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Summary

There are two main types of resonance phenomena in planetary systems involving or-
bital motions: (i) mean motion resonance: This is intuitively the most obvious type of
resonance; it occurs when the orbital periods of two planets are close to a ratio of small
integers; (ii) secular resonance: this is a commensurability of the frequencies of preces-
sion of the orientation of orbits, as described by the direction of pericenter and the
direction of the orbit normal. It is often possible to identify an unperturbed subsystem
and separately a resonant perturbation, which facilitates the use of perturbation theory
and other analytical and numerical tools. Resonances can be the source of both stability
and instability, and play an important role in shaping the overall orbital distribution

1Published in Encyclopedia of Life Support Systems (EOLSS), volume 6.119.55 Celestial Me-
chanics, Developed under the Auspices of the UNESCO, Eolss Publishers, Paris, France, URL
http://www.eolss.net, 2012. This version corrects errors known to the author as of October 2017.
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and the ‘architecture’ of planetary systems. This chapter provides an overview of these
resonance phenomena, with simple models that elucidate our understanding.

1 Introduction

Consider the simplest planetary system consisting of only one planet, of massm1, orbiting
a star of mass m0. Let r0 and r1 denote the inertial coordinates of these two bodies. This
system has six degrees of freedom, corresponding to the three spatial degrees of freedom
for each of the two bodies. Three of these degrees of freedom are made ignorable by
identifying them with the free motion of the center-of-mass. The remaining three degrees
of freedom can be identified with the coordinates of the planet relative to the star and
the problem is reduced to the familiar planetary problem described by the Keplerian
Hamiltonian,

Hkepler =
p2

2m
− GMm

r
(1)

where G is the universal constant of gravitation, r = r1− r0 is the position vector of the
planet relative to the star, p = mṙ is the linear momentum of the reduced mass,

m =
m0m1

m0 +m1

, (2)

and M = m0 + m1 is the total mass. In this Hamiltonian description, r and p are
canonically conjugate variables. The general solution of this classic two-body problem is
well known in terms of conic sections; the bound solution is called the Keplerian ellipse.
In this chapter, we will be concerned with only the bound orbits.

The three degrees of freedom for the Kepler system can also be described by three
angular variables, one of which measures the motion of the planet in its elliptical orbit
and the other two describe the orientation of the orbit in space. The size, shape and
orientation of the orbit is fixed in space, and there is only one non-vanishing frequency,
namely, the frequency of revolution around the orbit. The orbital elements illustrated in
Figure 1 are related to the set of action-angle variables for the two-body problem derived
by Charles Delaunay (1816–1872) [see Chapter 1],

L =
√
GMa, ` = mean anomaly

G =
√
GMa(1− e2), ω = argument of pericenter,

H =
√
GMa(1− e2) cos i, Ω = longitude of ascending node, (3)

where a, e and i are the semimajor axis, eccentricity and inclination, respectively, of
the bound Keplerian orbit. The mean anomaly, `, is related to the orbital frequency
(mean motion), n, which in turn is related to the semimajor axis by Kepler’s third law
of planetary motion:

˙̀ = n = (GM/a3)
1
2 . (4)

In equations 3, L,G,H are the action variables and `, ω,Ω are the canonically conjugate
angles, known as the mean anomaly, argument of pericenter and longitude of ascending
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Figure 1: The Keplerian orbit: a planet, m, traces out an ellipse of semimajor axis a and eccentricity e, with

the Sun at one focus of the ellipse (which is the origin of the heliocentric coordinate system indicated here).

The plane of the orbit has inclination i with respect to the fixed reference plane, and intersects the latter

along the line of nodes, NN ′, where N is the location of the ascending node; the longitude of ascending

node, Ω, is the angle from the reference direction x to ON ; it is measured in the reference plane. The

pericenter is at P ; the argument of perihelion ω is the angle from ON to OP ; it is measured in the orbital

plane. The true anomaly is the instantaneous angular position of the planet measured from OP .

node, respectively. As defined in Eq. (3), the action variables have dimensions of specific
angular momentum.

The Kepler Hamiltonian can be expressed in terms of the orbital elements and the
Delaunay variables:

Hkepler = −GMm

2a
= −(GM)2m

2L2
. (5)

For the case of nearly co-planar and nearly circular orbits, we will also make use of a set
of modified Delaunay variables defined by the following canonical set:

Λ = L, λ = `+ ω + Ω,
Γ = L−G, γ = −ω − Ω ≡ −$,

Υ = L−G−H, υ = −Ω. (6)

For multiple planets around the star, it is desirable to describe the system as a
sum of two-body Keplerian Hamiltonians plus the smaller interaction part (the potential
energy of the planet-planet interactions). However a similar approach with coordinates
relative to the central mass (called ‘heliocentric coordinates’ in the context of the solar
system, more generally ‘astrocentric coordinates’) does not yield a Hamiltonian that is
a sum of two-body Keplerian parts plus an interaction part, as we might naively expect.
This is because the kinetic energy is not a diagonal sum of the squares of the momenta
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in relative coordinates. This problem is overcome by using a special coordinate system
invented by Carl Jacobi (1804–1851), in which we use the coordinates of the center-of-
mass, and then, successively, the coordinates of the first planet relative to the star, the
coordinates of the second planet relative to the center-of-mass of the star and the first
planet, and so on. For a system of N planets orbiting a star, let ri(i = 0, 1, ...N) denote
the coordinates of the star and the N planets in an inertial reference frame; then the
Jacobi coordinates are given by

r̃0 =

∑N
j=0mjrj∑N
j=0mj

; r̃i = ri −Ri−1, with Ri =

∑i
j=0mjrj∑i
j=0mj

, (7)

and the conjugate momenta,

p̃i = m̃i
˙̃ri, with m̃i =

mi
∑i−1
j=0mj∑i

j=0mj

. (8)

Then the Hamiltonian for the N–planet system is given by

H =
p̃20

2
∑N
j=0mj

+
N∑
i=1

p̃2i
2m̃i

−
N∑
i=1

Gm0mi

ri0
−

∑
0<i<j

Gmimj

rij
, (9)

and ri0 is the distance between the star and the ith planet, and rij is the distance
between planet i and planet j. Because ri0 and rij do not depend upon the center-of-
mass position, this Hamiltonian is independent of r̃0, and it follows that p̃0 is a constant.
Thus, the first term in Eq. (9), which is the center-of-mass kinetic energy, is a constant.
By construction, the remaining kinetic energy terms are a diagonal sum of the squares of
the new momenta. We can now obtain a Hamiltonian which is a sum of N unperturbed
Keplerian Hamiltonians and a small perturbation:

H =
N∑
i=1

[ p̃2i
2m̃i

− Gm0mi

r̃i

]
−

∑
0<i<j

Gmimj

rij
+

N∑
i=1

[Gm0mi

r̃i
− Gm0mi

ri0

]
. (10)

In deriving Eq. (10) from Eq. (9), we omitted the constant center-of-mass kinetic energy
term and we added and subtracted

∑N
i=1Gm0mi/r̃i. In Eq. (10), we can recognize the first

series as a sum of N independent Keplerian Hamiltonians. The second series describes
the direct planet-planet interactions. The last series consists of terms that are differences
of two large quantities; these difference terms are each of order ∼ mimj, i.e., of the same
order as the terms in the direct planet-planet interactions, and is referred to as the
‘indirect’ perturbation. Thus, the Hamiltonian of Eq. (10) is of the form

