
PTYS 411 - Geology and Geophysics of the Solar System 
Solutions for homework #4  

 
 
 

1) If the core volume decreases by a factor F, then show that the surface 

area of the planet decreases by a factor: ( ) 3
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Assume F is 0.995, how many square kilometers did Mercury loose? 
 
The volume of the planet’s core changes from Vcore to FVcore, causing the surface 
area of the whole planet to change from Sp to XSp, we would like to find X. As all 
the volume change is caused by the change in core size. The change in the 
planets volumes ΔVp = (1-F)Vcore. We can relate volume and surface area of a 
sphere: 
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We’ll make the 1st order approximation that: p
p

p
p S

S
V

V Δ=Δ
δ

δ
 

p

p
pp

p
p

ppp

p

pp
p

R
V

SorS
R

V

RRS
S
V

then
S

Vce

Δ
=ΔΔ=Δ⇒

====

2
2

242

4

42
:

43
:sin

22
1

2
3

π

π

πδ

δ

π  

The change in surface area, ΔSp, is (1-X)Sp so: 
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If F=0.995, (and Rcore/RP = 0.75 for Mercury) then X=0.9986. So Mercury lost 
0.14% of its surface area, which is (Rmercury = 2440km) roughly 105,200 km2. 
 



Mercury’s lithosphere broke along many thrust faults during this episode.  
If each fault is about 500km long and has a displacement of 2km, how many 
faults does Mercury need to accommodate this shrinkage? 
 
If we assume a typical fault dip of about 45 degrees then a displacement of 2km 
causes ~1.4km of surface to be overridden by the thrust sheet.  If the faults are 
500km long then that corresponds to ~700 km2 to be lost. As Mercury lost 
105,200 km2 in total that corresponds to about 150 faults. 
 
This system of global thrust faults is unique to Mercury, yet the other 
terrestrial planets also possess cooling cores. Why don’t we see this 
happen on the Earth, Venus or Mars? The answer is different for each 
body. 
 
Earth: The surface is already split into plates that can slide under each other to 
accommodate any global shrinkage. 
 
Venus: Venus was resurfaced ~700 Myr ago, there hasn’t been much core 
cooling in the meantime so F (and by extension X) is small. 
 
Moon: The lunar core is very small or perhaps non-existent. (Rcore/RP)3 will be 
very small for the Moon and by extension so will X. 
 
Mars:  Mars has a very thick lithosphere so it is harder to generate the thrust 
faults.  It has also been recently argued that the sulfur in the Martian core will 
ensure that it stays completely molten, even until today, so F is very small. 
 



2) Impacts on Venus: Show that the ram pressure equals: atmosphereram vP ρ2≈  
 
The projectile sweeps up atmospheric particles in its path and changes the momentum of 
those particles so that their velocity equals the impactor velocity.  The force needed to 
change their momentum leads to a reactionary force on the impactor.  The resulting 
pressure is the force per unit area and is known as the ram pressure. 
 
The change in the velocity of the atmospheric particles is from 0→v ms-1.  The change in 
momentum is the mass of this material times the velocity change.  A unit area (1 m2) on 
the front of the impactor moves through the atmosphere at a velocity v, so the volume it 
sweeps out in one second is v x 1m2, and the mass it sweeps out is atmospherev ρ . So the 

momentum change every second is: atmosphereatmosphere vvv ρρ 2=× . This is the force per 
unit area, and so the pressure. 
 
 

The pressure variation with height is given as:
( )
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to density. What is the atmospheric surface density and scale height for Venus, 
Earth and Mars. Use temperatures of 750, 270 and 200K and surface pressures 
of 100, 1, 0.01 bars respectively. 

