SOLUTIONS
PTYS/ASTR 206 - Section 3 - Homework 3 - Assigned 2/26/09

NAME:
(PRINT CLEARLY)

- Homework is due in class on Thursday March $5^{\text {th }}$.
- Late homeworks can be turned in class on Tuesday March $10^{\text {th }}$ for 50% credit.
- Homeworks turned in later than this receive 0\%.
- Students are encouraged to discuss approaches to solving homework problems with each other; however, all work submitted must be the student's own. Do not turn in identical homeworks! See the syllabus for more information.

Hint: Each of these questions should be quick to answer. If you find yourself engaged in a long chain of complicated reasoning or more than a few lines of math then something is probably wrong! Make sure to start this early and talk to the TA or myself with any questions.

Question 1: Planetary interiors
Give two reasons why we know the core of the Earth is at least partly liquid?

1) Earthquakes: Explain 2 kinds of waves $I P$
S waves cant travel through liquids.
Liquid outer cole leaves a shadow gore with no S-wares.
2) Earth's internally generated magnetic field: only possible if Earth has a liquid cole

When rocks rise up through the Earth's mantle why do they partly melt?
As rocks rise up thorough Earths morthe temperature Varies intr charge in pressule.
In the deep monte, temperature <meltingpoit
\Rightarrow deepmentre is solid
Higher up in the monte, temperature >melting point, \Rightarrow Rocks start
(A simple cketch of temperectue variation in Earthly interior would de helper, though not required - ape 12 I Interiors lecture)

Volcanoes with very viscous lavas have very explosive eruptions. Give three reasons why some lavas are more viscous than others.

1) Silica contact (SO) / Compaction of lan : High silica contort \Rightarrow high viscosity
2) Temperature: High eruption temperature \Rightarrow Low viscosity
3) Adding water lowers viscosity

You might already have heard about the Mount St. Helen eruption during 1980 in Washington State. Do a little web research on this eruption, what kind of volcano is this? The mountain itself was badly damaged in the eruption - what will happen to this volcano in the future?

Steratovolcaro - explosive, destructive eruption

- Recent dome building episode (regainngheight)
- Ongoing ste an eruptions
-Will it erupt agar? Has it become dormant?

Question 2: Atmospheres of terrestrial planets
The surface pressure of the martian atmosphere is about 0.006 times that of the Earth and the scale height of Earth's atmosphere is about 8 km . Is the top of Mount Everest at lower or higher pressure than the surface of Mars (elevation of Mount Everest is $8.8 \mathrm{~km})$?

$$
\begin{aligned}
& 8 \mathrm{~km}=1 \text { scale height } \\
& \Rightarrow 8.8 \mathrm{~km}=1.1 \text { scale heights }
\end{aligned}
$$

Pressure at top of $m t$. Everest $=P_{0}\left(\frac{1}{e}\right)^{1.1} \sim 33 \% \cdot g P_{0}$

$$
=0.33 P_{0}
$$

This is higher pressure than at the surface of Mars $\left(0.006 P_{0}\right)$.

PTYS/ASTR 206 - Section 3 - Homework 3 - Assigned 2/26/09
Both Earth and Titan have mostly nitrogen atmospheres at roughly the same pressure. Temperature on Titan is 90 K and on the Earth 300 K . How dense is Titan's atmosphere compared to the Earth?

$$
\text { Density } \propto \frac{1}{\text { Temperature }}
$$

Higher temperatures make atmosphere less compact

$$
\frac{(\text { Density })_{\text {Titan }}}{(\text { Density })_{\text {Earth }}}=\frac{\left(\text { Temperature } \text { Earth }^{\left(\text {Temperature) }_{\text {Eta }}\right.}=\frac{300}{90} \sim 3.3\right. \text { (less dense) }}{90}
$$

How do we know there is ice in Mercury's polar regions? Why is it stable there despite Mercury being such a hot planet?
Evidence for ice in mercury's polar regions
Radar reflections chow caters are filled with
unusual material (probably water ice)
Why is ice stable? - Polar craters are permanently shadowed.

- mercury has lour oblajuty
- Solar elevations in pobae regions Question 3: Atmospheric Circulation are always low
What latitudes contain most of the deserts on the Earth? What causes this?
Tropics (30 $\quad 3.30^{\circ} \mathrm{S}$) contain most of the deserts.
Air gets heated at the equator. Hat air lies and cools off. Clouds form and lots of sain results at equator. The dry air is pushed aside from equator. It moves to the tropics descends to the simpace and heats updry air crates desuts. (Madly cell circulation) (Asketch of circulation cells on Earth would be useful).