H =
N∑
i=1

H(i)
kepler +Hinteraction, (11)

which is suitable for the tools of perturbation theory.
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An important special case of the perturbed system is when one of the bodies is of
infinitesimal mass, a ‘test particle’. The test particle does not affect the massive bodies
but is perturbed by them. Let the unperturbed orbit of the test particle be a Keplerian
ellipse about m0. Then the specific energy of the test particle can be written as a sum
of its unperturbed Keplerian Hamiltonian, Htestparticle = −Gm0/2a, and an interaction
part owing to the perturbations from N planets,

Htp,interaction = −
N∑
j=1

Gmj

[
1

|rtp − rj|
− (rtp − r0) · (rj − r0)

|rj − r0|3

]
. (12)

The perturbations, Hinteraction, cause changes in the Keplerian orbital parameters.
The Delaunay variables are of course no longer action-angle variables, but they provide
a useful canonical set; we will make use of it in the following sections. Qualitatively, the
perturbed Keplerian orbit gains two slow frequencies, the precession of the direction of
pericenter and the precession of the line of nodes (equivalently, the pole) of the orbit
plane; these are slow relative to the mean motion, n.

Resonance

A secular resonance involves a commensurability amongst the slow frequencies of orbital
precession, whereas a mean motion resonance is a commensurability of the frequencies
of orbital revolution. The timescales for secular perturbations are usually significantly
longer than for [low order] mean motion resonant perturbations, but there is also a
coupling between the two which leads to resonance splittings and chaotic dynamics.
The boundaries (or separatrices) of mean motion resonances are often the sites for such
interactions amongst secular and mean motion resonances.

A mean motion resonance between two planets occurs when the ratio of their mean
motions or orbital frequencies n1, n2 is close to a ratio of small integers, (p+ q)/p where
p 6= 0 and q ≥ 0 are integers. The case q = 0 is sometimes called a corotation or
co-orbital resonance; a prominent example in the solar system is the Trojan asteroids
which share the mean motion of Jupiter but librate approximately ±60◦ from Jupiter’s
mean longitude. When q > 0, it is called the order of the resonance; this is because the
strength of the resonant potential is proportional to eq or iq when the eccentricities e and
inclinations i of the planets are small. Inclination resonances occur only for even values
of q. In a resonant configuration, the longitude of the planets at every qth conjunction
librates slowly about a direction determined by the lines of apsides and nodes of the
planetary orbits. In terms of the action-angle variables for the Keplerian Hamiltonian,
this geometry is naturally described by the libration of a so-called resonant angle which
is a linear combination of the angular variables. For example, for the 2:1 mean motion
resonance between a pair of planets, two possible resonant angles are

φ1 = 2λ2 − λ1 −$1, φ2 = 2λ2 − λ1 −$2. (13)

Close to the 2:1 mean motion resonance, both these angles have very slow variation (slow
in comparison with the mean motions). The planet pair is said to be in resonance if at
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least one resonant angle exhibits a libration; in this case, the long term average rate
of the resonant angle vanishes, and we speak instead of its ‘libration frequency’. If a
resonant angle does not librate but rather varies over the entire range 0 to 2π cyclically,
we speak of its ‘circulation frequency’.

How close does the mean motion ratio need to be for a planet pair to be considered
resonant? There is not a precise answer to this question. A rough answer is provided by
an estimate of the range, ∆n, of orbital mean motion over which it is possible for the
resonant angle to librate. For nearly circular orbits, and for 0 ≤ q ≤ 2, this estimate is
given by

∆n

n
' µ

q+1
3 (14)

where µ is the planet-Sun mass ratio.

Amongst the major planets of the solar system, no planet pair exhibits a resonant
angle libration, although several are close to resonance: Jupiter and Saturn are within
1% of a 5:2 resonance, Saturn and Uranus are within 5% of a 3:1 resonance, and Uranus
and Neptune are within 2% of a 2:1 resonance. In the first extra-solar planetary system
to be discovered, the three-planet system PSR B1257+12, the outer two planets are
within 2% of a 3:2 resonance. None of these is close enough to exact resonance to exhibit
a resonant angle libration. Amongst the several hundred extra-solar multiple planet
systems detected by the Kepler space mission recently, it is estimated that at least ∼ 30%
harbor near-resonant pairs. One extra-solar planetary system, GJ 876, with four planets,
appears to have at least two pairwise 2:1 resonances close enough to be in libration. In
some of these cases, the nearness to resonance causes orbital perturbations large enough
to be detectable, and has allowed measurements of the planetary masses and orbital
inclinations.

Somewhat in contrast with the planets, several pairs of satellites of the solar sys-
tem’s giant planets exhibit librations of resonant angles; these include the Galilean satel-
lites Io, Europa and Ganymede of Jupiter, and the Saturnian satellite pairs Janus and
Epimetheus, Mima and Tethys, Enceladus and Dione, Titan and Hyperion. The existence
of these near-exact commensurabilities, as evidenced by the librating resonant angles, in
the satellite systems has been a subject of much study over the past few decades. These
are now generally understood to be the consequence of very small dissipative effects
which alter the orbital semimajor axes sufficiently over very long timescales so much
so that initially well separated non-resonant orbits evolve into an exact resonance state
characterized by a librating resonant angle. Once a resonant libration is established, it
is generally stable to further adiabatic changes in the individual orbits due to contin-
uing dissipative effects. This hypothesis provides a plausible explanation for the most
prominent cases of mean motion resonances amongst the Jovian and Saturnian satellites.
However, the Uranian satellites present a challenge to this view, as there are no exact
resonances in this satellite system, and it is unsatisfactory to argue that somehow tidal
dissipation is vastly different in this system. An interesting resolution to this puzzle was
achieved when the dynamics of orbital resonances was analyzed carefully and the role
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of the small but significant splitting of mean motion resonances and the interaction of
neighboring resonances was recognized. Such interactions can destabilize a previously es-
tablished resonance, so that mean motion resonance lifetimes can be much shorter than
the age of the solar system. Studies of the Jovian satellites, Io, Europa and Ganymede,
also suggest a dynamic, evolving resonant orbital configuration over the history of the
solar system.

Another notable example of resonance in the solar system is the dwarf planet Pluto
whose orbit is resonant with the planet Neptune, and exhibits a libration of a 3:2 resonant
angle; the origin of this mean motion commensurability is now understood to be owed to
the orbital migration of Neptune driven by interactions with the disk of planetesimals left
over from the planet formation era. Studies of this mechanism have led to new insights
into the early orbital migration history of the solar system’s giant planets, and it is a
very active area of current research.

2 2.5 3 3.5 4

0

2000

4000

6000

semimajor axis (AU)

|
1/3

|
2/5

|
1/2

|
2/3

|

Figure 2: The semimajor axis distribution of asteroids in the main asteroid belt. The locations of several res-

onances are indicated near the top. (Data for all numbered asteroids from http:hamilton.dm.unipi.it/astdys/;

synthetic proper elements computed numerically.)

