

- Announcements
 - Use Priyanka Sharma as TA
 - psharma@lpl.arizona.edu
 - Office hours: Tuesday 10.30am-12.30pm

Room 316, Kuiper Building

Mars – Early History

PTYS/ASTR 206 – The Golden Age of Planetary Exploration

Shane Byrne – shane@lpl.arizona.edu

In this lecture...

- Introduction
 - Comparisons to Earth
 - Seasons on Mars
 - Early ideas
- Spacecraft exploration
 - Not Earth-like after all
 - Familiar landforms
- Early Martian History
 - Crustal dichotomy
 - Large impacts and volcanic activity
 - Magnetic fields
 - Valley networks

Introduction

- One of the larger terrestrial planets
 - Intermediate between Mercury/Moon and Earth/Venus

Chapter 11 Opener Universe, Eighth Edition © 2008 W. H. Freeman and Company

- Comparison to the Earth
 - A mini-Earth?

	Mars	14 2 Sta
Size	53% of the Earth	
Mass	11% of the Earth	Roughly The
Density	3934 kg m ⁻³ (Earth/Venus ~ 5500 kg m ⁻³)	Internal Structure
Solar Distance	1.52 AU	
Year	687 days, 1.9 Earth years	Days and
Obliquity	25° (Earth = 23½°)	Seasons similar to the
Rotation period	24hrs 37 minutes (Earth = 1 day)	Earth
Surface	Earth-like rocks and landforms Some parts heavily cratered	Similar Surface

- Comparison with the Earth II
 - How much solar radiation does Mars receive?

Remember: Solar power = 1367 W m⁻² / R²

Mars is 1.52 AU from the Sun: R=1.52

So: Solar power = 1367 W m⁻² / 1.52²

Solar power at Mars is 592 W m⁻² (about half that of Earth)

• Mars is a much colder place...

- Harder for liquid water (& life) to exist
- Not always the case though... Early Mars was quite different

• Differences from the Earth

Mars			
Atmosphere	Mostly CO ₂ (Earth = Mostly nitrogen)		
Pressure	0.006 bars (Earth = 1 bar)		
Surface Temp.	200K (Earth = 300 K)		
Clouds	Water ice and dust (Earth = water vapor)		
Magnetic field	None (Earth has a strong field)		
Seasonal ice	Carbon dioxide (Earth has water frost)		

Very Different Atmosphere

Seasons on Mars

- Early telescopic observations showed
 - Seasonally advancing and retreating ice caps
 - Mars obliquity is similar to the Earth
 - ◆ 25° vs. 23½°

- Mars has similar seasons to Earth
- Mars has similar day/night cycles
- Mars has seasonal ice that comes and goes
- Mars has changing patterns on the surface
 - Seasonal vegetation growth?
 - Unfortunately not...

- Early telescopic maps were pretty crude...
 - Giovanni Schiaparelli made maps with 'channels' (Canali in Italian)

- Percival Lowell made many telescopic observations of Mars
 - Translated Canali as Canals
 - Popularized a vision of Mars that was inhabited by intelligent life
 - Changing marks of the surface were vegetation
 - "Canals" were transporting water from the polar caps to the equator

- Mariner 4 was the first spacecraft to visit Mars... July 1965
 - Flyby mission -

- What did Mariner 4 see?
 - First planetary (non-lunar) mission to carry a camera
 - Craters
 - Not good for life
 - A very thin atmosphere
 - Not good for life
 - No protective magnetic field
 - Not good for life
 - Looked pretty much like the Moon
 - Disappointing...
 - Dry, cold, dead....

• The best-explored planet! (apart from Earth)

- Subsequent spacecraft saw MUCH more interesting stuff
 - Fluvial channels several billion years old

- Giant volcanoes
 - Lava flows up to ~1Myr old

• The giant Valles Marineris

• Polar ice caps

• The best-explored planet! (apart from Earth)

- A Mars Curse?
- Earth vs. Mars
 - Almost 50 years of exploration
 - 40 attempts to explore Mars
 - Mars in the lead... until now...

Phoenix EDL Movie

Opportunity

"Cape Verde

"Duck Bay"

- Three geologic periods
 - Noachian
 4.1 3.93 Ga
 - Hesperian 3.93 3.1 Ga
 - Amazonian 3.10 0.0 Ga
- Early Mars corresponds to the Noachian geologic period
 - Starts with the Hellas basin impact

Surface history of Mars is available throughout the past 4.5 Gyr

Surfaces of Earth and Venus record only recent history

Surfaces of Moon and Mercury record only ancient history

- Crystallization age of ALH84001
 - 4.5 Ga a very old rock
 - Indicates stable crust already existed
 - Shock heating event at 3.9Ga
- Mars accretion was fast
 - The element Tungsten usually goes into the core in molten planets
 - Extra Tungsten produced by radioactive decay in the crust after core forms
 - Amount of this extra Tungsten dates the core formation
 - Implies martian core formation 13±2 Myr after earliest solar system solids formed

- Many buried impact basins
 - Northern lowlands look like the southern highlands after all
- Forming the dichotomy
 - One Giant impact?
 - Many not-so-giant impacts?
 - Degree-1 convection?

- Mars had a liquid metal core
 - Cools off faster than Earth due to smaller size
 - Once the core froze there was no more magnetic field

C Addison-Wesley Longman

- The old magnetic field is still preserved in the oldest rocks
 - No magnetic field around large impact basins
 - They formed after the iron core froze

Connerney, J. E. P. et al., (2005) Proc. Natl. Acad. Sci. USA, 102, No. 42, 14970-14975.

- The Tharsis volcanic bulge formed
 - Thick (>8 kilometers thick) sequence of volcanic rocks
 - Large volcanoes built on top of this bulge later
 - Outgassing of a lot of volcanic gas can change the climate

- Tharsis is huge and controls the shape of the planet
 - When water runs downhill on Mars the direction is partly set by the existence of Tharsis
 - Sets the timing of ancient valley networks
 - i.e. the valleys must have come after the Tharsis bulge was created

33

- Mars had a warmer climate then
 - Rainfall is a possibility not believed by everybody
 - Groundwater can explain a lot of the ancient fluvial features
 - Explaining the warmer climate is a problem due to the faint young sun.
 - Lots of CO₂ from Tharsis might explain this with a greenhouse effect
- So what happened to Mars...
 - Water dissolves atmospheric CO₂
 - Weathers rocks
 - No plate tectonics means CO₂ is not recycled and stays in the rocks
 - Greenhouse effect dies off
 - Water is broken up into H⁺ and O⁻⁻ and slowly lost to space

34

35

- There's just one problem
 - We can't find these CO₂ bearing rocks (carbonates)
 - Some recent progress on this...
 - Spectral evidence of carbonates discovered and announced 2 months ago

In this lecture...

- Introduction
 - Comparisons to Earth
 - Seasons on Mars
 - Early ideas
- Spacecraft exploration
 - Not Earth-like after all
 - Familiar landforms
- Early Martian History
 - Crustal dichotomy
 - Large impacts and volcanic activity
 - Magnetic fields
 - Valley networks

Next: Mars - Early History

- Reading
 - Chapter 11-Mars sections to revise this lecture
 - Chapter 11-Mars sections for next lecture