

Announcements

- D2L site "up soon" will only have link to class webpage
- The order of the next few lectures has changed a little see class website for new schedule
 - Timing of homeworks, exams etc is unaffected

- Observations
 - Craters...
 - Bright/white surface
 - Trenches

What makes planetary astronomy different from other kinds of astronomy?

- What makes planetary astronomy different from other astronomy?
 - Most light is reflected light
 - Coming soon
 - We're part of the dynamical system we're trying to observe
 - Today's lecture

In this lecture...

- Our spinning solar system
- Rotation
 - Day vs. Night
- Seasons
 - Obliquity, incidence angle
- Lunar Phases
- Synchronous rotation
- Eclipses
 - Solar and Lunar

Everything around us is spinning – and we are too

- The solar system is shaped like a flat disk
 - Looking down from 'above' it spins anticlockwise
 - 'above' = north
- Inclinations are low

Planetary Inclinations			
Mercury	7°		
Venus	3.4°		
Earth	0° The Ecliptic		
Mars	1.9°		
Jupiter	1.3°		
Saturn	2.5°		
Uranus	0.8°		
Neptune	1.8°		

Figure 7-1 Universe, Eighth Edition © 2008 W.H. Freeman and Company

Earth as seen from above the North Pole

Figure 2-4a Universe, Eighth Edition © 2008 W. H. Freeman and Company

Universe, Eighth Edition © 2008 W.H. Freeman and Company

- Common spin direction
 - Rotation of Sun, Earth, Moon
 - Orbit of Earth and Moon

- Earth's polar axis points to the celestial north pole
 - Nowadays it's conveniently marked by the star Polaris
- Earth's equator projects onto the sky to form the celestial equator
 - Right-ascension and declination measured like longitude and latitude on this celestial sphere

Chapter 2 Opener Universe, Eighth Edition © 2008 W.H. Freeman and Company

Figure 2-9 Universe, Eighth Edition © 2008 W.H. Freeman and Company

- Astronomical objects appear to rotate around celestial north pole
 - Counterclockwise, every 23hrs 56minutes a sidereal day
 - Sun appears to rotate every 24 hrs a solar day
- Objects rise in the East and set in the West
 - Some stars never set

- Where's the celestial pole?
 - At the north pole it's straight overhead
 - At the equator it's on the northern horizon
 - At a latitude X°, it's X° above the horizon

the north celestial pole is 35° above the northern horizon
the south celestial pole is 35° below the southern horizon

Figure 2-10 Universe, Eighth Edition © 2008 W. H. Freeman and Company

At the north pole

At the equator

© 2008 W. H. Freeman and Company

At middle northern latitudes

Visible constellations depend on season

- We can only see stars at night
- The part of the sky that the night-side of the Earth faces changes with season
- The sun appears to move through the background stars

e.g. Orion – winter & Cygnus - summer

Figure 2-5 Universe, Eighth Edition © 2008 W. H. Freeman and Company

- Earth's orbital plane is not the same as the celestial equator
 - Orbital plane is called the <u>ecliptic</u>
 - There is a difference of 23½° obliquity
 - Earth doesn't wobble (much), the pole always points at the same spot in the sky
- Northern hemisphere tilts towards the sun in the summer
 - Vice-versa in the winter

- The Sun and all other planets appear to move around the Earth on the Ecliptic
- The stars stay (mostly) fixed on the celestial sphere
- The Sun and planets move

Figure 2-15 Universe, Eighth Edition © 2008 W.H. Freeman and Company

<mark>∦</mark>≌

PYTS/ASTR 206 – Days, Seasons & Lunar Phases

- At (northern) summer solstice
 - Sun is overhead at Tropic of Cancer
 - Northern hemisphere days are long
 - Permanent daylight north or arctic circle

At equinoxes

- Sun is overhead at the equator
- Length of day is the same everywhere
- No permanent daylight anywhere
- At (northern) winter solstice
 - Sun is overhead at Tropic of Capricorn
 - Northern hemisphere days are short
 - Permanent darkness north or arctic circle

Tropics: 23¹/₂° South to 23¹/₂° North. The region where the Sun is directly overhead at some season.

Mid-latitudes: 23½° to 66½° North and South. The Sun is never directly overhead. The sun sets and rises every day.

Polar regions: $66\frac{1}{2}^{\circ}$ to 90° North and South. The Sun never sets in the summer and never rises in the winter.

• How about Tucson (32° North latitude), winter vs. summer?