The population of minor planets in the main asteroid belt in the solar system offers
one of the most well-studied examples of the role of orbital resonances in shaping the
distribution of orbits. Figure 2 plots the distribution of semimajor axis of asteroids in the
main asteroid belt. (Note that some of the non-uniformities in the number distribution
are attributable to observational selection effects: astronomical surveys for faint bodies
in the solar system remain quite incomplete, so that many smaller and more distant
objects remain undiscovered.) The inner edge of the asteroid belt is defined by a secular
resonance, known as the ν6 secular resonance, in which the apsidal secular precession
rate of an asteroid is nearly equal to the apsidal precession rate of Saturn. There are
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several prominent deficits coinciding with the locations of mean motion resonances with
Jupiter; this correlation was first noted by Daniel Kirkwood (1814–1895) and the deficits
are known as the Kirkwood Gaps. Interestingly, these gaps are significantly wider than
would be anticipated by simple estimates of the resonant widths, such as in Eq. (14).
Deeper analyses have revealed that chaotic dynamics owed to the small secular variations
of the orbit of Jupiter are very important in widening the Kirkwood gaps, and, beyond
that, even the early orbital migration history of Jupiter and Saturn is recorded in the
widths and shapes of these gaps.

There also exist orbital resonances that do not neatly fall into the categories of
‘mean motion resonance’ or ‘secular resonance’. For example, the angular velocity of the
apsidal precession rate of a ringlet within the C-ring of Saturn is commensurate with the
orbital mean motion of Titan, the so-called Titan 1:0 apsidal resonance. Two retrograde
moons of Jupiter, Pasiphae and Sinope, exhibit a 1:1 commensurability of their perijove
apsidal precession rate with Jupiter’s heliocentric apsidal precession rate. So-called three-
body resonances which involve a sequence of commensurable mean motions of a test
particle with two planets have been identified as a source of weak chaos and orbital
instability on giga year timescales; these may explain the absence of asteroids in some
regions of the solar system that otherwise appear to be stable. A class of resonances
known as ‘super resonances’ or ‘secondary resonances’ have been identified in the very
long term evolution of planetary and satellite orbits; these are defined by small integer
ratio commensurabilities between the libration frequency of a resonant angle and the
circulation frequency of a different resonant angle. Pluto’s orbit and the Uranian satellite
system provide two well-studied examples of this type of resonance.

2 Secular resonances

2.1 Kozai-Lidov effect

One of the most surprising and non-intuitive resonances in the so-called restricted three-
body problem was identified in 1962 by two authors, Y. Kozai (1928–) and M. Lidov
(1949–), working independently and on two quite different problems. The former author
was interested in the long term orbital evolution of highly inclined asteroid orbits per-
turbed by Jupiter, while the latter author was studying the orbits of geocentric artificial
satellites under lunar, solar and other perturbations. The surprising result they found
was an instability of circular orbits of high inclination. This section provides a simplified
analysis of what is now called the Kozai-Lidov effect. This is a type of secular resonance
in which the apsidal and nodal precession rates are equal and of opposite sign, and the
orbital eccentricity is excited from small to large values on secular timescales. This effect
has been invoked more recently in several astrophysical contexts: to understand the short
merger timescales of compact objects, to explain the orbital distribution of binary stars,
and to explain several surprising features of exo-planetary systems, such as the presence
of so-called ‘hot Jupiters’ (jovian mass gaseous giant planets in very tight orbit about
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their stars), large stellar obliquities to the orbital planes of hot Jupiters, and high orbital
eccentricities of many exo-planets.

Consider a test particle in orbit about a star of mass m∗ (semi-major axis a and
eccentricity e) subject to perturbation by a distant planet mp which also orbits m∗ in a
circular orbit of radius ap. This is one of the simplest of the special cases described by
Eq. (12). The interaction potential in this case can be written as

Htp,interaction = −Gmp

[
1

|rtp − rp|
− rtp · rp

r3p

]
(15)

where rtp, rp now denote the astrocentric coordinates of the test particle and the planet,
respectively. We wish to determine the changes in the shape and orientation of the
particle’s orbit on timescales long compared to the orbital periods. To do this for rp � rtp,
we expand the interaction potential in powers of rtp/rp, retaining terms to second order,
and we then average the perturbation potential over the orbital period of the perturber
as well as over the orbital period of the test particle. After some tedious algebra, the
perturbation potential averaged over the mean longitudes of both the planet and the
test particle can be expressed in terms of orbital elements:

〈Htp,interaction〉 ' −
Gmpa

2

8a3p
[2 + 3e2 − 3(1− e2 + 5e2 sin2 ω) sin2 i]. (16)

Here we have omitted an inessential constant, −Gmp/ap, and we have adopted the
planet’s fixed orbit plane as the reference plane, so the test particle’s orbit inclination,
i, is relative to the planet’s orbit plane, and its argument of periastron, ω, is measured
from the ascending node on that reference plane; a and e are the semimajor axis and
eccentricity of the test particle’s orbit.

The averaged interaction Hamiltonian is independent of ` and Ω, therefore L and
H are constants of the perturbed motion, but G is not. However, 〈Htp,interaction〉 is time-
independent and is therefore also a constant of the motion. Thus, with three independent
constants of motion for the 3-degree-of-freedom system, the problem is completely inte-
grable. We can use these to describe the behavior of the solutions.

From the first integrals L and H, it follows that the particle’s semimajor axis, a, is
constant, as well as

Θ1 ≡
√

1− e2 cos i = constant. (17)

Θ1 is sometimes called the Kozai integral. Furthermore, from the condition 〈Htp,interaction〉 =
constant, it follows that

Θ2 ≡ e2(2− 5 sin2 ω sin2 i) = constant. (18)

Because the Hamiltonian does not depend upon Ω, the phase space trajectories can be
represented on the G–ω plane alone, as the level curves of 〈Htp,interaction〉. Moreover, since
L is a constant, the phase space structure is the same for any value of the semimajor
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Figure 3: Level curves of 〈Htp,interaction〉, for Θ1 = 0.5.

axis a (within the quadrupole approximation) and can be represented on the (
√

1− e2, ω)
plane. An example is shown in Figure 3. We see that there is a region of the phase space
where the argument of pericenter, ω, is in libration. At the center of the libration zone
ω is stationary. Physically, this corresponds to the state in which the precession rate of
the line of nodes is equal in magnitude but opposite in sign to the precession rate of the
longitude of pericenter.

To obtain the equations of motion, it is helpful to write 〈Htp,interaction〉 in terms of
the canonical Delaunay variables:

〈Htp,interaction〉 = −Gmpa
2

8a3p

[
5 + 3

H2

L2
− 6

G2

L2
− 15

(
1− G2

L2
− H2

G2
+
H2

L2

)
sin2 ω

]
. (19)

Then Hamilton’s equations yield:

Ω̇ =
∂H
∂H

= −3Gmpa
2

4a3p

H

L2

[
1− 5

(
1− L2

G2

)
sin2 ω

]
, (20)

ω̇ =
∂H
∂G

=
3Gmpa

2

4a3pG

[
2
G2

L2
+ 5

(H2

G2
− G2

L2

)
sin2 ω

]
, (21)

Ġ = −∂H
∂ω

= −15
Gmpa

2

8a3p
e2 sin2 i sin 2ω. (22)

The stationary solutions are obtained by demanding Ω̇ = 0, ω̇ = 0 and Ġ = 0. By
inspection of Eq. (22), we see that Ġ = 0 whenever ω = 0,±1

2
π, π.

At ω = 0, π, ω̇ vanishes for G = 0, i.e., e = 1.
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At ω = ±1
2
π, ω̇ vanishes for G = (5H2L2/3)1/4, i.e., e2 = 1 − (5Θ2

1/3)
1
2 , cos2 i =

(3Θ1/5)
1
2 . Note that these are physical solutions only for Θ2

1 ≤ 3
5
.

