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Special Problems in the Estimation of Power-Law 
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Abstract-An increasing number of topographical studies find 
that natural surfaces possess power-law roughness spectra. 
Power-law spectra introduce unique difficulties in the spectral 
estimation process. We describe bow an improper window 
choice allows leakage that yields a spectral estimate that is in- 
sensitive to the spectral slope. In addition, the commonly used 
Fourier-based spectral estimates have higher variances than 
other available estimators. Higher variance is particularly 
problematic when data records are short, as is often the case 
in remote-sensing studies. We show that Capon’s spectral es- 
timator has less variance than Fourier-based estimators and 
measures the spectral slope more accurately. We also show how 
estimates of a 2-D roughness spectrum can be obtained from 
estimates of the 1-D spectrum for the isotropic power-law case. 

I. INTRODUCTION 
PECTRAL analysis is a tool of increasing importance S in the characterization of natural surfaces. One- and 

two-dimensional spectral estimates are useful because they 
allow surface structure to be interpreted as a sum of si- 
nusoidal components with differing wavelengths. A num- 
ber of studies have found that spectra computed from one- 
dimensional surface profiles may be reasonably modeled 
using a power-law spectrum of the form 

S Z ( f )  = c l f l - a  (1) 
over some range of spatial frequencies. S z ( f )  is the power 
spectral density of the surface height random process; it 
has units of meters2/meters-’ or meters2 per unit spatial 
frequency. The spectral exponent /3 indicates the relative 
contribution of different wavelength components. Higher 
values of P indicate that the surface roughness is mostly 
due to low-frequency components, while lower values de- 
note significant high-frequency contributions. b is also 
known as the spectral slope; a power-law spectrum is lin- 
ear with slope -0 when plotted on a log-log scale. The 
roughness amplitude c is a multiplicative factor scaling 
the roughness at all spatial frequencies. Applications of 
power-law spectra include studies of regional topography 
[ 11-[5], rock surfaces [6], seafloor morphology [7]-[ 1 11, 
and other surfaces [ 121, [ 13 J . 

Rough surfaces that have structure over a wide range 

Manuscript received May 29, 1993; revised March 18, 1994. This work 
was supported in part by the National Aeronautics and Space Administra- 
tion under Grant NAGW-2199 and by a shared SIR-C project. 

The authors are with the Department of Electrical Engineering and Com- 
puter Science, University of Michigan, Ann Arbor, MI 48109. 

IEEE Log Number 9402672. 

of spatial scales may also be described using the concepts 
of fractal geometry introduced by Mandelbrot [ 141. Frac- 
tal objects are continuous but not differentiable; the frac- 
tal dimension Df is a real-valued measure of how a line 
(surface) fills a plane (space). For a one-dimensional 
(1-D) surface profile, Df takes on values between 1.0 
(smooth and differentiable) and 2.0 (plane-filling). Two- 
dimensional (2-D) surfaces have Dfbetween 2.0 and 3.0. 
Adler [15] shows that the surface profile created by the 
intersection of a plane and a 2-D fractal surface is itself 
fractal with a fractal dimension equal to that of the 2-D 
surface decreased by one [2]. Random rough fractal sur- 
faces have power-law spectra; Mandelbrot and Van Ness 
[16] and Voss [17] derive the relation between Dfand the 
spectral slope /3 of a 1-D profile of a rough fractal surface: 

Thus, the spectral exponent satisfies 3 > P > 1 for 1 < 

Although synthetic topographies appear most realistic 
with Df = 2.2 [14], [ 171, yielding linear profiles of Df = 
1.2 and P = 2.6, several studies [l] ,  [4], [7], [8] have 
reported measured values of 0 (the hat denotes an esti- 
mate) near 2.0, leading some investigators to suggest that 
spectral slopes of 2.0 are characteristic of natural topog- 
raphy [l]. One explanation for the discrepancy between 
measured f i  and inferred values of P is that spectral anal- 
ysis of nonstationary regions tends to result in f i  near 2.0 
[9], [18]. We show in this paper that leakage in spectral 
estimators may also yield 0 that cluster near 2.0. 

While leakage is a well-known problem of classical 
spectral estimators such as the periodogram, common 
Fourier-based spectral estimators also suffer from high 
variance. The usual remedy is to average spectral esti- 
mates derived from multiple data sets or multiple seg- 
ments of a long data set. This is not always possible: in 
remote-sensing studies, surface profiles are often only one 
of many “ground-truth” parameters to be collected. As a 
result, investigators may be faced with the problem of es- 
timating the surface spectrum using a limited data set. In 

D f <  2. 

‘In the case of 1-D surface profiles, we find that a typical record consists 
of at most 500 points; 2-D profiles are even shorter, rarely exceeding 50 
X 50 points. Numbers of this magnitude are considered small from a sta- 
tistical inference viewpoint, where samples of thousands or hundreds of 
thousands of points are more common. 
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this paper, we describe a spectral estimator that reduces 
the leakage problem and predicts c and /3 with reduced 
variance in the case of short data runs. 

11. SPECTRAL ESTIMATES FROM LINEAR PROFILES 
Fourier-based spectral estimators (e.g., the periodo- 

gram) render an estimate of the power spectral density 
whose expectation or mean value is a convolution of the 
spectrum of the sampled profile and the Fourier transform 
of a window function introduced by the finite extent of 
the sample profile. Various window functions are used; 
common windows include rectangular, triangular, and 
Hanning windows. The selection of a particular window 
is based on a trade-off between spectral resolution and 
spectral leakage. 