December 21st

June 21st

	Noon Winter Solstice	Noon Summer Solstice	Noon Equinox	
Solar elevation	34½°	81½°	58°	
Incidence Angle	55½°	81⁄2°	32°	
Solar power cos(i)*1370 W/m ²	776 W/m ²	1355 W/m ²	1162 W/m ²	
A big difference!				

- What about at the equator?
- Is the sun highest in the sky in:
 - A) June
 - B) December
 - **C)** March or September
 - D) It's the same all year

- Every planet/moon is half-illuminated
 - Except during eclipses
 - Our point of view makes planetary objects have 'phases'
 - Phases of the Moon are easiest to see
 - The phase of an object can be expressed as a 'phase angle' - more on this later

- The Moon shows the most dramatic phase changes as it's nearby
 - Orbits Earth every 27.3 days...
 - ...but new-moon to new-moon period is 29.5 days
 - Any ideas why?

Figure 3-2 Universe, Eighth Edition © 2008 W.H. Freeman and Company

Figure 3-5 Universe, Eighth Edition © 2008 W.H. Freeman and Company

- Sidereal period
 - Measured relative to the fixed stars
 - **27.3 Days**
- Synodic Period
 - Measured by illumination
 - 29.5 days

- Waxing Moon is growing from new to full
 - New, crescent, 1st quarter (half full), Gibbous, Full
- Waning Moon is shrinking from full back to new
 - Full, Gibbous, 3rd quarter (half full), Crescent, New

- Dark side vs. far side of the Moon
 - We never see the far-side from Earth
 - We always see part of the dark side (except at full Moon)
- Once in a 'Blue Moon'
 - Second full Moon in a calendar month
 - Once every 2.7 years

- Dark side of the Moon isn't completely dark....
 - Reflected sunlight from the Earth hits the Moon...
 - ...and is reflected back to us.

Synchronous rotation

- Why do we only see one side of the Moon?
 - The Moon rotates every 27.32 days just like its orbital period
 - Ensures that one face always points to the Earth

- This is synchronous rotation
 - Not an accident!
 - Nobody saw the far side of the Moon until the first spacecraft passed by.
 - Gravitational tides cause this
 - Earth's spin has slowed down
 - Moon has drifted outwards
 - More on this later
 - Common in the solar system

Figure 3-4b Universe, Eighth Edition © 2008 W.H. Freeman and Company

- What is the lunar phase during a lunar eclipse?
 - Earth's shadow covers the Moon
- What is the lunar phase during a solar eclipse?
 - Moon covers the Sun.

Figure 3-2 Universe, Eighth Edition © 2008 W. H. Freeman and Company

Eclipses

- What is the lunar phase during a lunar eclipse? Full Moon
 - Earth's shadow covers the Moon
- What is the lunar phase during a solar eclipse? New Moon
 - Moon covers the Sun.

Figure 3-2 Universe, Eighth Edition © 2008 W.H. Freeman and Company

- Earth-Moon-Sun need to be in a straight line.
- The Moon's orbit is slightly inclined to the Earth's orbit
 - These planes intersect along a line
 - The 'Line of Nodes'
 - Sun must lie in the line of nodes
 - Happens twice a year

© 2008 W.H. Freeman and Company

Figure 3-7 Universe, Eighth Edition © 2008 W.H. Freeman and Company

- Lunar eclipse
 - Earth's shadow covers the Moon
 - Can only occur with a full Moon
 - Depending on how well centered the shadow is:
 - Penumbral eclipse
 - Partial eclipse
 - Total eclipse

Figure 3-8 Universe, Eighth Edition © 2008 W. H. Freeman and Company

- Lunar eclipse cont.
 - Why does the Moon appear red during an eclipse?

Figure 3-9 Universe, Eighth Edition © 2008 W. H. Freeman and Company

Figure 3-9

- Lunar eclipse cont.
 - Why does the Moon appear red during an eclipse? Earth's Atmosphere
 - Same reason a sunset appears red blue light is scattered more easily

Universe, Eighth Edition © 2008 W. H. Freeman and Company

- Solar eclipse
 - Moon's shadow falls on the Earth
 - Can only occur with a new Moon
 - Eclipses can be
 - Total
 - Annular
 - Partial
 - Occurs on Mars
 - Phobos shadow
 - & Jupiter
 - From Io

Figure 3-11 Universe, Eighth Edition © 2008 W. H. Freeman and Company

- Annular vs. total eclipse depends on
 - Lunar distance
 - Location

In this lecture...

- Our spinning solar system
- Rotation
- Seasons
- Lunar Phases
- Synchronous rotation
- Eclipses

Next: Orbits and Gravity

- Reading
 - Chapter 3 to revise this lecture
 - Chapter 4 for Thursday