 
Start from the ideal gas law: nRTPV = , where n is number of moles, R is the universal 
gas constant, V is volume and T is temperature. This can be rewritten in terms of the 
number of particles (N) rather than number of moles: 

TkNPV =  
where k is the Boltzmann constant. After some rearrangement: 
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where µATM is the mass of one molecule. So: 
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The molecular mass for atmospheres on Mars and Venus is that of CO2 and on Earth is 
that of N2. Given values for the surface pressure (Ps) and atmospheric temperature, we 
can calculate the scale height (H) and surface atmospheric density (ρs) to be: 
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Mars 0.01 bars 200 K 10.01 km 0.027 kg m-3 

Earth 1 bar 270 K 8.12 km 1.272 kg m-3 
Venus 100 bars 750 K 15.88 km 71.918 kg m-3 



 
If an impactor barely makes it to the surface without fragmentation on Mars, at 
what altitude will it break up if it had hit Venus. 

 
If the impactor falls from rest at infinity it will reach the surface of Mars at 5.03 kms-1.  
The ram pressure at the surface given the surface atmospheric density (calculated above) 
times the impact velocity squared and is 6.83x105 Pa. If the body breaks up at his point 
(and not just because it slammed into the ground at 5 kms-1) then this is the strength of 
the body. 
 
If the same body again falls from rest but instead impacts Venus then the velocity will be 
10.36 kms-1. The ram pressure at the surface given the density calculated above and this 
velocity is given by: 
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When the body breaks up the ram pressure is equal to the strength we already calculated 
so: 
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Alternatively, we could assume the same impact velocity for both planets so it would 
effectively cancel out of the expression for breakup-elevation. In this case, we need to 
find out what elevation the atmosphere on Venus has an equivalent density to that at the 
surface of Mars. 
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One way to recognize meteors is by their fusion crust i.e. the exterior if 
the rock is melted during its passage through the atmosphere.  How hot 
do the gases at the leading edge of the meteor get, just before impact 
into the martian surface? (assume they’re adiabatically compressed). Is 
this hot enough to melt rock? How deep does this thermal disturbance 
penetrate into the meteorite? 

 
We can calculate the temperature of the atmospheric gasses at the leading edge of the 
meteor by assuming they have been adiabatically compressed to the ram pressure. For 
adiabatic compression of an ideal gas: .constPV =γ , where gamma is the ratio of specific 
heats (~7/5) for air. 
 
Combining this with the ideal gas law: 
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T2 and P2 are 200 K and 0.01 bars and P1 is the ram pressure (calculated above as 
6.83x105 Pa).  Both the pressure and ram pressure fall off exponentially with the same 
scale height so the ratio of these surface values should apply to the rest of the atmosphere 
as well.  Inputting these values gives a heated air temperature of 1260 K. Enough to 
barely melt the front face of the meteor; but, there isn’t enough time to conduct much 
heat into the interior so this molten layer is thin. 
 

The thermal disturbance is conducted to a depth 
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Typically (for basalt) k = 2.5 W/m/K, c = 800 J/Kg/K and ρ=3000 kg/m3. 
The time is that taken to traverse the atmosphere, a few seconds. 
So d ~ 2mm i.e. pretty thin. 
 

 



3) Oceanic lithosphere subduction. At some distance from the spreading ridge, 
the lithosphere is 100km thick and the seafloor has subsided by 3km. Assuming the 
uncooled mantle has a density of 3300 Kg m-3 and that the plate is isostatically 
supported everywhere, is this plate ready to be subducted?  

 
The figure below shows a cartoon of this situation (with scale very distorted). 
Isostatic equilibrium implies that the total weight of vertical columns should be the 
same everywhere.  Since everything above the spreading ridge is seawater and 
everything below the lowest portion of the lithosphere is mantle material we need 
only consider material between these two vertical limits when adding up the weight 
of column A (at the spreading center) and column B (at some distance away where 
the lithosphere has subsided 3km). 

 
The weight of the column A material: ( )Lm Tmg +3000ρ  
The weight of the column B material: ( )mggT wLS 3000ρρ +  
Where wSm and ρρρ , are the densities of the mantle, slab and water respectively. 
Equating these gives: 
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Using the values provided, we find Sρ  to be 3369 kg m-3, which is slightly denser 
than the underlying mantle material. So yes, the slab can be subducted. 
 