Spectral leakage refers to the inaccuracy of a spectral 
estimate at a given frequency due to convolution with the 
transformed window; Le., spectral power “leaks” from 
nearby frequencies according to the shape of the trans- 
formed window. We show spectral domain window func- 
tions corresponding to a periodogram and a modified pe- 
riodogram with Hanning window in Fig. l .  At each point 
or frequency at which the spectrum is to be estimated, the 
true spectrum (the dashed line in Fig. 1) is weighted by 
the window function centered on that frequency and then 
averaged over frequency. Contributions from frequencies 
other than the frequency of interest constitute spectral 
leakage. We can reduce spectral leakage by choosing an 
estimator whose window has sidelobes that decay quickly 
(such as WH in Fig. l), but such a window will have a 
broader main lobe, decreasing the spectral resolution. (See 
[19] for a discussion.) In the power-law case, leakage 
from the large peak at low spatial frequencies affects the 
estimate at upper spatial frequencies (making the slope 
shallower) unless a window function with very low side- 
lobe levels is selected. We now show this result for the 
case of 1-D spectral estimates based on 1-D surface pro- 
files. 

Spectral estimates derived from sampled data suffer 
from aliasing if the sampled process has spectral com- 
ponents at frequencies greater than the Nyquist frequency 
f c ,  

1 
2A (3) f = -  

where A is the sampling interval. In the sections that fol- 
low, we will assume that aliasing is not present. Simu- 
lated data sets will be bandlimited to prevent aliasing. 
Modifications due to aliasing will be presented in a later 
section. 

A. Fourier-Based Estimators 
Consider a one-dimensional surface Z ( x ) ,  where Z, the 

surface height, is a single-valued function (Le., there are 
no overhangs). Suppose that the surface height has been 
measured at N locations xi ( i  = 0 ,  , N - l ) ,  which - 

N 
E 
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0.001 0.01 0.1 
normalized spatial frequency, dimensionless 

Fig. 1. Spectral domain window functions W, ( IO)  for the periodogram 
and W, (13) for the modified periodogram with Hanning window, both 
with N = 256. The convolution of the window function with the true spec- 
trum (e.g., the power-law spectrum shown as the dashed line) may result 
in a spectral bias (an inaccuracy in the mean value of the estimate). 

are spaced at intervals A. The periodogram spectral esti- 
mator PPER (fa) for the sampled surface height is given by 
Kay [20]: 

1 N-‘ 
PPER(fA> = I n = O  z[xnl exp (-j2rfAn)[. (4) 

The frequency is written fA as a reminder that (4) is given 
in terms of a normalized frequency fA, where 

f A  =fA (5) 
andf, satisfies -3 I fA 5 ). (Most spectral estimation 
texts use normalized frequency; we will follow this con- 
vention until a later section when we compare spectra ob- 
tained from sampled profiles with differing A.) 

While the periodogram may be evaluated for any 1 fAl 

less than ) (the normalized Nyquist frequency), it is often 
calculated using a fast Fourier transform (FFT) and con- 
sequently is evaluated only at discrete frequencies fA; = 
i/N, where i = -N/2, - , -1, 0, 1, - - - , N/2. To 
evaluate the periodogram using an FFT at additional fre- 
quencies, we can “zero-pad” the original data series to 
length M by adding M - N zeros to the end. The period- 
ogram will then be evaluated at frequencies fAj = i / M .  
Most FFT algorithms require that N be an integer power 
of two. Series for which N is not an integer power of two 
must be zero-padded up to the next higher power of two. 

The periodogram is an unreliable estimator of the power 
spectral density because it has a variance that is equal to 
the square of its expected value, independent of N [20]. 
The usual practice in the field of spectral estimation is to 
average multiple periodograms to reduce the variance, but 
this may not be possible if the quantity of data is limited.2 
We show later in this section that PPER is a poor estimator 
in the power-law case even if the variance problem were 
absent. 

’For example, suppose the data record is 1000 points long. To reduce 
the variance by a factor of eight, we can divide the data record into eight 
segments of length 125, calculate eight spectral estimates, and average the 
results. The bias of the estimate will be increased (due to the broader main 
and side lobes of the window), and the reduction in variance may be less 
than eightfold if the segments are not uncorrelated. If the entire data record 
has only 125 points, this procedure is not useful. 
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A modified periodogram PHAN (fa) may be obtained by 
multiplying the data series by a Hanning window before 
calculating the spectral estimate: 

2 
1 N-' 

&AN(fA) = I 5o Z[x,l W H b I  exp (-j2afAn) 1 (6) 

where the Hanning window 

wff[n] = - 2 l [  1 - cos (,2""1)] - (7) 

replaces the rectangular window (wR[n] = 1) implicit in 
(4), and an extra normalization factor is introduced: 

. N - 1  

(Equation (6) follows the formulation of Welch [21] using 
a single data segment.) The transform of the Hanning 
window wH[n] has sidelobes that are lower and a main 
lobe that is roughly twice as wide as that of the transform 
of a rectangular window wR[n] of the same width. Con- 
volution with a transformed Hanning window results in 
less leakage from low spatial frequencies (because the 
sidelobes are smaller) at the cost of decreased spectral res- 
olution (smoothing due to the wider main lobe). We must 
consider the smoothness of the spectrum and how quickly 
it rolls off and then decide whether the leakage reduction 
is worth the loss in resolution. In the power-law case, 
reducing the leakage seems more important. 