It is interesting to consider the case of small e, large i:

Ġ = − Geė

1− e2
= −15

Gmpa
2

8a3p
e2 sin2 i sin 2ω (23)

or
ė

e
' 15mpa

3

8m∗a3p
n sin2 i sin 2ω (24)

We see that, for small e, the eccentricity grows exponentially. This is the reason why the
Kozai-Lidov effect is also sometimes referred to as the ‘Kozai resonance’ (in analogy with
a resonantly forced oscillator whose amplitude grows without bound). The characteristic
growth timescale of the eccentricity is

TK-L =

[
15mpa

3

8m∗a3p
n

]−1
. (25)

Examples

TK−L '


530(R⊕/a)

3
2 yr solar perturbation on earth satellite

70(R⊕/a)
3
2 yr lunar perturbation on earth satellite

1.3(Rmoon/a)
3
2 yr earth perturbation on lunar satellite

 (26)

where R⊕, Rmoon are the radius of the planet Earth and of the moon, respectively.

The eccentricity growth is actually not unbounded, rather it is bounded by the
constraints set by the first integrals, Eq. (17)–(18). For initially ∼ zero eccentricity, the
maximum eccentricity is achieved at ω = ±1

2
π and cos2 i = 3

5
, so that e2max = 1− 5

3
cos2 i0,

where i0 is the initial inclination. From the latter condition, we see that the eccentricity

growth will occur for cos2 i0 < 3
5
, i.e., i1 < i0 < i2, where i1 = arccos

√
3
5
' 0.685

(∼ 39◦.2), and i2 = π− i1. That is, circular test particle orbits are unstable and undergo
exponential eccentricity growth if they are inclined greater than ∼ 39◦ and less than
∼ 141◦ with respect to the distant planet’s orbit plane.

In the case of polar satellites of Earth, the large oblateness of the Earth’s figure
causes a significant precession of apsides and nodes; this effectively kills the Kozai-Lidov
instability of geocentric polar orbits, hence allowing the happy fact of many man-made
polar satellites to have long stability times.

Finally, we mention some interesting new research regarding the Kozai-Lidov effect.
Note that the preservation of the Kozai integral, Eq. (17), implies that the sign of cos i
cannot change, i.e., a prograde orbit (0 ≤ i ≤ 90◦) remains prograde and a retrograde
orbit (90◦ ≤ i ≤ 180◦) remains retrograde, so that ‘flipping’ of the orbital plane is
not allowed. However, this is true only in the second-order (quadrupole) truncation of
the interaction Hamiltonian, Eq. (16). It has recently been pointed out that the higher
order perturbations induce time variability of the Kozai integral; for sufficiently strong
octupole perturbations, even orbit ‘flips’ can occur albeit on very long timescales.
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2.2 Linear secular resonance

A different case of secular resonance occurs for a test particle perturbed by a planetary
system of nearly coplanar, nearly circular planetary orbits. For example, at specific loca-
tions, i.e., narrow range of semimajor axis values, a test particle’s initially circular orbit
can be excited to high eccentricity —eventually even becoming parabolic— by means of
slow forcing by the secular variations of the planets. This phenomenon is thought to be
responsible for a class of ‘Sun-grazing’ comets discovered by the solar space probe SOHO;
these objects likely originate in the asteroid belt and are subjected to an eccentricity sec-
ular resonance which changes their initial low eccentricity orbits into high eccentricity
orbits having perihelion distance near the solar surface. This type of resonance is also
important in explaining a prominent gap found in the Kuiper belt. In the early history
of the solar system, this type of resonance is thought to have been very important in the
dynamical transport of asteroids and comets and in the excitation of planetesimal orbits
during planet formation processes.

This classic linear resonance phenomenon is most simply illustrated with a model
of a test particle orbiting a star, and perturbed by N planets, all in low eccentricity, low
inclination orbits. Since the test particle does not perturb the motion of the planets, let
us first consider the perturbed motion of the planets.

Secular perturbation theory for planets

Assuming that the planets are not near any mean motion resonance, the secular part
of the perturbation potential for planet i is given, to lowest order in planet masses, mi,
and to lowest order in planetary orbital eccentricities and inclinations, by the following
expression

Vi,secular = −
∑
j 6=i

Gmj

ai

[
1

8
αijᾱijb

(1)
3/2(αij)e

2
i −

1

4
αijᾱijb

(2)
3/2(αij)eiej cos($i −$j)

−1

8
αijᾱijb

(1)
3/2(αij)s

2
i +

1

4
αijᾱijb

(1)
3/2(αij)sisj cos(Ωi − Ωj)

]
, (27)

where sj = sin ij, $j = ωj + Ωj is the longitude of pericenter,

αij = min{ai/aj, aj/ai},
ᾱij = min{1, ai/aj}, (28)

and the b(k)s are Laplace coefficients,

b(k)s (α) ≡ 1

π

∫ 2π

0

cos kφ

(1− 2α cosφ+ α2)s
dφ. (29)

Because the secular perturbation potential, Eq. (27), is independent of the mean
longitudes `j, it follows that the canonical momenta Lj are constant. Therefore, the
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semimajor axes of the planets are unperturbed and can be treated as fixed parameters
(similarly to the stellar and planetary masses). In the secular approximation, only the
eccentricities, inclinations, apsides and nodal longitudes are perturbed.

The perturbation analysis is greatly simplified with the use of Poincaré variables
representing the eccentricity vector and the inclination vector,

h = e sin$, k = e cos$,

p = s sin Ω, q = s cos Ω. (30)

With some straightforward algebra, it is easy to derive that (h, k) are related to the set
of canonically conjugate variables,

(x, y) =
√

2Γ(sin γ, cos γ) ' (Gm∗a)1/4e(− sin$, cos$), (31)

where x is the coordinate and y is the momentum. Then Hamilton’s perturbation equa-
tions take the form of linear differential equations with constant coefficients. These can
be written succinctly in matrix notation:

d

dt


h1
...
hN

 = A ·


k1
...
kN

 , d

dt


k1
...
kN

 = −A ·


h1
...
hN

 , (32)

and

d

dt


p1
...
pN

 = B ·


q1
...
qN

 , d

dt


q1
...
qN

 = −B ·


p1
...
pN

 . (33)

The matrix elements are given by

Ajj =
1

4

∑
l 6=j

ml

m∗
njαjlᾱjlb

(1)
3/2(αjl), Ajl = −1

4

ml

m∗
njαjlᾱjlb

(2)
3/2(αjl), (34)

Bjj =
1

4

∑
l 6=j

ml

m∗
njαjlᾱjlb

(1)
3/2(αjl), Bjl = −1

4

ml

m∗
njαjlᾱjlb

(1)
3/2(αjl), (35)

where l 6= j, and nj is the unperturbed mean motion of planet j. We note that, to this
lowest-order approximation, the equations for h, k are de-coupled from those for p, q.

This is an eigenvalue problem, and the solution takes the simple form of a linear
superposition of simple harmonic eigenmodes. Let us denote the eigenfrequencies and
eigenmodes of the coefficient matrix A by gi and E(j), respectively, and those for the co-
efficient matrix B by fi and S(j), respectively. Then the time variation of the eccentricity
and inclination vectors are as follows:

hj(t) =
N∑
i=1

E
(i)
j sin(git+ βi), kj(t) =

N∑
i=1

E
(i)
j cos(git+ βi), (36)

pj(t) =
N∑
i=1

S
(i)
j sin(fit+ γi), qj(t) =

N∑
i=1

S
(i)
j cos(fit+ γi). (37)
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The solution involves arbitrary constants – the magnitudes of the eigenvectors, |E(i)|, |S(i)|,
and the phases βi and γi – which are determined by the initial conditions hi(0), ki(0)
and pi(0), qi(0).

