

Announcements

HW6 due now

Or next Tuesday for partial credit

Course Evaluations

- 2 forms
- One for the course, one for the instructor
- We'll finish early so you can fill these out

TA award nominations

- Optional if you think one of the TAs should get special recognition
- Don't just check the boxes, you need to write a few words about what the TA did that you liked.
- Forms and submission box are on the table outside

- Textbook
 - Was reading the book useful for the lectures?
 - Was the book useful for the homework?

Clickers

- How many of you have purchased a clicker for use in a UA class?
- How many of you have had to purchase more than one type of clicker?
- Could you find cheaper 2nd hand clickers?
- How many of you feel that the expenditure was worthwhile and added to your educational experience?

Extrasolar Planets

PTYS/ASTR 206 – The Golden Age of Planetary Exploration Shane Byrne – shane@lpl.arizona.edu

In this lecture...

- Review how planets form
- Other types of stars
- How we detect extrasolar planets
 - Radial velocity
 - Astrometry
 - Transits
 - Direct imaging!
- Characteristics of extrasolar planets
 - Orbits
 - Atmospheres
 - Densities
- Future missions

The raw material

- Solar systems form from large clouds of gas and dust
 - Giant Molecular clouds

Disk Disk Star -Star Disk Star Star Disk Size of our solar system Figure 8-8b Universe, Eighth Edition © 2008 W. H. Freeman and Company

5

Figure 8-8a Universe, Eighth Edition © 2008 W. H. Freeman and Company

- These disks are a common occurrence
 - Disk material is much hotter and denser than the giant molecular cloud
- Proto-star at center
 - Contraction generates heat
 - Heat and pressure allow nuclear fusion
 - Star switches on and generates its own energy

Chapter 8 Opener Universe, Eighth Edition © 2008 W.H. Freeman and Company

- Large gas giants (like Jupiter) form far from the sun
- Small rocky planets (like Earth) form close to the sun

- Particles suspended in gas
 - Collide and join together to form clumps
 - Grow to 1cm in size

- Particles >1cm in size grow by collisions
 - Decoupled from the gas motions
 - Suffer gas drag
 - Start spiraling into the sun

The weak link in the story goes here.

Getting to kilometer-size before falling into the sun is still an unsolved problem...

- Particles eventually grow to 1km
 - Gas drag becomes irrelevant

1km ~100,000 particles across

- Gravity starts to take over
 - Objects grow quickly
- Giant rocky/ice cores can form where water ice is stable
 - Giant cores can capture large gas envelopes
 - Must do this before the disk dissapates

- We already see plenty of forming stars with gas disks....
- We already see plenty of debris disks
 - What's left after the gas gets stripped away
- But do any of them have planets like ours?

- We have big telescopes.... So what's the problem?
 - Why don't we just take pictures of these planets?
 - Planets aren't dim, we should be able to see them easily...

- It's not the planet that's the problem...
 - It's the nearby star that's blinding us.

© 2007 National Geographic Society. All rights reserved

Comparing the sun to other stars

Pretty mediocre – fortunately for us

© 2008 W. H. Freeman and Company

- When stars burn hydrogen
 - Bigger stars -> higher core pressures -> more energy produced
 - Bigger stars are hotter (and bluer)
 - This is the "main sequence"
- The sun is a "main sequence" star
- Bigger stars burn hydrogen faster
 - Bigger = short-lived
 - Sun lasts ~10 billion years
 - We're about half-way through

- Implications for extra-solar planets and life
 - Big stars too short-lived and too hot!
 - Very Small stars Don't produce enough energy
 - Solar type stars are the best

- What stars have planets?
 - Not all stars have the same composition
 - All roughly ³/₄ hydrogen, ¹/₄ helium
 - With a few percent other stuff
 - It's the 'other stuff' that builds planets!

Stars with more impurities are more likely to have planets

 $10 \,\mu m = 0.01 \,mm$

Figure 8-9 Universe, Eighth Edition © 2008 W.H.Freeman and Company

Planet Occurrence Depends on Iron in Stars

Figure 8-1 Universe, Eighth Edition © 2008 W. H. Freeman and Company

Detecting Extrasolar Planets

- Despite the difficulties of seeing extrasolar planets we know of hundreds of them
 - 347 discoveries so far
 - Almost all discovered in the last 10 years or so
 - Number known doubles every ~3 years

- What's the center of mass?
 - Objects orbit around the center of Mass
 - Planets don't strictly orbit the Sun
 - They orbit a point in space close to the center of the Sun