We now examine the expected values of these two es- 
timators for a power-law surface spectrum. The expecta- 
tion of the periodogram is given by [20] 

112 

E[PPER(fA)l = W T ( f A  - E)SZA(E) d'! (9) -112 

where W'd fA) is the transform of a triangular window: 

and &A( fa) is the normalized form of the true power spec- 
tral density of Z(x) chosen such that s SzA(fA) dfA = 
s SAf 1 df: 

1 
A 

= - cf -0 

= ~6 - ~ ( f ~ 1 - 8  

szA(fA) = ~ A f i ' .  (1 1) 
The expected value of the modified periodogram esti- 

mator PHAN has a form similar to (9) [23, p. 5531: 
112 

E[PIiAN(fA)l = 1 W H ( f A  - O S Z A ( t )  d5 (12) 
-112 

8=2.0 - 832.4 
8 = 2.0, no zero-padding 

0.001 0.01 0.1 
normalized spatial frequency, dimensionless 

Fig. 2 .  Expected value of t!!e periodogram spectral estimator for power- 
law surfaces with 0 = 2 . 0  and 2 . 4  and cb = 1.0 . The estimates are 
based on 256-point profiles that were zero-padded to 16 384 points so that 
the periodogram would be evaluated at many frequencies. Solid dots indi- 
cate the expected values of the periodogram when evaluated without zero- 
padding. 

where 

and U is given by (8). 
To show the performance of these Fourier-based esti- 

mators, we calculate their expected values using (9) and 
(12). We avoid the singularity at the low end of a pure 
power-law spectrum by modeling the exact surface spec- 
trum as a Rayleigh function at low spatial frequencies: 

(ala') I fAl exp (-fi/[2u21), 

0, l f A l  > i (17) 
where the parameters a and u are chosen by enforcing the 
continuity of SzA and its first derivative at I f A l  = O.OOO1. 

Fig. 2 shows the expected value of the periodogram 
spectral estimator calculated from theoretical spectra with 
spectral exponents of 2.0 and 2.4. The oscillatory behav- 
ior is due to the sidelobes of W T ( f A ) .  These oscillations 
are not visible if the periodogram is evaluated only at fre- 
quenciesh = i /N  (i.e., without zero-padding) as indicated 
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0.01 0.1 
normalized spatial frequency, dimensionless 

Fig. 3. Expected value of ppER for five 256-point power-law profiles eval- 
uated at frequencies corresponding to the case of no zero-padding. 

in the figure. Since it is difficult to fit power-law functions 
to such oscillatory estimates, we sampled the expectations 
of periodograms of surfaces with five different spectral 
exponents at frequencies corresponding to the case of no 
zero-padding (Figure 3).3 These curves may be compared 
to the exact spectra in Figure 4.4 While the exact spectra 
vary in slope, the periodogram estimates are insensitive 
to the slope for several values of P .  Fitting power-law 
functions to the linear portions of these estimate expec- 
tations (fa < 0.2), we see (Table I) that the estimated 
spectral exponent B clusters near 2.0 for 2 < P < 3.5 
These values of P correspond to fractal dimensions that 
are typical for natural terrains ( 1 .O- 1 .5 for profiles, 2.0- 
2.5 for surfaces). 

Slope insensitivity is not a problem with P H A N ( f A ) ,  
whose expected value is shown for various in Fig. 5 .  
The expected values of these estimates closely approxi- 
mate the exact values for frequencies at which the main 

3We emphasize that Fig. 3 shows expected values, E[ppER(f)], (i.e., 
mean values) of the periodogram estimator, calculated using (9) at fre- 
quencies corresponding to the case of no zero-padding for random profiles 
Z(x) having power-law spectra given by (17) with five different values of 
0. Plots of the estimator ppER itself would show wide variance and depar- 
tures from linearity (similar to the estimates shown in Fig. 8) and would 
vary for different realizations of the random process, i.e., for different sam- 
ples of a given surface. 

The expected values of the estimator appear linear at the low-frequency 
end because we have assumed in (17) that the true surface spectrum is 
power-law (with linear slope) down to a frequency off, = 0.0001-a fre- 
quency too low to be accurately measured by the sampled profile segment. 
We used this assumption because surface profiles are often too short to 
show very long wavelength roughness components. (This was certainly true 
for our field work.) 

4The expected values of the periodogram estimator in Fig. 3 have a higher 
total energy level than the corresponding exact spectra in Fig. 4 due to the 
spectral leakage that is also responsible for the slope insensitivity. Remem- 
ber that E[PPE,J is the convolution of the true spectrum SzA with the trans- 
form of a window function introduced by the finite surface sample [W, in 
(9)]. If the estimator were perfect, W, would be a delta function, and the 
estimate at frequency f would reflect only power in the true spectrum at 
that frequency. In the periodogram case, however, W, is given by ( IO)  (a 
sjnc' function), so power from many frequencies above and belowfaffect 
PpER(f). Leakage from lower frequencies is particularly significant in the 
power-law case. 