To summarize, the secular variation of the eccentricity vector (respectively, inclina-
tion vector), of each planet is a superposition of eigenmodes. Analogous secular behavior
obtains for the inclination vectors, but with one difference: one of the eigenmodes has
vanishing frequency, owing to the conservation of total angular momentum. Therefore,
the eccentricities and inclinations of the planets vary with time, and the pericenter and
nodal longitudes precess, quasi-periodically, on timescales of order ∼ g−1l .

In the solar system, the linear secular theory for the eight major planets (Mercury,
Venus, ..., Neptune) has frequencies gi in the magnitude range of about 0.7–28 arcsec per
year; the magnitude range of the inclination frequencies, fi, is similar, save for f5 = 0.
Thus the timescales of secular variations of the planetary eccentricities and inclinations
in the solar system range from about 46,000 years to about 1.8 million years.

Eccentricity secular resonance for a minor planet

We now turn to examining the orbit of a test particle that is subject to the perturbations
of planets whose orbits undergo the above secular perturbations. As above, we consider
these perturbations to lowest order in orbital eccentricities, inclinations and in planet
masses. In this approximation, the eccentricities and inclination perturbations are de-
coupled. Let us consider the eccentricity perturbations.

The eccentricity perturbations of the test particle’s orbit are described by the sum
of the perturbations arising from each planet:

Vtp,sec = −
N∑
j=1

Gmj

a

{
1

8
αjᾱjb

(1)
3/2(αj)e

2 − 1

4
αjᾱjb

(2)
3/2(αj)eej cos($j −$)

}
, (38)

where αj = min{a/aj, aj/a}, ᾱj = min{1, a/aj}, and e is the eccentricity of the test
particle’s orbit. We can make use of the Poincaré variables, (h, k), and substitute in
Eq. (38) the secular solution for the planets, Eq. (36), so that the perturbation potential
is expressed as follows:

Vtp,sec = −∑N
j=1

Gmj

8a
αjᾱjb

(1)
3/2(αj)(h

2 + k2)

+
∑N
l=1

∑N
j=1

Gmj

4a
αjᾱjb

(2)
3/2(αj)E

(l)
j [k cos(glt+ βl)− h sin(glt+ βl)].

(39)

Following the same procedure as for the secular theory for the planets, we relate the
canonical set

√
2Γ(sin γ, cos γ) to (h, k), and use Hamilton’s equations to obtain the

following equations of motion for the test particle’s eccentricity vector:

ḣ = g0k −
N∑
l=1

Fl cos(glt+ βl), k̇ = −g0h+
N∑
l=1

Fl sin(glt+ βl), (40)
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where

g0 =
n

4

N∑
j=1

mj

m∗
αjᾱjb

(1)
3/2(αj), Fl =

n

8

N∑
j=1

mj

m∗
αjᾱjb

(2)
3/2(αj)E

(l)
j . (41)

These equations are qualitatively similar to those for a harmonic oscillator of natural
frequency g0 driven at N discrete external forcing frequencies, gl. The general solution
is a sum of the free and forced oscillations, with the latter given by

{
h(t), k(t)

}
forced

=
N∑
l=1

Fl
g0 − gl

{
sin(glt+ βl), cos(glt+ βl)

}
. (42)

For given fixed parameters of the planetary system, the amplitude of the forced
oscillations depends only upon the semimajor axis, a, of the test particle. From Eq. (42),
we can anticipate that for some values of a the ‘natural frequency’ g0 is nearly equal to
one of the planetary secular mode frequencies, gl. At exact resonance, i.e. g0 = gl, we
have the particular solution of the resonantly forced oscillations whose amplitude grows
without bound: {

h(t), k(t)
}
resonance

' tFl
{
− cos(glt+ βl), sin(glt+ βl)

}
. (43)

The timescale for the growth of the amplitude, ∼ F−1l , is inversely related to the masses
and eccentricities of the planets.

Examples of minor planets at secular resonances

A prominent example of a linear secular resonance occurs in the inner solar system at
approximately 2 AU heliocentric distance. At this location, a minor planet in a nearly
circular orbit has a ‘natural’ apsidal frequency g0 ≈ 28′′/yr, very nearly the same as
the largest frequency, g6 ' 28.25′′/yr, of the major planets’ eccentricity secular modes.
This is known as the ν6 secular resonance; it has an associated timescale for eccentricity
growth of ∼ 105 yr. In the Kuiper belt, a similarly prominent secular resonance is the
so-called ν8 secular resonance which is defined by g0 ≈ g8. The latter is the lowest secular
frequency of the planetary eccentricities. The timescale of eccentricity growth in the ν8
resonance is ∼ 107 yr. The forced eccentricity of test particles near the ν6 resonance in
the asteroid belt, and near the ν8 resonance in the Kuiper belt are plotted in Figure 4.
Observationally, the location of the ν6 resonance coincides with the inner boundary of
the main asteroid belt, and the location of the ν8 resonance coincides with a gap in the
distribution of Kuiper belt objects. A number of numerical studies have shown that the
ν6 resonance provides a dynamical transport route for meteorite delivery to Earth, for
asteroid fragments that are injected into the ν6 resonance by means of random collisions
or other perturbations elsewhere in the main asteroid belt. A similar phenomenon may
be at work to inject Kuiper belt objects into high eccentricity Neptune-crossing orbits
via the ν8 resonance, and these may contribute to the supply of short period comets from
the Kuiper belt to the inner solar system.
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Figure 4: Forced eccentricity of test particle orbits near the ν6 resonance in the asteroid belt (left), and

near the ν8 resonance in the Kuiper Belt (right).

Secular resonances also occur embedded within or in close proximity to mean motion
resonances in the asteroid belt as well as in the Kuiper Belt, with interesting implications
for the long term stability of minor planet populations at mean motion resonances.

The instability of circular orbits caused by a secular resonance can be used to con-
strain the locations and masses of unseen planets or planetesimal belts in extra-solar
systems. One such example is the two-planet system known as OGLE-2006-BLG-109L,
recently discovered by means of microlensing observations; the secular perturbation the-
ory analysis of the system has been used to constrain the orbit and mass of a habitable
zone terrestrial planet in this system.

2.3 Sweeping secular resonance

We noted in the previous section that the stellar mass and the planetary masses and
orbital semimajor axes are ‘fixed’ parameters of the secular perturbation analysis. How-
ever, in the early history of a planetary system, some of these parameters are subject
to changes. Such time variability of these parameters causes the secular resonance lo-
cations to sweep across large regions of minor planets’ parameter space, causing large
perturbations on entire populations of minor planets.

Sweeping, or scanning, secular resonances are of interest in a number of contexts
in the solar system and may well find application in exo-planetary systems in the fu-
ture. Sweeping secular resonances due to the changing quadrupole moment of the Sun
during solar spin-down have been explored as a possible mechanism for explaining the
eccentricity and inclination of Mercury. Secular resonance sweeping due to the effects
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of the dissipating solar nebula just after planet formation has also been investigated as
a possible mechanism for exciting the orbital eccentricities of Mars and of the asteroid
belt. The dissipating massive gaseous solar nebula would have altered the secular fre-
quencies of the solar system planets in a time-dependent way, causing locations of secular
resonances to possibly sweep across the inner solar system, thereby exciting asteroids as
well as the small planets, Mercury and Mars, into the eccentric and inclined orbits that
are observed today. However, the quantitative predictions of such a mechanism appear
to not account very well for observations, and this remains an outstanding problem.

