetesimals and/or planets, the surviving planets undergo a
random walk of their orbits; unstable configurations are
steadily winnowed. Our understanding of this evolution is still
at an early stage (Rein 2012; Hansen & Murray 2013; Hands
et al. 2014; Minton & Levison 2014; Chatterjee & Ford 2015).
In future studies, it would be very useful to examine
quantitatively how (or if) secular chaos and/or planetesimal-
aided orbital migration lead to a log-normal distribution of
orbital spacings.
Regarding the masses of planets, we reason that it must be

possible to deduce planetary masses from the observational
data of orbital period ratios if orbital spacings are determined
by dynamical stability. However, there is no direct way to do
so, therefore we made several simplifying assumptions and
ansatzs. First, we used the two-planet Hill’s stability criterion to
derive an upper bound for the most common planet mass. Then,
we generalized Hill’s criterion in a statistical way for the
stability of multi-planet systems (Equation (8)) to compute the
planet mass function. We assumed that the dynamical
separation (i.e., the orbital separation in units of the mutual
Hill radius) and the mass ratio of adjacent planets are both
independent random variates. We adopted plausible distribu-
tion functions for these two parameters, based on our
understanding of solar system dynamics. These empirical
distributions and the assumed independence of the variables are
admittedly major simplifications. These simplifications can be
relaxed in a future study by determining the joint PDF of K, m̃,
and γ by means of large-scale numerical simulations of the
dynamical stability of multiple-planet systems.
The multi-planet systems discovered by Kepler have been

described as being rather unlike the solar system, because their
orbital periods are ∼10 days and their masses are of the order of
a few Earth masses; such planets are absent in the solar system.
However, the dimensionless orbital spacings and the dynamical
separations of solar system planets are not dissimilar to those of
the Kepler systems (Figures 3 and 5), when we compute the
latter independently from the observational data for planetary
radii by using mass–radius relations. By these scaled measures
of “planetary system architecture”, the solar system does not
appear to be an outlier.
A deeper look at the dynamical separations in the solar

system shows that the terrestrial planets, Mercury–Mars, have

Figure 6. Comparisons of PDFs of the logarithm of planet mass: the dark gray,
light gray, and dotted–dashed curves are the results from the mass–radius
relations of Equations (12)–(14), respectively. The black and blue continuous
and dotted curves are our theoretical estimates (as in Figure 4).
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K values significantly larger than those of the outer planets,
Jupiter–Neptune (see Table 1). This was pointed out in Ito &
Tanikawa (2002). It is also notable that the K values for the
giant planets (Jupiter–Neptune) are closer to the numerically
determined minimum value, » -K* 5 8, that is necessary for
the dynamical stability of ⩾N 3 equal-mass planetary systems
for timespans of the age of the solar system, whereas the K
values for the terrestrial planets are significantly higher. We
conjecture, following Ito & Tanikawa (2002), that this
dichotomy is owed to the property that the subsystem of the
four terrestrial planets is subject to long-term dynamical
excitation by the giant planets. This is supported by the
numerical experiments reported in Hayes et al. (2010), who
found that the terrestrial planets would exhibit a much lower
level of long-term chaos if the gravitational perturbations of the
giant planets were absent. It is also possible that K is related to
“dynamical age”, i.e., the age of the system measured in units
of the orbital period of the innermost planet. We observe that,
in the solar system, the terrestrial planets’ dynamical age is 1–2
orders of magnitude larger than that of the outer planets (since
the orbital period of Jupiter is about 50 times that of Mercury).
If so, then solar system-like planetary architectures may be
better modeled with a bimodal PDF of K. For example, we
could consider a PDF of Klog consisting of an equally
weighted sum of two Gaussian functions having mean á ñKlog
of 1.06 and 1.61, respectively, and each having standard
deviation 0.2; solar system K values of the giant planets and
terrestrial planets, respectively, are roughly consistent with
these parameters. With this choice of bimodal PDF of Klog ,
we repeated the numerical calculations described in Section 5
to compute the associated planet mass function. The resulting
distribution of mlog is bimodal. The two peaks are near

Åm Mlog values of −0.2 and 1.4; the overall mean value of
Åm Mlog is 0.60 (0.67) and the standard deviation is 1.14

(1.37) for γ uniform random (half-Gaussian). The two peaks
are of only slightly differing heights, and this PDF can also be
described as approximately a plateau in the range −0.2 to 1.4.
We do not belabor the results of this numerical experiment,
however, because at this level of detail we must also pay
attention to possible correlations among the parameters, K, m̃, γ
and orbital periods. A comprehensive numerical study of the
dynamical stability of multiple-planet systems can provide an
improved estimate of the joint probability distribution of these
parameters.

In any study of the mass distribution of planets, the question
arises of the definition of “planet”, a question that has been
debated in both public and scientific forums. At the upper end
of the planet mass range, the literature makes a distinction
between “giant” planets and “brown dwarfs” near a mass of
about » ÅM M13 ( 4134 )J . In the solar system, “planet” masses
range from ÅM0.055 to ÅM318 , and, at the lower end of the
mass range, the literature also recognizes “dwarf planets”, the
most massive being ~ ÅM0.002 . The results of our dynamical
stability-based estimate of the mass function are most pertinent
for the mass range spanning a few per cent of an Earth mass to
a few hundred Earth masses. Although these results can be
smoothly extended beyond these limits, it is likely that different
physical processes shape the mass function near these upper
and lower bounds.

Our results and conclusions are summarized as follows.

1. The observed period ratios of adjacent planet pairs in
multiple-planet systems discovered by Kepler indicate

that the distribution of the dimensionless orbital separa-
tion (Equation (4)) is approximately a log-normal
function.

2. The minimum dynamical separation (the orbital separa-
tion of adjacent planets in units of their mutual Hill
radius, Equation (7)), =K 2 3 , necessary for long-term
dynamical stability of two-planet systems implies that the
most common planet mass does not exceed - m10 *

3.2 . For
solar-mass stars, this is about two-thirds of the mass of
Jupiter.

3. For plausible distributions of K and of the mass ratio, γ
(Equation (3)), of adjacent planet pairs, our theoretical
estimate of the planet mass distribution function is peaked
in mlog . It is only weakly sensitive to the distribution of
γ. We estimate that the most probable value of Åm Mlog
is ~ -(0.6 1.0), and the standard deviation of the
distribution of Åm Mlog is about 1.2.

4. The planet mass distribution computed independently
from the observational data on planetary radii (by use of
empirical mass–radius relations) is also peaked in mlog
at similar peak values, but has smaller dispersions. These
discrepancies may reflect an overestimate of the width of
the distribution of Klog adopted in our theoretical
estimate, or they may reflect observational incomplete-
ness of the measured masses at low and high planet
masses and the intrinsic scatter of the masses about the
best-fit mass–radius relations. Future studies can test
these alternative hypotheses.

5. In deriving the dynamical stability-based estimates, we
assumed that K and γ are independent random variates.
We adopted PDFs of K and of γ that are plausible, but
arguably have a “solar system bias.” A systematic
numerical study of the dynamical stability of multi-planet
systems, over a wide range of planet masses and orbital
periods, is needed to improve the theoretically expected
distributions of planetary system parameters and correla-
tions among them. Such a study requires significant
computational effort, but is feasible with modern
computers. This would enable an improved estimate of
the planet mass function from observational data of
orbital periods alone, which are readily measured in
almost all observational methods currently employed for
the detection of extrasolar planets.
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