5For a given single periodogram, B may indeed take values between 2.0 
and 3.0, due to the variance of the periodogram. Long data records do not 
reduce this variance; the variance is independent of N (see [20, p. 4221). 
One may reduce the variance by segmenting the long data record as de- 
scribed previously, but this process will lead to the expected values shown 
in Fig. 3. Sampling pPER at frequencies other thanf,, = i/N could lead to 
a variety of incorrect slopes, as can be seen in Fig. 2. 

0.01 0.1 
normalized spatial frequency, dimensionless 

Fig. 4. Exact values of the power-law spectra used in calculations of the 
expected values of the spectral estimates. 

TABLE I 
POWER-LAW PARAMETERS DERIVED FROM FITS TO THE EXPECTATIONS OF 
PERIODOCRAM (1/N I fA < 0.2), MODIFIED PERIODOCRAM (4/N < fA 
I 0.5) ,  PREWHITENED (1/N < f, < 0.2), AND CAPON'S ( 1 4 2 ~ )  5 f A  

I 0.5)  ESTIMATORS 

lobe and first two sidelobes do not overlap the low-fre- 
quency peak (fA > 0.015625). (Power-law fits to the up- 
qer regions of these estimates are listed in Table I). While 
P H A N  has a mean value that closely approximates the exact 
spectrum, this estimator suffers from a deficiency that is 
common to Fourier-based estimators: lundesirably high 
variance. We examine the variance of PHAN(fA) in a later 
section.6 

B. Prewhitening 
The periodogram (Fig. 2) and, to a lesser degree, the 

modified periodogram (Fig. 5 )  suffer from spectral leak- 
age in the power-law case, especially for spectra with 
2 I i 3. Fox and Hayes [9] and Gilbert and Malin- 
vemo [ 101 avoid the leakage problem by using prewhiten- 
ing procedures in which they modify the surface height 

6We have also examined the Blackman-Tukey spectral estimator PET, as 
described in Blackman and Tukey [22]. For processes other than white 
noise, the BT estimator decreases variance but increases bias as compared 
to the periodogram (Kay [20, p. 801). We did not include PET in our com- 
parison because it is even more" susceptible to spectral leakage (and there- 
fore, slope insensitivity) than PpER. The expected value of PBT is equal to 
the expected value of PpER convolved with another window, as derived in 
Kay [20, p. 981: 

I12 

E[pBT(fA)l = W ( f A  - t)E[pPER(t)l dt.  
Since the BT estimator has an expected value that is the result of the con- 
volution of the true spectrum with two window functions, its value at a 
given frequency can be greatly corrupted by leakage from lower frequen- 
cies. 
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~ i ~ ,  5 ,  Expected values of p,,, (fa) for five different 256-point power- 
law profiles. The profiles were zero-padded to 16 384 points. 

Fig. 6.  Expected values Of$pw(fa) for five different 257-Point power-law 
profiles. The profiles were zero-padded to 16 384 points. 

data to have a relatively flat spectrum, perform spectral terms of the first differences of the sampled data: 
estimation, and then correct the estimateaccording to the 
original modification. 1 N - l  

2 

We will examine here the simplest prewhitening ap- BPW(fA) = I z,, { z [ x n  + 11 - z[xnl) exp (-jZTfAn) I . 
proach similar to that used by Gilbert and Malinvemo. If 

as [24, p. 2701 
the power spectral density of the surface height is defined (21) 

The expected value of the prewhitened estimator may be 
derived by a procedure similar to the derivation of (9): 

112 

E[pl’W(fA)l = 2 j -1/2 w T ( f A  - tISZA(t) 
121 TI 2 

-TI2 

(18) 
then the derivative of the surface height dZ(x)/dx will have 
a related spectrum: 

= 4T 2 f 2  Sz (f ) 

= 47r2Clfl-P+2 

&(f) = c ’ l f l - f l ’  (19) 
and we see that the spectral exponent 0 of the derivative 
process takes on values between -1 and 1 for 1 c 0 c 
3. The spectrum of the derivative process is more nearly 
flat (it is white noise for 0 ’ = 0). Since there is no pro- 
nounced peak at low frequencies, spectral leakage is less 
of a problem. 

Gilbert and Malinvemo approximate the derivative by 
taking first differences of the sampled data: 2’ [xi] = 
Z[xi + 1] - Z[xi]. They then apply a Hanning window and 
use a periodogram to obtain a spectral estimate of SztA(fA). 
After averaging multiple periodograms, an estimate of the 
spectral exponent B is obtained from an estimate of B ’: 

/ 3 = p + 2 .  (20) 
We now examine this procedure for the limited data case 
in which multiple periodograms are not available for av- 
eraging. We omit the Hanning window for simplicity. 

We define a prewhitened spectral estimate Ppw(fA) in 

[l - cos (2.4)] dt .  (22) 
Using (22) and the modified power-law spectrum defined 
in (17), the expected values of the prewhitened estimator 
are calculated and are shown in Fig. 6. These estimates 
are based on 257-point profiles. 

Power-law functions were fit to the linear portions of 
these estimate expectations (fA c 0.2), and the parame- 
ters t ’ and B were converted to i. and B using (20) and 
t = f’/(4r2). The results, given in Table I, show that the 
expected value of the spectral slope is fairly accurate be- 
cause the spectral leakage has been largely eliminated. A 
Hanning window may still be useful in practice (since we 
do not know a priori that a spectrum is power law), but 
we see that leakage is not a problem for the prewFitened 
estimator in the power-law case. The variance of Ppw (fa) 
will be examined in a later section. 