Here we consider the secular resonance sweeping driven by the orbital migration
of planets, and its effects on a belt of planetesimals. We assume that the planetesimals
have negligible mass compared to the planets, so they can be treated as infinitesimal
mass test particles. Consider a νp resonance defined by g0 ≈ gp, where gp is one of the
secular mode frequencies of the planets. Then we can neglect all but the l = p term in
the perturbation potential, Eq. (39). A natural new set of resonant variables is then
defined by

x = e cos($ − gpt− βp), y = e sin($ − gpt− βp). (44)

Furthermore, we make the simplification that the dominant and only effect of the orbital
migration of the planets is that the difference frequency, g0 − gp is a slowly varying
parameter, with

ġ0 − ġp = 2λ = constant. (45)

It is then straightforward to find that the equations of motion for the resonant variables
are given by

ẋ = 2λty; ẏ = −2λtx+ Fp, (46)

where we have defined, without loss of generality, t = 0 as the time of exact resonance
crossing when g0 = gp. These equations of motion form a system of nonhomogenous
linear differential equations. The general solution is given by a linear combination of a
homogeneous solution and a particular solution:

x(t) = xi cos
[
λ
(
t2 − t2i

)]
+ yi sin

[
λ
(
t2 − t2i

)]
+

ε√
|λ|

[
(S − Si) cosλt2 − (C − Ci) sinλt2

]
, (47)

y(t) = −xi sin
[
λ
(
t2 − t2i

)]
+ yi cos

[
λ
(
t2 − t2i

)]
− ε√
|λ|

[
(C − Ci) cosλt2 + (S − Si) sinλt2

]
. (48)

Here xi = x(ti), yi = y(ti) are the initial conditions at the initial time ti (long before
resonance crossing, ti → −∞), and S = S(t), C = C(t) are the Fresnel integrals,

S(t) =
∫ t

0
sin t′2dt′, C(t) =

∫ t

0
cos t′2dt′. (49)
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We can find the change in x and y owed to the resonance sweeping by evaluating
(x(t), y(t)) long after resonance encounter (t→ +∞):

xf = xi + Fp

√
π

2|λ|
[
cosλt2i − sinλt2i

]
,

yf = yi − Fp
√

π

2|λ|
[
cosλt2i + sinλt2i

]
, (50)

where we have made use of the limiting value of the Fresnel integrals, S(∞) = C(∞) =√
π/8. This yields the change in the eccentricity due to the resonance sweeping:

e2f = e2i +
πF 2

p

|λ|
+ 2Fp

√
π

|λ|
ei cos$i. (51)

For non-zero initial eccentricity, the phase dependence in Eq. (51) means that secular
resonance sweeping can both increase and reduce orbital eccentricities. Considering all
possible values of cos$i in the range {−1,+1}, a minor planet with initial eccentricity
ei that is swept by the νp secular resonance will have a final eccentricity in the range
emin to emax, where

emin,max ' |ei ± δe| , (52)

and

δe ≡
∣∣∣∣∣Fp
√
π

|λ|

∣∣∣∣∣ . (53)

Note that the magnitude of eccentricity change is inversely related to the speed of planet
migration.

For illustration, Figure 5 plots the analytically predicted time evolution of the eccen-
tricity of an ensemble of asteroids subjected to the sweeping of the ν6 secular resonance
when Saturn’s orbit migrates outward by about 1 AU in 1 million years. Initially, the
asteroids all started with a common value of the semimajor axis and eccentricity, but
different values of the longitude of pericenter (randomly distributed in the range 0–2π).

Equations (51)–(53) have the following implications: (i) Initially circular orbits be-
come eccentric, with a final eccentricity δe. (ii) An ensemble of minor planets near the
same semimajor axis and with the same initial non-zero eccentricity but uniform ran-
dom orientations of pericenter is transformed into an ensemble that has eccentricities
in the range emin to emax; this range is not uniformly distributed because of the cos$i

dependence in Eq. (51), rather the distribution peaks at the extreme values.

Analogous results obtain for the sweeping of an inclination secular resonance.

In the solar system, there is some evidence for a double-peaked eccentricity distri-
bution in the asteroid belt and a double peaked inclination distribution in the Kuiper
belt. Relating these observations to the early orbital migration of the giant planets is an
active area of research at present.
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Figure 5: The evolution of the eccentricity of an ensemble of asteroids subjected to ν6 secular resonance

sweeping, as determined by equations 47–50. The ensemble starts with the same values of semimajor axis

and eccentricity, but random values of the longitude of pericenter.

3 Mean motion resonances

3.1 Single resonance theory

The simplest case of a mean motion resonance occurs in the planar circular restricted
three-body problem in which a single planet orbits a star in a circular orbit and a test
particle orbits the star with an orbital period close to a ratio of small integers, p : p+ q,
with p 6= 0 and q ≥ 0. Recall that the Hamiltonian for the test particle is given by the
sum of its unperturbed Keplerian Hamiltonian and an interaction Hamiltonian describing
the perturbations from the planet; we can express this in terms of the modified Delaunay
variables Λ,Γ, λ, γ:

H(λ, γ,Λ,Γ, t) = −(Gm∗)2

2Λ2
− Gmp

[
1

|r− rp|
− r · rp

r3p

]

= −(Gm∗)2

2Λ2
+Hp(λ, γ,Λ,Γ, ap, t) (54)

where r, rp are, respectively, the position vectors of the test particle and planet relative
to the star and Hp represents the planetary perturbation.

Let us examine the dynamics near a first order mean motion resonance, q = 1. It is
useful to make a canonical transformation to slow and fast variables,

φ = (p+ 1)λp − pλ+ γ, Φ = Γ,
ψ = λ− λp, Ψ = Λ + pΓ, (55)
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where λp = np(t − t0) is the mean longitude of the planet, and np is its mean motion.
Then the new Hamiltonian is

H̃ = np[(p+ 1)Φ−Ψ]− µ2

2(Ψ− pΦ)2

+H̃p(φ, ψ,Φ,Ψ; ap) (56)

where ap is the semi-major axis of the planet’s orbit. Close to resonance, ψ is a fast
variable (relative to φ), we will drop the ψ-dependent terms. Consequently, the resonant
Hamiltonian is independent of ψ, thus Ψ is a constant of the motion. The following
auxiliary constants are useful for notational simplication:

n∗ =
(Gm∗)2

Ψ3
, a∗ =

Ψ2

Gm∗
; (57)

n∗ and a∗ are constants of the motion which equal the osculating mean motion and
semi-major axis of the test particle when its eccentricity is zero.

If the test particle orbit is nearly circular, then Φ ' 1
2

√
Gm∗ae2 is small, and we can

approximate Eq. (56) with a few terms in an expansion in powers of
√

Φ,

H̃res = [(p+ 1)np − pn∗]Φ + βΦ2 + ε
√

2Φ cosφ, (58)

where we have dropped an inessential constant, and

β = −3p2n∗
2Ψ

, ε = −Gmp

ap

fp√
Ψ
. (59)

Note that Ψ '
√
Gm∗a(1 + 1

2
pe2), and since the eccentricity is small, we have Ψ > 0 and

β < 0 in all cases of interest. The coefficient fp is given by

fp =

 −(p+ 1 + 1
2
D)b

(p+1)
1/2 (α), α = (1 + 1/p)−2/3 for p > 0,

−α(p+ 1
2
− 1

2
D)b

(|p+1|)
1/2 (α)− δp,−2

2α
, α = (1 + 1/p)2/3 for p < 0.