Center of mass of a spherical body is in the center

Center of mass of a group of particles is in the center

• Center of mass for two bodies is closer to the bigger body

- The star and the planet move
 - Planet has a large orbit
 - Star has a small orbit
- We can look for the star wobbling like this

- When we see the system face-on
 - The star moves in a small circle
 - We can look for this wobble directly
 - Size of the wobble is biggest when
 - The planet is big
 - The planet's orbit is big

Technique called ASTROMETRY

Astrometry limits

- When we see the system edge on the motion isn't as obvious
- We can detect this motion in other ways
 - The star moves towards us and away from us
 - Causes light emitted to be blueshifted or red-shifted
 - Doppler effect
- This is called the RADIAL VELOCITY technique

gamma

 10^{-12}

rays

 10^{-14}

shortwave

 10^{2}

 10^{4}

- Doppler shift depends on relative motion of the sourced and the observer
 - Only motion from toward and away from the observer matters

infrared

10⁻⁶ 10⁻⁴ - 10⁻²

rays

Visible Light

radar

FM TV

Side to side motion doesn't produce this effect

ultraviolet

rays

10 -10 -10 *

X-rays

- How fast do the stars move?
 - Much slower than the planet tugging them
 - Depends on how big the planet is...
 - Depends on the speed of the planet
 - How far from the star it is
 - Closer planets move faster and are easier to detect

- For Jupiter around the sun
 - ▶ M_J / M_{*} = 0.001
 - Velocity of Jupiter is ~13 km s⁻¹
 - So the sun moves 0.013 km s⁻¹ or 13 m s⁻¹

For Earth around the sun

- M_E / M_{*} = 0.000001
- Velocity of Earth is ~27km s⁻¹
- So the sun moves 0.000027 km s⁻¹ or 0.027 m s⁻¹
- Just 2.7 centimeters per second!!

It's <u>much</u> easier to detect big planets that move fast (close to their star)

- What's the best we can do today?
- We can detect radial velocities of ~3 ms⁻¹
 - Jupiter moves the Sun at 13 m s⁻¹
 - Earth movers the Sun at 0.027 m s⁻¹
 - We can detect Jupiter-like planet but not Earth-like planets
- We've been watching stars like this since the early 1990s
 - Jupiter takes ~10 years to orbit the Sun
 - ..but Uranus takes 84 years!!
 - We need patience to detect these distant objects

- Another complication...
 - We rarely see other solar systems exactly edge on
 - What we estimate is really M*sin(i)
 - So we get a minimum mass for the planet

Motion in this direction doesn't cause a doppler shift

Motion in this direction causes a doppler shift

- The same system can have both
 - Astrometric wobble
 - Doppler shifts from radial velocity

Figure 8-16 Universe, Eighth Edition © 2008 W.H. Freeman and Company

- The transit technique is new and promising
 - Gives information we never had before the planet's size
 - ...but not it's mass, we still use radial velocities for that
 - Can also give us compositional info as starlight passes though the planets atmosphere

Figure 8-18 Universe, Eighth Edition © 2008 W. H. Freeman and Company

- Planets can now also be directly imaged
 - We get an idea of the planet's size and composition

Properties of these planets

Figure 8-17 part 1 Universe, Eighth Edition © 2008 W.H. Freeman and Company

- The transits give us planetary size so we can calculate their densities
 - Most of these planets are Jupiter sized
 - Most have 0.5-2 Jupiter masses
 - Densities from ~600 to ~2500 kg m⁻³

- Some atmospheric spectra available
 - E.g. HD209458b
 - Noisy and low-resolution so far
 - Silicates in the atmosphere
 - Little water

- How did things get this way?
 - Gas giant planets need to start from big cores
 - Big cores need to from far from the star where water ice is abundant
 - Yet these planets are right up next to their stars

- Gas giant planets likely migrated due to interactions with the disk
 - Planet causes density waves to appear in the disk which dissipate energy
 - As the planet looses energy it spirals inward
 - Disks have inner holes so planets tend to get parked near this inner edge

Future missions

Kepler will look for transits at 100,000 nearby stars

- Gaia will use astrometry and look at a billion stars
 - Launched in 12/2011

In this lecture...

• How we detect extrasolar planets

- Radial velocity
 - Good for planets close to their stars
- Astrometry
 - Good for planets far from their stars
- Transits
 - Gives size and some composition
- Direct imaging!
- Characteristics of extrasolar planets
 - Orbits
 - Atmospheres
 - Densities

Next: Origin of life here and elsewhere

- Reading
 - Chapter 8-7 to revise this lecture
 - Chapter 28 for next (and final) lecture