C. Capon s Estimator 
An alternative procedure that is more direct than the 

prewhitened periodogram is the use of Capon’s estimator 
[25] (the so-called “minimum variance spectral esti- 
mator”) described in Kay [20, chap. 111. This estimator 
was developed originally for geological signal processing 
problems in which the number of sensors (and therefore 
the number of spatial samples) were extremely limited and 
posed restrictions on what could be inferred from standard 
spectral analysis. Capon’s estimator essentially custom- 
izes a filter at each frequency of interest to minimize the 
total power output, subject to the constraint that the gain 
at the frequency of interest is unity. Therefore, the filter 
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may be asymmetric in sidelobe level according to the 
shape of the signal spectrum; in the power-law case, the 
sidelobes are adjusted to reduce the leakage from low- 
frequency components; 

Capon’s estimator PCAp(fA) is obtained by first calcu- 
lating an estimate of the autocorrelation matrix Rz, whose 
elements are defined as 

(23) 

We can estimate the elements of the autocorrelation ma- 
trix using the modified covariance method, described in 
1201 : 

[RZzlii = E[Z*[n]Z[n + i -j]]. 

[fiZzlij = [:’: z[n - i]z[n - j l  2 ( N  - P> 
N- 1 - p  1 

Capon’s estimator is then given by 

wherep is the dimension of the autocorrelation matrix and 

1 . (26) 

Since (24) is an unbiased’ and consistent estimator of 
the covariance matrix, we can evaluate the expected value 
of Capon’s estimator by substituting the exact covariance 
matrix (obtained from the exact theoretical spectrum) into 
(25). ThisAprocedure was used to calculate the expected 
values of PCAP ( fa) for five values of P using a covariance 
matrix of dimension p = 70. The expected values of these 
estimates (Fig. 7) have good agreement with the exact 
spectra over a wide range of spectral slopes. Parameters 
o,f power-law functions fit to the expected values of 
PCAp(fA) for fa 2 1/(2p) are compared with the exact 
spectral parameters in Table I. 

The bias of Capon’s estimator is independent of N be- 
cause (24) is an unbiased estimator of fizz. However, the 
bias does depend on p (PA is the longest lag for which 
the covariance is estimated). For a given data set, an in- 
crease in p will result in reduced bias at the cost of in- 
creased variance. Thus, N indirectly influences the bias 
because the range of p is constrained by N. We generally 
found p = 0.3N to be a good compromise between vari- 
ance and bias. 

In the power-law case, the bias of Capon’s estimator 
was found to increase noticeably for spatial frequencies 
corresponding to wavelengths much l2nger than PA. We 
therefore discard calculated values of PCAp ( f a )  for spatial 
frequencies below 1 l(2p). 

e = [ 1 e 1 2 r f A  e&?fA . . . el2.(P- l l f A  ‘F 

’Equation (24) is approximately but not strictly unbiased because all lags 
are not weighted equally and overlapping lags are used. A variety of co- 
variance estimators have been examined, and (24) was found to be the 
preferred estimator for short data records. See Kay [20] or other texts for 
more information. 

0.01 0.1 
normalized spatial frequency. dimensionless 

Fig. 7.  Expected values of ficAp(fA) for synthetic profiles with various 0 
using an autocorrelation matrix of dimension p = 70. Estimates are eval- 
uated at the same 16 384 frequencies used in Figs. 2 ,  5, and 6. 

D. Variance Comparison 
Capon’s estimator, the modified periodogram with 

Hanning window, and the prewhitened periodogram all 
produce parameter estimates whose expected values 
closely approximate the exact values for a power-law 
spectrum. We now compare the estimators in terms of 
variance. The exact expression for the variance of the 
modified periodogram involves higher order moments and 
is usually evaluated only for a Gaussian white-noise case 
[21]. The statistical properties of Capon’s estimator for 
time series data are not known [20], although some results 
have been derived for array data. To avoid these problems 
and test these estimators under actual-use conditions, we 
generated short synthetic topographic profiles of known 
statistics using a spectral synthesis algorithm. We then 
compare parameters obtained from Capon’s, the modified 
periodogram, and the prewhitened periodogram estimates 
with those of the spectra used to create the profiles. 

Our spectral synthesis algorithm closely follows [26] 
and consists of the following steps. 1) Generate a set of 
discrete Fourier amplitudes that, when squared and mul- 
tiplied by 1/N, satisfy the desired power law. While [26] 
used a pure power-law spectrum, we use the modified 
spectrum (17) to assure a zero-mean surface height. 2) 
Multiply the amplitudes by a Gaussian random variable 
such that the mean value of the amplitude satisfies the 
power law. 3) Generate a set of complex discrete Fourier 
coefficients (Le., the FFT of a real surface) using the ran- 
domized amplitudes and a uniformly distributed random 
phase, enforcing symmetry conditions such that the in- 
verse FFT will be real-valued. 4) Calculate the inverse 
FFT of the coefficients, resulting in a synthetic surface 
profile. 

Using this algorithm, we generated 10 synthetic 64- 
point surface profiles with = 2.4 and cA, a, and u cho- 
sen as before. We then calculated 1) Capon’s estimates 
using a covariance matrix of dimension p = 20, 2) mod- 
ified periodogram estimates using a full-width Hanning 
window, and 3) periodogram estimates based on the first 
differences of the surface profiles. We see in Fig. 8 that 
the modified periodogram and prewhitened periodogram 
estimates have noticeably greater variance. 
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Fig. 8. Capon's, modified periodogram, and prewhitened periodogram 
spectral estimates for 10 different power-law profiles. The profiles were 64 
points long. The modified periodogram and Capon's estimates have been 
offset for clarity. The solid lines represent the exact spectrum. 