 (60)

Here δi,j is the Kronecker delta function, D ≡ d/d logα, and b
(p)
1/2 is a Laplace coefficient.

For a universal description of any first order resonance, it is useful to define a
dimensionless canonical momentum, R, and a modified canonical coordinate θ,

R =

∣∣∣∣∣2βε
∣∣∣∣∣
2/3

Φ, θ =

{
−φ if ε > 0,
π − φ if ε < 0.

(61)

For small eccentricity, we can write 2R ' (e/se)
2, where the eccentricity scale is

se ≡
1

(µa∗)1/4

∣∣∣∣∣ ε2β
∣∣∣∣∣
1/3

=

∣∣∣∣∣ mpa∗fp
3p2m∗ap

∣∣∣∣∣
1/3

. (62)
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The dimensionless Hamiltonian in the canonical variables (θ, R) is then given by

K = −3∆R +R2 − 2
√

2R cos θ, (63)

where the dimensionless parameter, ∆, is a measure of the closeness to exact resonance,

∆ =
(p+ 1)np − pn∗

sν
, (64)

and sν is a frequency scale,

sν ≡
∣∣∣∣∣27βε2

4

∣∣∣∣∣
1/3

=

∣∣∣∣∣9pmpa∗fp√
8apm∗

∣∣∣∣∣
2/3

n∗. (65)

For eccentricity e → 0, n∗ = n is the unperturbed mean motion, and the “exact reso-
nance” condition pn∗ = (p + 1)np corresponds to ∆ = 0. The small amplitude libration
frequency of the resonant angle is of order ∼ sν .

The above analysis provides several useful results in understanding resonant dynam-
ics.

The first integral, Ψ =
√
Gm∗a(1− p(1−

√
1− e2)), defines a relationship between

the resonant perturbations of the mean motion and eccentricity:

δn

n
= −3δa

2a
≈ 3p

2
δe2, (66)

which shows that the resonant perturbations in a are much smaller than those in e.

The range of the resonant perturbation is |(p+ 1)np−pn∗| ∼ |p|sν . This means that
the “width” of the resonance is proportional to m2/3

p .

The topology of the phase space determined by the dimensionless resonant Hamil-
tonian depends only upon the value of ∆.

The phase space trajectories follow level curves of the dimensionless resonant Hamil-
tonian K, Eq. (63). Figure 6 shows plots of the level curves for various values of ∆
to illustrate the phase space topology. In these plots, we use the Poincaré variables
(x, y) =

√
2R(cos θ, sin θ), which are also canonical (y is the coordinate and x is the

conjugate momentum). The origin in these plots corresponds to zero eccentricity, and
the distance from the origin is e/se.

The phase space structure is very simple when |∆| � 1: the trajectories are nearly
circles centered close to the origin. For ∆ < 1, there is only one fixed point and no
homoclinic trajectory, but for ∆ > 1 there are three fixed points and a homoclinic
trajectory (a separatrix) exists. All the fixed points are on the x-axis; they are given by
the solutions of ∂K/∂x = 0 which are the real roots of the cubic equation

x3 − 3∆x− 2 = 0. (67)

Figure 7 plots the locations of the real roots as a function of ∆.
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The separatrix, when it exists, divides the phase space into three zones: an external
and an internal zone and a ‘resonance’ zone. Most orbits in the resonance zone are
librating orbits, i.e. the resonant angle, θ (equivalently, φ), executes finite amplitude
oscillations, whereas most orbits in the external and internal zones are circulating orbits
(i.e. the resonant angle increases or decreases without bound).

For initially circular orbits, there are several interesting properties:

◦ For |∆| � 1, the resonantly forced oscillations in (x, y) of particles on initially
circular orbits are nearly sinusoidal, with frequency 3∆ and amplitude ∼ 2

3
|∆|−1.

◦ In the vicinity of ∆ ≈ 0, the oscillations are markedly non-sinusoidal, and have a
maximum amplitude of 2

5
3 at ∆ = 2

1
3 . Thus, the maximum eccentricity excitation

of initially circular orbits is

emax ' 2
5
3 se for ei = 0. (68)

The behavior of initially circular orbits is discontinuous near ∆ = 2
1
3 : the oscillation

amplitude is 2
5
3 for ∆ just below 2

1
3 , but the amplitude is just half that value, 2

2
3 ,

for ∆ just above 2
1
3 . (We note in passing that ∆ = 2

1
3 represents a period-doubling

transition point.) Figure 8 illustrates this behavior.

◦ The half-maximum amplitude occurs at a value of ∆ ' −0.42. Thus, we can define
the resonance full-width-at-half-maximum amplitude in terms of the mean motion
of the test particle

∆n ≈ 2

|p|
sν =

∣∣∣∣∣∣ 9mpa∗fp√
8|p|apm∗

∣∣∣∣∣∣
2/3

n∗. (69)

3.2 Resonance Capture

The behavior of initially circular orbits to adiabatic changes of ∆ (due to external forces)
is of particular interest in the evolution of orbits near mean motion resonances in the
presence of small dissipative forces. Of course, in the presence of dissipation, the actual
trajectories are not closed in the (x, y) phase plane, but the level curves of the single
resonance Hamiltonian (Figure 6) serve as ‘guiding’ trajectories for such dissipative evo-
lution. We can gain considerable insight into the evolution near resonance by using the
property that the action is an adiabatic invariant of the motion in a Hamiltonian system.
For the single resonance Hamiltonian, the action is simply the area enclosed by a phase
space trajectory in the (x, y) plane. Therefore, for guiding trajectories which remain away
from the separatrix, adiabatic changes in ∆ preserve the area enclosed by the guiding
trajectory in the (x, y) phase plane, even as the guiding center moves. There are two
possible guiding centers corresponding to the two centers of libration of θ (which occur
on the x-axis, i.e. at θ = 0 or π, Figure 6). In Figure 7, the locations of the libration
centers are the fixed points x1 and x2, plotted as a function of ∆.
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Figure 6: Level curves of the dimensionless resonant Hamiltonian, Eq. (63), for various values of the

resonance distance ∆, Eq. (64). The coordinates are (x, y) =
√
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√

2R cos θ.

For ∆ > 1, the unstable fixed point that lies on the separatrix is shown as a dotted line.
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2R cos θ for an initially circular orbit, for several

values of ∆.

Convergent evolution

Consider a particle initially in a circular orbit whose orbit frequency approaches that of
the planet’s orbit frequency. This particle will approach the resonance from the left, i.e.
∆ increasing from initially large negative values, and its initial guiding trajectory has
zero enclosed area. The initial “free eccentricity” is vanishingly small, and the particle’s
eccentricity is determined by the resonant forcing alone. Such an orbit adiabatically
follows the positive branch, x1, in Figure 7, so that as ∆ evolves to large positive values,
the particle’s eccentricity is adiabatically forced to large values as the guiding center
moves away from the origin. We have

x1 '
√

3∆ for ∆� 1. (70)

Recall that x is the dimensionless eccentricity. Thus, the rate of increase of the resonantly
forced [dimensionless] eccentricity along the positive branch is given by

dx21
dt
' 3

d∆

dt

∣∣∣∣∣
ext

, (71)

where the subscript ‘ext’ refers to the effect of external dissipative forces.

