
PTYS 411 – Geology and Geophysics of the Solar System 
Homework #2 – Assigned 2/2, due 2/16 

 
 
1) The subsidence of lunar basins under the weight of the mare basalts has 

generated thrust faults near their center.  Imagine a circular plate, thickness H, 
has been downwarped a distance d. Its top surface is compressed while the 
material at a depth of H/2 feels zero strain (see cartoon below).  

 
Show that the circumferential surface stresses (parallel to the rim) at point X 
(half way between center and rim) are given by: 
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L2  where E is Young’s Modulus (you can look this up) 

 
Imagine a center of curvature above the mare with a radius r (distance to the neutral 
sheet in the mare center). By pythagorous: 
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The strain is the change in the circumference of the horizontal circle passing through X: 
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substitute for r : ε =
4dH
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where θ is the angle between the lines connecting the center of curvature to the center 
of the mare and to the point X.  The stress is Young’s modulus times the strain: 
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Try this for one of the mare where L is ~300km, H is ~50km (lithosphere at the 
time of loading) and d is ~2km.  Is the resultant stress large enough to 
overcome typical rock strengths?  (Assume d << L in this problem) 
 

A typical Young’s modulus for basalt is 70 GPa. Substituting these numbers into the 
approximation above yields stresses of 310 MPa. The compressive strength of basalt is 
on the order of 108 Pa so this stress should be enough to fault the mare. 

 
If three thrust faults form with a typical dip then how much displacement will 
each fault experience? 
 

For this we need to know the actual amount of shrinkage, not just the strain. The 
original radius of the circle passing through X of the mare is rθ. So the circumference 
(C) is 2π rθ and the change in circumference (ΔC) is this times the strain, substituting for 
r and ε gives ΔC=πHθ.  We know that sin(2θ) is L/2r, which is 4d/L.  d/L is small so 
sin(2θ) is ~2θ.  So θ~2d/L and ΔC=2πdH/L.  
 
If there are three faults then each on has a horizontal displacement of ΔC/3.  If we 
assume a typical fault dip of about 30 degrees then each one has a total displacement 
of ΔC/3/cos(30).  Plugging in the numbers gives fault displacements of ~800m. 



2) Moments of inertia. A lot can be discovered from a planet from its moment of 
inertia.  Moment of inertia depends on the geometry of the object sphere vs 
empty shell vs point etc… but in general is given by k M R2, where M is the 
mass, R is the radius and k is a constant e.g. for a point of mass M orbiting at 
distance R k=1, for a rotating thin hollow sphere M is the mass of the shell, R 
is its radius and k = 2/3. 
 
Use the moment of inertia of the thin hollow shell mentioned above to show 
that the moment of inertia of a homogeneous solid (and spherical) planet is 
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The moment of inertia of a thin hollow shell is given by: 2
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construct the moment of inertia of a solid sphere (mass MP) by adding together a lot of 
thin shells (mass Δm, radius R, thickness ΔR). 
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Show that for a differentiated planet (radius Rp with density ρc in a core of 
radius Rc and density ρm in the mantle surrounding the core) the moment of 
inertia is: 
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RP
.  The derivation isn’t that bad. Break 

the previous integral into two parts. 
 

As before, we add up the moment of inertia from spherical shells via an integral, but 
now we have two different values of density for different ranges of R so we split the 
integral into two parts. 
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To finish the problem we need an expression for the ratio of the mantle density (ρm) and 
the mean density (ρ). The mean density is given by the volume-weighted average: 
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Substituting this back into our expression for I, we find: 
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Assume that the core is twice as dense as the mantle.  Plot the value of the 

geometry-dependant constant ⎥
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In the case where the core is twice as dense as the mantle then c=1. 



 
 
Mars has a moment of inertia of 0.3662 MR2.  Use your plot to find x, and by 
extension the core size on Mars (the real value core radius has been estimated 
at ~0.48 RP)? 
 

As can be seen from the above plot the two possible solutions (dashed lines) for the 
Martian moment of inertia at x=0.503 and x=0.892. Leading to core sizes of 0.503 Rp= 
1708 km and 0.892 Rp= 3029 km. 
Although either of these solutions could explain the moment of inertia each one implies 
a very different planetary mass when you assume sensible values for density of the 
core and mantle. 
Working backwards, you can use one of the values of x that we calculated along with 
the known total mass of the planet (and still using the assumption that c=1) to get the 
values of density for the core and mantle.  These will either be sensible or not 
depending on whether you picked the right solution for x. 

 
There are two solutions. Although it’s clear which is the correct one, how 
would you distinguish between them if it wasn’t so clear? Give a hand-waving 
explanation as to why are there are two solutions? 