What's the density ratio between the cooled mantle material now part of the 
lithosphere and the uncooled mantle material? Assume a 5km thick crust with a 
density of 3000 kg m-3. 
 
The slab density is 3369 kg m-3, which is made up of 5km of crust at 3000 kg m-3 and 
95km of cooled mantle material (together forming the 100km thick lithosphere). The 
weighted average can be written as: 
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The density of the cooled mantle material is therefore: 
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The density ratio between the cooled and uncooled mantle material is 1.027. 
 



At the Mariana trench the lithosphere basically takes a right angle turn and 
plunges vertically into the mantle at least 650 km. Right above the subducting 
slab the Marianas Trench has formed.  Calculate how deep you'd expect this 
trench to be. 
 

As before we assume isostatic equilibrium 
and add up mass in two equivalent columns. 
Column A is far from the trench and 
column B runs through the trench and 
subducting lithospheric slab. The 
arrangement is shown in the cartoon on the 
left. 
 
 
 
 
 
 
 

The weight of the column A material: ( ) ( )LsLm TgThkmg ρρ +−+650  
The weight of the column B material: ( ) ghkmg wS ρρ +650  
Where wSm and ρρρ , are the densities of the mantle, slab and water respectively. 
Equating these and rearranging gives: 
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The trench is predicted to be 16.5km deep. 
 
The actual trench-bottom is about 3.5km below the surrounding seafloor what's 
the reason for the discrepancy between your answer and this number? 
 
This prediction far exceeds the observed trench depth, the reason for this is that the 
density of the mantle increases with depth so there is in actuality a larger buoyancy 
force which acts to reduce the trench depth. 
 

  



4) Sand dunes on Triton? (From Chap 9 of Melosh 2011) 
Triton, Neptune’s largest moon, possesses a very thin atmosphere that 
is composed mainly of N2 gas at a chilly 38 K.  Nevertheless, geysers 
spout plumes 8 km high into the atmosphere.  Suppose that loose 
“sand” grains of ice (perhaps from impact ejecta) lie on the surface.  
How fast do the winds of Triton have to blow to just entrain such ice 
grains?  Compute both the minimum friction velocity needed to loft 
these grains and the minimum wind speed 1 meter above the surface.  
Compare this velocity to the speed of sound in Triton’s atmosphere.  
What can you conclude about the probability of finding “sand” dunes 
on Triton when it is be visited by a spacecraft with an imaging system 
capable of resolving such features?  Facts that you may find useful:  
The viscosity of nitrogen gas at 38 K is about 2.2 x 10-6 Pa-s and its 
density at Triton’s atmospheric pressure of 1.5 Pa is 1.3 x 10-4 kg/m3.  
The acceleration of gravity at the surface of Triton is 0.78 m/sec2. 

 

The adjusted weight of a particle is:   
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Equating these at the motion threshold with a constant of proportionality: 
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Experiments show that A ~0.1 for a fully turbulent flow. Using sand sized grains 
of water ice (d=200 microns, ρs=920 kg/m3) on Triton gives: u*T = 3.3 ms-1 
The speed 1m above the surface can be found from the ‘law of the wall’: 
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The parameter zo is usually d/30 for closely packed grains and κ (Von Karman’s 
constant) is ~0.4.  So, for a sandy bed on Triton, when z=1m then u is 98.3 ms-1. 

Sound speed in an ideal gas is given by: 
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c = γ
p
ρ

 

Where γ is the ratio of specific heats and is 7/5 for a diatomic gas. Plugging in the 
numbers reveals than c on Triton is 127ms-1.  So the wind (at z=1m) would need 
to be blowing at a substantial fraction of the speed of sound to mobilize sandy 
material (incidentally, such winds would be blowing at mach-1 32m above the 
surface).  This is an unlikely situation so, sadly, we will probably never see dunes 
on Triton unless it had a denser atmosphere in the past. 
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