Estimation of power-law parameters from the spectral 
estimates is an independent problem. In this analysis, we 
estimate c and /3 by performing a minimum absolute de- 
viation fit of a power-law function to the estimated values 
of the power density spectrum. The minimum absolute 
deviation fit, which is performed in log-log space, is more 
robust than a least-squares fit. To make the power-law fit 
independent of the frequency sampling of the spectral es- 
timates, we evaluated the estimates at frequencies spaced 
very closely together so that the estimator would be a 
smooth curve between the sampled points. While it may 
be possible to design a parameter estimate based on fewer 
samples of the spectral estimate, such a method would 
require additional assumptions in the spectral model which 
are outside the scope of this study. 

Values of the spectral estimates outside their regions of 

0.2 for Ppw, and 1/(2p) I f A  I 0.5 for PCAP) were dis- 
carded as before. The mean and standard deviation of the 
estimated roughness amplitude tA and spectral slope B are 
given in Table 11. We see that the spectral parameters pre- 
dicted using Capon's estimator have roughly half the 
variance of estimates derived from either the modified pe- 
riodogram with the Hanning window or the periodogram 
based on prewhitened data. We therefore select Capon's 
estimator as the preferred estimation algorithm for use 
with short data records in the power-law spectrum case. 

high accluracy (4lN C fa  I 0.5 for PHAN,. 1/N < f A  < 

E. Formulas for Real Frequency 
Expressions for the spectral estimators listed in the pre- 

ceding sections were given as functions of the normalized 
frequency f A  that is dependent on the sampling interval of 

a measured surface profile. In remote sensing studies, es- 
timates of the surface spectrum in terms of real spatial 
frequency f (in meters-') are necessary so that 1) surface 
features may be compared to the electromagnetic wave- 
length and 2) spectral estimates derived from profiles with 
different sampling intervals A may be compared or com- 
bined into a composite spectrum. 

The following expressions correspond to (4), (9), (lo), 

respectively, for the case of real (nonnormalized) fre- 
quency f, where f satisfies - 1/(2A) 5 f I ll(2A): 

(61, ( W ,  (13), ( W ,  (151, (16), (21), W ) ,  (251, and W ) ,  

p 112A 

sin (.-AN) 
sin (nfA) bl = (33) 

- exp ( - j  2nfA n) 12 
F 112A 

* [l - cos (27rE)I d l  (37) 
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F. Aliasing 
The estimates presented in the previous sections as- 

sumed that aliasing was not present, and the synthetic sur- 
face profiles were constructed to be bandlimited; i.e., they 
had no spatial frequency components above the Nyquist 
frequencyf, = 142A). Real surfaces will generally have 
frequency components at spatial frequencies above f,. As 
a result of a necessarily insufficient sampling rate, power 
at frequencies higher thanf, will be aliased into the range 
-f, I f I f,. We can derive an equation showing this 
result in terms of real frequency by extending the deri- 
vation of Oppenheim and Schafer [23, pp. 26-28], ob- 
taining 

m 

SZ1i(f) = n =  2 -en s, (f + a). (40) 

In the power-law case, the power spectral density falls 
off quickly with increasing frequency. The n = 0 (exact) 
and n = 1 (first alias) terms and their sum are plotted for 
a sample power-law case in Fig. 9. We see that the effects 
of aliasing are most significant at the high-frequency end 
of the spectral estimate. As a first-order correction to avoid 
the aliasing problem, we discard values of the spectral 
estimate computed for frequencies greater than f,/2, as 
indicated in the figure. 

G. Applicability to Real Data 
Real geological data possess a variety of irregularities 

and surface statistics. Spectra of natural topography 
clearly cannot conform to a power-law model at all spatial 
frequencies-roughness features on the scale of millions 
of meters are unphysical, as are those at subatomic scales. 
However, in the studies cited in Section I as well as in 
our own investigations, measured spectra of topography 
are well modeled by a power-law spectrum in the form of 
(1) over some range of spatial frequencies. We have based 
our comparison of spectral estimators on an idealized 
spectrum with constant slope (except for the very-low- 
frequency roll-off introduced in (17) to avoid an unphys- 
ical singularity) in order to have an easy reference for 
comparison. Because both the Fourier estimators with 
windowing and Capon's estimator are local-neighborhood 

estimators, our comparison also illustrates the relative 
performance of these estimators for spectra that have 
variations in slope with frequency or local perturbations 
in level that violate monotonicity. 

111. ESTIMATION OF TWO-DIMENSIONAL SPECTRA 
While the previous techniques allow the estimation of 

the spectrum of a linear profile, we would in general pre- 
fer a two-dimensional spectrum of surface topography. 
Such a spectrum might show hidden anisotropy or may 
indicate that the surface is isotropic in the statistical sense. 
In either case, the full 2-D spectrum provides valuable 
additional information. 

Two-dimensional spectral analyses are precluded when 
2-D data are not available. Spectral studies of seafloor 
morphology, for example, usually utilize profiles col- 
lected by bathymetric instruments that are towed by a ship, 
producing a seafloor profile along the ship's path. Some 
directional insight can be obtained by obtaining profiles 
in orthogonal directions. 