 
An undifferentiated body with no core has a moment of inertia of 0.4. As the body 
becomes progressively more differentiated the moment of inertia is reduced.  However, 
as the core gets larger and approaches the total size of the object the moment of inertia 
rises again, as the body is becoming more homogeneous. When the core occupies the 
entire body you’re back where you started from with a value of 0.4.  Moment of inertia 
only measures the central concentration of mass not the amount of mass so a case with 
zero core has the same value as a case with 100% core as they’re both homogeneous 
objects. 
 



There is a minimum value of moment of inertia with an associated core size. For the 
higher values of moment of inertia you could have a core that is larger or smaller than 
this ‘special’ size. 

 
The Moon has a moment of inertia of 0.3931 MR2.  Use your plot to find x, and 
by extension the lunar core size? 

 
Using the plot above (dot-dash lines) we see that X = 0.265. The lunar core is 
0.265*Rmoon= 461km. 
 

If Mercury’s core radius is 0.72 of its total radius and its moment of inertia is 
0.33 MR2 then what is the density ratio between its core and mantle? 

 
Rearranging the above expression for ‘I’ of a differentiated planet: 
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If x=0.72 then c=1.53 so the core is 2.53 times as dense as the mantle. 
 

Titan’s mean density is 1880 kg m-3, assume that it’s made up only of different 
phases of water (~1000 kg m-3) and rock (~3300 kg m-3) and that it’s fully 
differentiated. What moment of inertia factor do you expect Titan to have?   
Cassini tracking data published last year has shown this value to be 0.34.  
Compare this number to what you expected from the above calculation. What 
do we learn about Titan from this comparison? 
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Given the densities quoted in the question this fraction is 0.38. We’re assuming that Titan is fully 
differentiated so this rocky material should be fully concentrated in a core.  The size of the core 
as a fraction of the planetary radius is the cube root of this volume fraction i.e. the rocky core has 
a radius 0.726 times that of Titan. 
Using x=0.726 and c=2.3 in the above equations implies that I = 0.3114 MR2 
Titan’s moment of inertia factor turns out to be 0.34, indicating that its core is not differentiated 
or that the core is made up of low-density hydrated silicates. 



3) Io’s mountains 
We discussed in class the maximum 
shear stress generated by a surface 
load is just a fraction (usually about a 
third to a half) of the peak load itself. 
For example, the rectangular block 
mountain and stress contours shown 
schematically here generates a peak 
shear stress in the subsurface of 0.352 
ρgh at a depth of 0.865w (w=mountain 
width which we’ll assume to be equal 
to h for now) (Melosh 2011).  For the 
mountain to be supported then this 
stress must be less than the typical 
strength of rocks (~100 MPa). 

 

Show that the maximum topography than can be supported like this is: 
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Where 𝝆  𝝆𝒄 are the planet’s mean density and crustal density respectively and 
𝝈𝒚 is the strength of rock.   
 

The shear strength of the rock must be more than the peak shear stress (0.352 ρcgh) for 
the mountain to be supported.  For the highest possible mountain then these quantities 
are just equal. 

𝝈𝒚 = 0.352𝜌!𝑔ℎ 
Gravitational acceleration (g) depends on the mass and size of the planet i.e. 𝒈 = !"

!!
 

Combining and rearranging: 
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Replace the mass of the planet (M) with the volume times the mean density (𝝆) 
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In class we discussed how well (or not) this works for the terrestrial planets.  
Using the above relationship, how high are the highest mountains on Jupiter’s 
moon Io predicted to be?  (crustal density is ~3000 Kg m-3) 

 
Plugging in properties for Io i.e. 𝜌 3530 Kg m-3, Rplanet 1821 Km and 𝜎! of 100 Mpa. 
We find that the predicted height of mountains on Io is 54.4 Km. 
 

Io has prodigious amounts of volcanic activity, but also possesses non-
volcanic mountains that appear to be tilted crustal blocks. In reality, these 
mountains top out at only ~17km.  So something else is limiting their height. 
 
Io’s average heat flux is a whopping 2.5 W/m2 (Earth’s is a comparatively 
measly 0.08 W/m2), but most of that comes though local areas of volcanic 
activity.  In general, only a few percent (let’s say about 0.1 W/m2) is conducted 
through the lithosphere.  When rocks get to about half their melting 
temperature then they stop being able to support elastic stresses for long 
periods.   
 
With this info, and the above diagram, in mind, how high can mountains on Io 
get?  (Thermal conductivity is about 3 Wm/K, rock melts at ~1200K and Io’s 
surface temperature is ~100K.) 