The guiding trajectory will be forced to cross the separatrix if the initial area en-
closed by it exceeds A1 = 6π, the area enclosed by the separatrix when it first appears
at ∆ = 1. This defines a critical eccentricity,

ecrit =
√

6se. (72)
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For initial eccentricity ei < ecrit, capture into resonance is assured as ∆ increases adia-
batically from initially large negative values to positive values, whereas for ei > ecrit, the
test particle will encounter a separatrix.

Negotiating the separatrix is difficult business, for the adiabatic invariance of the
action breaks down close to the separatrix where the period of the guiding trajectory
becomes arbitrarily long. However, the crossing time is finite in practice, and separatrix
crossing leads to a quasi-discontinuous “jump” in the action; subsequently, the new
action is again an adiabatic invariant. There are two possible outcomes: the final guiding
trajectory can be either in the resonance zone or in the internal zone. It is possible to
compute a probability of transition for the two possible outcomes by assuming a random
phase of encounter of the guiding trajectory with the separatrix.

Divergent evolution

Finally, consider a particle initially in a circular orbit whose orbit frequency diverges
slowly from that of the planet’s orbit frequency. This particle will approach the res-
onance from the right, with ∆ decreasing from initially large positive values. In this
case, the guiding trajectory adiabatically follows the negative branch, x2, in Figure 7.
However, the center of librations on the negative branch merges with the unstable fixed
point on the separatrix at ∆ = 1, and the guiding trajectory is forced to negotiate the
separatrix. There occurs a discontinuous change in the guiding trajectory which becomes
briefly nearly coincident with the separatrix. Thereafter, as ∆ continues to decrease, the
separatrix disappears, and the guiding trajectory becomes increasingly circular about
the origin, with an area equal to 6π, which is the area enclosed by the separatrix at
∆ = 1. Thus, in this case, passage through resonance leaves the particle with an excited
“free eccentricity” equal to ecrit (Eq. (72)).

3.3 Overlapping mean motion resonances and Chaos

In the previous sections, we analyzed the dynamics of a single first order p : p+ 1 mean
motion resonance, treated in isolation. In reality, there exists an infinite sequence of
resonances in the restricted three-body problem,

2 : 1, 3 : 2, 4 : 3, 5 : 4, . . . interior resonances, p > 0 (73)

1 : 2, 2 : 3, 3 : 4, 4 : 5, . . . exterior resonances, p < 0. (74)

The separation between two neighboring first order resonances, p : p+1 and p+1 : p+2,
is given by

δn =
(p+ 1

p+ 2
− p

p+ 1

)
np ≈ p−2np. (75)

The separation between resonances decreases as |p| increases. When the separation be-
tween neighboring resonances becomes similar to their widths, the single resonance the-
ory breaks down. The nature of this breakdown is revealed in numerical solutions: large
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scale chaotic behavior of orbits. Overlapping resonances are a universal route to stochas-
tic (chaotic) behavior in dynamical systems.

For nearly circular orbits, we have derived the width of each resonance, Eq. (69).
For p � 1, the resonant coefficient, fp defined in Eq. (60) has the following simple
approximation:

fp ' −
p

π
[2K0(2/3) +K1(2/3)] ' 0.80 p, (76)

where Ki are modified Bessel functions. With this approximation, the sum of the half-
widths of neighboring mean motion resonances from Eq. (69) is

∆n ≈ 3.73 p
1
3µ

2
3 np, (77)

where µ = mp/m∗. An examination of Eqns. 75 and 77 shows that for a given mp there
exists some value pmin such that the widths of first order resonances close to the planet
with |p| > pmin will exceed their separation. In this region, which is approximately an
annular region around the planet’s orbit, initially circular orbits will exhibit the universal
chaotic instability that arises from overlapping resonances.

More precisely, let us define the overlap ratio:

γ ≡ ∆n

δn
. (78)

The “two-thirds” rule states that the chaotic layers at the resonance separatrices merge
— and most orbits in the vicinity of the resonances will be chaotic — when the overlap
ratio γ is ∼> 2/3, i.e.

|p|−1 ∼< 2.1µ2/7. (79)

For |p| � 1, we have |p|−1 ' δa/ap, where ap + δa = ((p+ 1)/p)2/3 is the semimajor axis
of the exact resonant orbit. Thus, we can define the width of the annular region, ∆aro,
where first order resonances overlap according to the “two-thirds” rule:

∆aro ' 1.4µ
2
7ap. (80)

The above equation estimates the extent of the chaotic region in the vicinity of a
planet’s orbit where circular test particle orbits are unstable and exhibit strongly chaotic
behavior. Figure 9 provides an illustration of the phenomenon of first order mean motion
resonance overlap. We see that for mass ratio µ = 1× 10−5, the 8:7 and 7:6 neighboring
mean motion resonances are well separated, with only a very thin chaotic zone near their
separatrices. However, for a slightly larger mass ratio, µ = 2.5 × 10−5, separatrices of
these resonances broaden and merge into a large chaotic zone.

The chaotic zone defined by the resonance overlap region does not preclude the
existence of small regions of quasiperiodic orbits embedded within it. Obvious examples
are the stable libration zones at the classical Lagrangian points where the mean motion
of test particles is in 1:1 resonance with that of the planet. Small libration zones persist
in the vicinity of other mean motion resonances as well, such as indicated in Figure 9.
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Figure 9: Surfaces-of-section for the circular planar three-body problem illustrating the merging of the 7/6

and the 8/7 mean motion resonance separatrices as the mass ratio mp/m∗ increases from 1× 10−5 (left)

to 2.5× 10−5 (right). The upper and lower panels represent views of the same orbits, plotted in different

variables.

Mean motion resonances outside the µ
2
7 chaotic zone also have chaotic layers in the

vicinity of their separatrices, with layer thickness diminishing with mean distance from
the planet but a strong function of the mean eccentricity.

4 Epilogue

Orbital resonances are a source of both stability and chaos, depending sensitively upon
parameters and initial conditions. This fundamental conclusion and an understanding of
its implications is leading a resurgence in the field of celestial mechanics, with import
for planetary science in general. We have provided here an overview of orbital resonance
phenomena, with simple models that guide our understanding. The progress in recent

27



years has already led to new insights on the origin of orbital configurations in the solar
system and in extra-solar planetary systems. In the near future, we anticipate much
progress in planetary dynamics, particularly in regard to the origin and evolution of the
orbital characteristics of planetary systems viewed as an ensemble.

Glossary

Completely integrable system: an n–dimensional Hamiltonian system admitting n
first integrals in involution and independent.

Kepler’s laws: a set of three laws devised by Johannes Kepler to describe the motion
of a celestial body in the gravitational field of a primary body.

Lagrangian points: the equilibrium points of the three–body problem in a synodic
(rotating) reference frame. Three equilibrium positions are referred to as collinear,
since they lie on the direction joining the primaries; two equilibrium positions are
called triangular, since they form an equilateral triangle with the primaries.

Pericenter: the point on the elliptical orbit of a celestial body which is at the minimum
distance from the focus.

Perturbation theory: a constructive theory which allows to provide an approximate
solution to the equations of motion of a nearly–integrable system.

Quasi–periodic motion: conditionally periodic motion with incommensurable fre-
quencies.

Resonance: a commensurability condition among the frequencies of a dynamical sys-
tem.

Secular Resonance: a commensurability condition among the slow frequencies of
precession of the apsides or and/or the nodes in a planetary system.
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