On land, 2-D data are somewhat more accessible. 
Huang and Turcotte [l], [4] and England [5] use digital 
elevation models to estimate surface spectra, but their 
methods average over azimuth angle in the spectral do- 
main. Two-dimensional data at scales of centimeters to 
tens of meters can be tedious and costly to obtain, neces- 
sitating smaller dimensions of a sampling grid, Le., fewer 
than 100 X 100 measured points per 2-D profile. 

A. Estimator Selection 
Two-dimensional Fourier-based spectral estimators 

such as the 2-D periodogram suffer from the same prob- 
lems as the corresponding 1-D estimators: leakage in the 
power-law case and high variance. A 2-D Capon's esti- 
mator is one solution to these problems. The 1-D Capon's 
estimator is readily extended to the two-dimensional case 
[20, sect. 15.81, at the cost of increased complexity. In- 
version of the covariance matrix may become problematic 
because the matrix is now of dimensions p 2  X p 2  rather 
than p X p .  For a similar level of resolution, the 2-D 
Capon's estimator will require a much greater volume of 
data (as will the other 2-D estimators). If such high quan- 
tities of data are not available, as is often the case for 2-D 
data sets, the variance of the Capon's estimate will be 
correspondingly higher. 

B. Two-Dimensional Spectral Estimation of Isotropic 
S u ~ a c e s  

If a surface area is known to have or can be assumed 
to have isotropic statistics (from knowledge of the origin 
of the surface, or perhaps from measured 1-D spectra in 
several directions), then an estimate of the 2-D roughness 
spectrum can be obtained from estimates of the 1-D spec- 
trum. These 1-D spectral estimates may be obtained from 
individual rows of the 2-D surface height grid; we can 
calculate a spectral estimate for several or all rows and 
then average the estimates together. The resulting esti- 
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mate will have a variance that is much lower than that of 
a single row estimate in spite of the fact that the grid rows 
are not completely independent. 

Suppose that an isotropic surface has a 2-D power spec- 
tral density s,(&, f y )  that has the form of a power law 
down to some low spatial frequency Aow and some un- 
specified finite form below that: 

where the radial spatial frequency f, = (ff + f;)’”. We 
now need to relate the parameters a and y to the param- 
eters of the 1-D spectrum of surface heights measured 
along a straight line on the same surface. This 1-D spec- 
trum will also have the form of a power law forf 2 Aow 
and can therefore be described by the parameters c and p. 

To obtain this relation, we begin with the general 
expression for the Wiener-Khintchine relation in terms of 
the Fourier transform and write the correlation E [ Z ( x ,  
Y ) W  + 6x3 Y + 6,)l as M 6 , ,  6,): 

where JO is the zero-order Bessel function. This expres- 
sion differs from a similar (but incorrect) expression given 
by Voss [17, eq. (1.52)]. 

The 1-D and 2-D roughness spectra of an isotropic ran- 
dom field are related by an Abel transform [2]. This re- 
lation is more easily visualized using the surface autocor- 
relation functions (the inverse Fourier transforms of the 
1-D and 2-D surface spectra). The 1-D autocorrelation 
function is a slice of the 2-D autocorrelation function: 

(46) 

Let &D(f,, fy) be given by (41), and let f, be restricted 
to the power-law region, i.e., & 2 AOw: 

m 

sZID(f,) = 2a Io [(&I2 + <f;)21-”2 df;* (47) 

Changing variables, we have 
c 

which can be integrated analytically [27, p. 2011: 

a J;; r &) 7 - 1  

where r (x) is the gamma function. 

2-D spectral parameters are related by 
Therefore, if SzlD(fx) = cf;@ for& 2 AOw, the 1-D and 

y = p + 1  (50) 

Equation (50) agrees with the result derived by Voss; he 
does not give an expression comparable to (51). 

As previously discussed, 1-D profiles of a fractal sur- 
face with 1 < Of < 2 have power-law spectra with ex- 
ponent 0 given by 0 = 5 - 20f, so that 3 > > 1 .  From 
(50), the 2-D power-law exponent y satisfies 4 > y > 2, 
corresponding to 2-D surfaces with 2 < Of < 3, where 

We next investigate the performance of the linear, av- 
eraged Capon’s estimator in the determination of the 2-D 
power-law parameters a and y. A variation of the 2-D 
spectral synthesis algorithm described by [26] was used 
to generate 2048 X 2048-point synthetic topographic sur- 
faces with spectral exponents of 3.0, 3.4, and 3.6 with 
sampling intervals A of 1 cm. The exact surface spectrum 
was modeled as isotropic, with a form similar to (17): 

Of = (8 - y)/2. 

(a/a2) I frI ~ X P  (-fX2a21) f r  5 Aow 

L z f c  
Uf,) = af7 Aow 5 f, 5 f, 

(52) 

wheref, is the radial spatial frequency, a = 2.384 * lo-”, 
JOw = 0.01 m-’, and a and u are chosen as before. The 
cut-off frequency fc = 1/2 A is equal to the Nyquist fre- 
quency along the fx and f y  axes. 

As noted previously, arrays of data containing over a 
million points are often unavailable. In practice, in situ 
surface height measurements may yield data sets that are 
much smaller, say, 40 x 40 points. Since such a data set 
is useful over a relatively narrow band of frequencies, 
several sparse grids may be collected at different scales, 

[o 
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Fig. 1 1 .  Averaged Capon's estimates from 2-D synthetic surface height 
data at three scales with power-law fit. 