8. Venus is hotter \because rt's closer to the dun. Allthe water on Venus uapoleted away lorgtimebock. This increased the furfoce tinperotue ($V_{2} O$ is a greenhouse sab), vaporises rocks to for PTYS/ASTR 206 -Section 3 - Homework 3 -Assigned 2/26/09
 Which way do winds at Earth's equator blow? (Sketht a picture). Where toes this come from and why do these winds blow in this direction? eventually.

- Explain Coriolis force \rightarrow Caused due to rotation of the Earth.
- In N hemisphere, winds are deflected to the evight . In S hemisphere, winds are deflected to the left.
- Winds blow towards west.
sketch of zonal winds is lequied here. How does the greenhouse effect work? Why does adding more CO_{2} to the atmosphere change the climate? Why did Venus's greenhouse effect run away while the Earth's is kept in check?
- Sunlight comas in (mainly at risible wavelengths) Greenhouse gases are transparent to visible light, allow it to pass through. Ground gets heater up and emits infra-red radiation. Greenhouse gases are opaque to IR, which gets blocked. This increases the temperature, resulting in the greenhouse effect
- Cor is a greenhares gas. Adding more co ${ }_{2}$ boosts the greenhouse effect, sicleases the surface temperature.
- \otimes Top.
'Most people now believe that the Moon formed in a giant collision between the Earth and a passing Mars-sized planet. Give two pieces of evidence to support this.
- Moon is depleted in ion and volatile substances
- Onyogen isotope ratios similar to the

PTYS/ASTR 206 - Section 3 - Homework 3 - Assigned 2/26/09
An old formation theory involved the Moon and Earth splitting apart from a rapidly spinning parent body. Why doesn't this work?

Moon doesnt obs in Earth 's
equatorial plane.

What are the dark low-land plains on the Moon composed of? Why do they have much fewer impact craters than the bright lunar highlands? Why are these dark plains concentrated on the side of the Moon that faces the Earth?

- Basalt (vdcanic comprositio).
- Volcanic fours were emplaced on top of Gates \Rightarrow volcanic flows are younger than the impact alters. The youngest dark low eland plains on the moon thus hove fewer caters.
- The dark plains are concerteated on the side of the Moon that faces the Earth \because of thinner Question 5: Venus

Most volcanoes on Venus produce lava that is not at all viscous. Suggest a reason why the viscosity of the Venusian lavas is so low.

High surface temperetrer (750 K) leads to lou viscosity:

PTYS/ASTR 206 - Section 3 - Homework 3 - Assigned 2/26/09
Venus is 0.72 AU from the Sun. Assume Venus had no atmosphere and that its bare surface reflected 50% of the sunlight that hit it. How much solar power would it absorb on each square meter? If the temperature was stable then this absorption would be balanced by emitted energy. What would be the temperature in this case?
[Hint: you solved a problem almost just like this in the last homework]
Incident solar power $=\frac{1367}{R^{2}}=\frac{1367}{0.72^{2}}$

$$
-2637 \mathrm{w} / \mathrm{m}^{2}
$$

50% of the incident energy is reflected back
$\Rightarrow 50 \%$ is absolved $=0.5 \times 2637 \cong 1318 \mathrm{~W} / \mathrm{m}^{2}$
If absorption is balanced by emoted energy

$$
\begin{aligned}
& \Rightarrow 1318=\sigma T^{4}=\left(5.67 \times 10^{-8}\right) T^{4} \\
& \Rightarrow T^{4}=1318 /\left(5.67 \times 10^{-8}\right) \Rightarrow T \geqslant 390.46 \mathrm{~K}
\end{aligned}
$$

What is the actual surface temperature on Venus? How big of an effect is the atmosphere having?
Actual aryace temperature on Venus $\cong 750 \mathrm{~K}$
\Rightarrow Atmosphere hos on huge effect

- Surface is warmed by greenhouse effect
- Greenhouse gases stope thermal radiation from escaping to space.
- Venus has 86 bars of $\mathrm{CO}_{2} \Rightarrow$ Temperature is boosted by about $400^{\circ} \mathrm{C}$.