 
The above figure tells us that most of the elastic stress is supported at a depth of 0.865 
times the width of the mountain (assumed to be close to the height of the mountain 
here).  Bigger mountains have stress supported at greater depths, but if these deep 
rocks are too warm (> Tm/2, where Tm is the melting temperature) then they stop 
behaving elastically and can’t support the mountain. 
 
With the conductivity (k) and heat flux (Q) supplied above we can estimate when the 
temperature reaches 600K (Tm/2).  Heat flux is given by:   𝑄 = 𝑘 𝑇! − 𝑇!"#$%&' 𝑧 
Rearranging for z:    𝑧 = 𝑘 𝑇! − 𝑇!"#$%&' 𝑄 and substituting in values from the question 
then z = 15km. 
 
If this maximum depth of elastic behavior is roughly equal to the depth at which the 
highest mountains (height h) are supported then: z =0.865*h or h = 17.3km. Not that far 
off! 
 

If Io’s mantle has a density of 3300 Kg m-3 then how deep of a crustal root 
would be required to support a 17km high mountain through Airy Isostasy?  
Knowing what you now know about Io’s internal temperatures is this a 
reasonable way to support these mountains? 

 
If mountains on Io are floating because they have crustal roots that displace mantle 
material then we can balance the weight of the mountain with the buoyancy force on the 
root per unit area. 
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If h is 17km and the crustal and mantle densities are 3000 and 3300 kg m-3 respectively 
then the depth of the root must be 170km (in addition to whatever the average crustal 
thickness is). 
 
Airy Isostasy is therefore very inefficient on Io because the crust/mantle density contrast 
is small.  We’ve seen in the last question that rocks reach half their melting temperature 
on Io at depths of only ~15km. Extrapolating this further downwards would imply 
reaching the melting temperature at depths of only about 33km. So maintaining a 
coherent crust root to depths > 170km would be impossible. 
 
In summary, we looked at a few options for supporting Io’s 17km high mountains.  
Support by strength alone is limited by the very thin elastic lithosphere on Io. So even 
though gravity there is low, mountains cannot reach their full potential height.  Similarly 
support by Isostasy seems unlikely, as distinct crustal roots are unlikely to survive to the 
great depths needed to support these mountains. 
Support by material strength where the depth of support is limited to be within the 
elastic lithosphere provides the best explanation. 
 
 
  



4) If roughly 10 major basins (>900 km in diameter) formed on the Moon during late 
heavy bombardment. How many craters greater than 1km in size formed during this 
period?  

 
Three separate power laws describe the cumulative number of craters above a certain diameter. 
Each applies over a separate diameter range: 
 
Ncum=C3 D-2.2 for 64 km < D 
Ncum=C2 D-1.8 for 2 km < D< 64km 
Ncum=C1 D-3.8 for   D< 2 km 
 
Adding up the number of craters in each size range. 
 
N(>64km)  =    C3 (64km)-2.2 
N(>2km)-N(>64km) = C2 (2km)-1.8 - C2 (64km)-1.8 
N(>1km)-N(>2km) = C1 (1km)-3.8 - C1 (2km)D-3.8 
 
Since these three power laws intersect at 2km and 64km then many of these terms cancel. The 
total is: C1 (1km)-3.8, or just C1 so long as we work in kilometers. 
 
At D of 64km C3 (64km)-2.2= C2 (64km)-1.8 
So C2 = C3 (64km)-0.4 

At D of 2km C2 (2km)-1.8= C1 (2km)-3.8 
So C1 = C2 (2km)2 = C3 (64km)-0.4(2km)2=0.758 C3 
 
For the largest basins, 10= C3 (900 km)-2.2 
So C3 = 3.15743 x 107 (keeping the distance units as kilometers). 
So C1 = 2.393 x 107 
 
The 10 large basins imply that there are 23.9 million craters greater than 1km. 
 

Derive the gravitationally enhanced cross-section of the Moon: 
 

The body approaches at speed vo from infinity and impacts with velocity of vi. 

 
We need to conserve both energy and angular momentum during this process.  
Energy at distance = energy upon impact: 
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Angular momentum at distance = angular momentum upon impact: 
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Substituting into the energy conservation equation for vi gives: 
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How many hit the Earth during the same late heavy bombardment period? What 
speeds do they hit at? How much extra impact energy did the Earth receive compared 
to the Moon? 