TABLE 111 

ESTIMATES AT THREE SCALES 
POWER-LAW PARAMETERS DERIVED FROM FITS TO AVERAGED CAPON'S 

I Surfacelursct~ I Estimated Darametera I 

a spectral estimate calculated for each, and a function fit 
to the composite of the individual spectra. Scale factors 
are particularly important in the calculation of these 
multiscale spectra. 

In our investigation, we sample each 2048 x 2048- 
point synthetic surface at sampling intervals of 50, 10, 
and 4 cm, obtaining three 41 x 41-point data grids. (A 
sample data grid is shown in Fig. 10.) At each scale, a 
1-D Capon's estimate (withp = 12) is calculated for each 
grid row at frequencies 1/(2pA) < f < 1/(4A), and the 
estimates are averaged over the rows. A power-law func- 
tion is then fit to the averaged spectral estimates at the 
three scales. (A sample fit is shown in Fig. 11 .) The upper 
frequency limit of 1/(4A) was chosen to reduce the effect 
of aliasing. Estimates of 1-D power-law parameters c and 
P are then converted into estimates of a and y using (50) 
and (51). 

This process was performed on 10 synthetic surfaces at 
each of three spectral exponents. The mean and standard 
deviation of ci and + are listed in Table 111. 

102- .-.-.-.-._._ 

PW: Eq. (56) 
. - -. PER: Eq. (55) 
-----. HAN: Eq. (54) 

,na CAP: Eq. (53) .- 
I ' ' """I ' " " " ' I  ' """q 

0.1 1 10 100 
spatid frequency, m-' 

Fig. 12; Spectral estimates calculated with (from bottom to top) pcAp, 
PHAN, PpeR (with no zero-padding), and p ,  from surface profiles of a de- 
bris flow near Johnston Ridge at Mount St. Helens. (Spectral estimates 
derived fmm techniques other than Capon's estimator have been offset for 
clarity.) The dashed lines are power-law fits to the estimates; the equations 
of these fits are (53), (M), (55),  and (56), respectively. (This and the other 
measured spectra from Mount St. Helens debris flows are presented in 
[281.). 

C. Application to Measured Data 
Surface roughness measurements were performed on 

several debris flows near Mount St. Helens in support of 
a study of electromagnetic scattering by volcanic terrains. 
The surface profiles, which were collected using several 
different sampling rates and profile lengths, were used to 
obtain estimates of the roughness spectra of the measured 
debris flows using the techniques described in the present 
report. The resulting spectra are reported elsewhere [28]. 
One of the spectral fits calculated from measurements of 
a primary debris flow near Johnston Ridge is shown in 
Fig. 12. This composite spectrum was derived from two 
surface profile grids, one with A = 1 m, the other with A 
= 1 cm. The equation of the power-law fit to the two 
Capon's estimates is 

$(f) = (3.57 - 1 f I -2.31. (53) 
Spectral estimates based on PHAN, PpER (with no zero-pad- 
ding), and Ppw were calculated from the same data for 
comparison with (53) and are shown in Fig. 12. Equations 
of the power-law fits derived from these estimators are 

SZ,HAN(f) = (6.28 - I f l - 2 . 3 6  (54) 

&pER(f) = (7.50 - lop4) I f l - 2 . 3 6  
~ ~ , ~ ~ ( f )  = (4.20 . 10-4) l f l -2 .40 .  

(55) 

(56) 
The spectral exponents in (53)-(56) seem acceptably sim- 
ilar, but this is principally due to the combination of spec- 
tral estimates at different scales into a single composite 
spectrum. If we fit power-law functions to spectral esti- 
mates based on the A = 1 cm data alone, we obtain the 
following: 

PCAp (f) = (1.15 * I f I -2.73 (57) 
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The Capon’s, modified periodogram with Hanning win- 
dow, and prewhitened spectral estimators give spectral 
slopes between 2.73 and 3.0, but the periodogram (with 
no zero-padding) gives a significantly different slope 0 = 
1.85, illustrating the effects of spectral leakage. 

IV. CONCLUSIONS 
Spectral analysis is a tool of increasing importance in 

the characterization of topography and other natural sur- 
faces. Numerous studies indicate that such surfaces have 
power-law spectra in the form of (1) over some range of 
spatial frequencies. This spectral form introduces unique 
difficulties in the spectral estimation process. 

In the present work, we have shown how leakage causes 
some Fourier-based estimators to yield an estimated spec- 
tral exponent of 2.0 for surface profiles having spectral 
exponents between 2 and 3. This may explain the number 
of studies reporting power-law exponents of 2.0 for nat- 
ural terrains. We show how Capon’s estimator may be 
used to avoid the leakage problem and measure the sur- 
face spectrum more accurately. We also show that 
Capon’s estimator has reduced variance, which is useful 
when surface data records are short, as is often the case 
in remote-sensing studies. 

The two-dimensional Capon’s estimator may be em- 
ployed to compute 2-D spectra of rough surfaces. How- 
ever, two-dimensional data are often unavailable or too 
sparse. For surfaces that are known or can be assumed to 
be isotropic, we show how a linear, averaged Capon’s 
estimator can be used to estimate the 2-D power-law pa- 
rameters. 
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