The mass distribution of planets

Clues from orbital dynamics

Renu Malhotra The University of Arizona

partially in Malhotra (2015), ApJ

See also: Tremaine 2015, Pu & Wu 2015

Why should we care about the mass function?

it would inform us about the abundance of planets like Earth
 features in the mass function signal various physical processes

Example: mass function of Earth impactors

Example: mass function of stars in the solar neighborhood

Planet masses from orbital periods?

Orbital periods of nearly all exoplanets are well-determined

+ Stellar host masses are fairly well determined

Orbital spacing related to Period Ratio

Dimensionless orbital separation

 $P = P_{outer}/P_{inner}$

Distribution of dimensionless orbital separation adjacent planets in *Kepler* multis

Distribution of dimensionless orbital separation adjacent planets in *Kepler* multis

more massive planets tend to need larger spacings

Two planets

minimum orbital separation is ~3.46 times mutual Hill radius

G.W. Hill, 1878 Gladman, 1993

$$\mathcal{D} = 2\sqrt{3} \left(\frac{m_1 + m_2}{3m_*}\right)^{\frac{1}{3}}$$

N>2 planets no analytical criterion empirical: generalize Hill's criterion

$$\mathcal{D} = \mathbf{K} \left(\frac{m_1 + m_2}{3m_*}\right)^{\frac{1}{3}}$$

$$\log\left(\frac{m_1 + m_2}{m_*}\right) = 3(\log \mathcal{D} - \log K) + \log 3$$

K > 3.46... but by how much? likely depends upon planet multiplicity (N), eccentricities ('angular momentum deficit', AMD), planet mass ratios (m₁/m₂), age of the system ('dynamical age', t/T₁)

N>2 planets no analytical criterion empirical: generalize Hill's criterion

$$\mathcal{D} = \mathbf{K} \left(\frac{m_1 + m_2}{3m_*} \right)^{\frac{1}{3}}$$

$$\log\left(\frac{m_1 + m_2}{m_*}\right) = 3(\log \mathcal{D} - \log K) + \log 3$$

K > 3.46... but by h
likely depends upon plane
eccentricities ('angular mome
planet mass ratios
age of the system ('dynamical age', t/T₁)
Ansatz: log K is Gaussian
mean = 1.32, s.d. = 0.31
(solar system mean & s.d.)

Distribution of K

Look to Solar System

Distribution of K

Look to Solar System & Kepler multis with use of mass-radius relationship(s)

Hill's criterion for two planets
...generalized:
$$\mathcal{D} = K \left(\frac{m_1 + m_2}{3m_*} \right)^{\frac{1}{3}}$$
$$\log \left(\frac{m_1 + m_2}{m_*} \right) = 3(\log \mathcal{D} - \log K) + \log 3$$

Hill's criterion for two planets
...generalized:
$$\mathcal{D} = K \left(\frac{m_1 + m_2}{3m_*}\right)^{\frac{1}{3}}$$
$$\log\left(\frac{m_1 + m_2}{m_*}\right) = 3(\log \mathcal{D} - \log K) + \log 3$$

Gaussian
(from observations)

Individual planet masses

PDF of $(m_1+m_2)/M_*$

Stellar masses M^{*} are fairly well determined (Kepler)

Assume *min(m₁,m₂)/max(m₁,m₂)* is random on (0,1) or half-Gaussian on (0,1) if neighbor planets tend to be of similar mass

Distribution of individual planet masses

Planet mass distribution: theoretical estimate

PDF of log(planet mass/earth-mass)

Planet mass distribution: theoretical estimate

PDF of log(planet mass/earth-mass)

Distribution of planet masses: theoretical estimate

log-log plot of PDF of (planet mass/earth-mass)

Distribution of planet masses: theoretical estimate

log-log plot of PDF of (planet mass/earth-mass)

Distribution of planet masses: theoretical estimate

log-log plot of PDF of (planet mass/earth-mass)

Earth-mass planets are ~10³ more abundant than Jupiter-mass planets The most common planets are of mass m < M_{\oplus}

Summary

- Kepler data of multiple-planet inner solar systems
 - orbital separations ~ log-normal
- Dynamical stability -> planet masses related to orbital separations
- With a simple ansatz, we derive that the planet mass function ...
 - is a rolling power law, shallower at lower masses
 - Earth-mass planets are ~1000 x more common than Jupiter-mass planets
 - the most common planet mass, mode m < M_{\oplus}