 
The Earth and Moon interact with the same projectile population. We can use the number of 
lunar impacts derived above and the ratio of gravitation cross-sections to find the number of 
objects that hit the Earth. 
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Earth’s escape velocity is 11.19 kms-1, the Moon’s escape velocity is 2.38 km s-1. 
Earth’s radius is 6371km, the Moon’s radius is 1738km. 
So, R = 20.4. The moon experienced 23.9 million impacts so the Earth experienced about 488 
million impacts. 
 



Impact energy scales as velocity squared. From the conservation of angular momentum above we 
see that: 
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We can assume that the projectiles hitting the Earth and the Moon have the same mass 
distribution.  The difference in energy is therefore a factor of 1.52. The difference in the number 
of impacts was a factor of 20.4, so in total the Earth receives about 31 times more impact energy. 
 
The actual impact speeds are given by one of the equations above: 222

escoi vvv +=  
Escape velocity for the Moon and the Earth are 2.38kms-1 and 11.2kms-1 respectively, so the 
impact speeds are 15.19 kms-1 and 18.72 kms-1. 
 

When the velocity is constant like this, does most of the delivered impact energy come 
from the rarer large impacts or the more numerous small ones (and does the same hold 
true for craters less than 1km in size)?  

 
The energy delivered by crater in a certain size range depends on the number of craters and how 
much energy each one takes to form.  The number of craters between diameter D and 2D is 
given by: 
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Energy needed to form a crater size D is proportional to D3 according to Lampson’s law. 
So total energy deposited by craters size D→ 2D is proportional to D3-b. 
If the exponent (3-b) is greater than 0, then larger D’s mean larger amounts of energy. 
If the exponent (3-b) is less than 0, then larger D’s mean smaller amounts of energy. 
 
b is 1.8 or 2.2 for craters 2-64km and >64km respectively. So (3-b) is above zero and larger 
impacts deliver more energy in those diameter ranges. 
b is 3.8 for craters <2km so (3-b) is less that zero and smaller impacts deliver more energy in this 
diameter range. 
 



OPTIONAL EXTRA CREDIT QUESTION BELOW 
 
5) Crater shapes. Simple craters tend 

to be parabolas with h/D ~ 0.2. 
Ejecta blankets decrease in 
thickness according to the distance 
from the crater center cubed.  If 
volume is conserved in the crater 
creation process then derive the 
height of the rim (hr) relative to the 
depth of the crater (h). 

 

 
First, find the volume missing below ground level (Vb). We know the crater bowl is a 
parabola and that the height is h+hr when the radius is D/2. So: 

 
valid for x = 0 to D/2 

when y=h (ground level) then 
 

The volume found in the usual way by adding up concentric cylinders of radius x, 
height y and thickness dx. 

 

The volume above ground level (Va) is slightly trickier in that you need to integrate 
the volume under the remaining part of the parabola (x=xo to x=D/2) and the volume 
beyond the rim separately.  Beyond the rim, the thickness of the ejecta blanket falls 
off with distance from the crater center cubed i.e.

  

 
valid for x = D/2 to ∞ 

 
Again doing the integral (notice that the height used in the first part is [y-h] rather 
than y) gives: 
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If volume is conserved then Va = Vb: 

 

 
The rim height is 1/5 of the crater depth (or 1/6 of the total relief). 
 

 

€ 

Va = 2π x
xo

D 2

∫ y − h( ) dx + 2π x
D 2

∞

∫ yejecta dx

Va = 2π
xo

D 2

∫ h + hr( ) 4
D2

& 

' 
( 

) 

* 
+ x 3 − hx

& 

' 
( 

) 

* 
+ dx +

2πD3hr
8

x−2
D 2

∞

∫ dx

Va = 2π h + hr( ) x
4

D2 −
h
2
x 2

xo

D 2

+
2πD3hr
8

2
D

Va = 2π h + hr( )D
2

16
− 2h D

2

16
−
D2

16
h2

h + hr( )
+
D2

16
2h2

h + hr( )

& 

' 
( 

) 

* 
+ +

πD2h
8

4 hr
h

& 

' 
( 

) 

* 
+ 

Va =
πD2h
8

1+
hr
h

& 

' 
( 

) 

* 
+ − 2 −

h
h + hr( )

+
2h

h + hr( )

& 

' 
( 

) 

* 
+ +

πD2h
8

4 hr
h

& 

' 
( 

) 

* 
+ 

Va =
πD2h
8

5 hr
h
−1+

h
h + hr( )

& 

' 
( 

) 

* 
+ 

€ 

πD2h
8

5 hr
h
−1+

h
h + hr( )

$ 

% 
& 

' 

( 
) =

πD2h
8

h
h + hr( )

5 hr
h
−1= 0

hr
h

=
1
5


