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A NOTE ON THE DESCRIPTION OF SURFACE ROUGHNESS USING 
FRACTAL DIMENSION 

Stephen R. Brown 
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Abstract. Self-affine fractals are useful models of the 
surfaces of rock fractures. The scaling properties of these 
surfaces are described by two parameters, the fractal di- 
mension and the crossover length. Two methods for esti- 
mating the fractal dimension of a profile of a rough sur- 
face are compared, the divider method and the spectral 
method. It is shown that the two methods yield the same 
results, if the horizontal resolution at which the profile is 
measured is smaller than the crossover length. However, 
for resolutions greater than the crossover length, the di- 
vider method always gives a fractal dimension close to 1. 
To guide future work, 'the crossover length is estimated 
for typical joint surfaces and for the San Andreas fault. 
Additionally, a simple method is proposed to obtain the 
correct fractal dimension without prior knowledge of the 
crossover length. 

Introduction 

Fractures of all sizes, ranging from microcracks to 
joints and faults, are well known for their effects on 
the mechanical and transport properties of rock. Me- 
chanical properties, such as bulk elastic constants and 
shear strength, are strongly affected by the presence of 
fractures [e.g. Goodman, 1976; Barton and Choubey, 
1977; Walsh and Grosenbaugh, 1979; Brown and Scholz, 
1986]. Fractures also control the hydraulic conductivity 
of crystalline and tight sedimentary rock [e.g. Gangi, 
1978; Kranz et al., 1979; Walsh and Brace, 1984; Brown, 
1987]. These effects arise from the fact that the sur- 
faces composing a fracture are rough and mismatched 
at some scale. The shape, size, and number of contacts 
between the surfaces control the mechanical properties. 
The separation between the surfaces or the "aperture" 
determines the transport properties. 

Walsh and Grosenbaugh [1979] showed that the nor- 
mal stiffness of a fracture should vary approximately as 
the inverse of the rms asperity height. For interlocked 
surfaces, relationships between the rms surface slope and 
the peak shear strength of a joint have been suggested 
by Tse and Cruden [1979] following the experimental 
work of Barton and Choubey [1977]. Therefore, if the 
topography varies with surface size, so must the me- 
chanical and transport properties. This remark must 
be tempered by the fact that the mechanical and trans- 
port properties of fractures depend not only on the to- 
pography of the individual surfaces, but also on how 
well the two surfaces are correlated [Brown et al., 1986]. 
However, study of the scaling properties of individual 
surfaces provides the groundwork for understanding the 
scaling properties of fractures. 

Scaling, Fractals, and Crossover Length 

The scaling properties of natural rock surfaces have 
been studied in detail [Brown and Scholz, 1985; Scholz 
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and Aviles, 1986; Power et al., 1987]. In these studies, 
the surface heights were digitized at equally spaced in- 
tervals along a line to produce a profile. These results 
show that all natural rock surfaces, including bedding 
planes, tension cracks (joints), and frictional wear sur- 
faces (faults), are remarkably similar. To a first approx- 
imation, all surfaces have power spectral density func- 
tions G(k) of the form: 

= 

where k = 2•r/), is the wavenumber and ), is the wave- 
length or distance along the profile. The proportionality 
constant C varies among surfaces. The power a usually 
falls in the range 2 < a < 3. Sayles and Thomas [1978] 
found similar behavior for numerous other random sur- 
faces. 

Mandelbrot [1983] has suggested that fractals are use- 
ful mathematical models of rough surfaces, and indeed 
this has some physical basis [Termonia and Meakin, 
1986]. In the present context, a fractal is a particular 
mathematical model of irregular geometry, wherein the 
scaling properties are described by the fractal dimen- 
sion D. The fractal dimension can range between the 
topologic and the EuclidJan dimensions. For example, 
a profile of a rough surface is topologically a line (di- 
mension 1), but is defined in EuclidJan 2-space, and the 
fractal dimension falls between 1 and 2. In one sense, 
the fractal dimension is a measure of how much space a 
particular function fills. 

Two classes of fractals are distinguished, self-similar 
and self-affine. One familiar example of a self-similar 
fractal is BrownJan motion in the plane of a microscope 
slide [e.g. Mandelbrot, 1983, plate 13]. If one traces 
on graph paper the path of the particle through time 
at two different magnifications, the two drawings will 
look statistically the same (i.e. have the same statistical 
moments). Since a simple change in magnification left 
the complexity of the curve unchanged, this process is 
self-similar. In this case the fractal dimension is D=2. 
However, if one defines a coordinate system on the mi- 
croscope slide and graphs the x-position of the particle 
as function of time, then a self-affine fractal of dimen- 
sion D=l.5 is obtained. To be precise, if we refer to this 
function as B(t) and the time axis is rescaled by two 
positive numbers h and g, then the functions hi-VB(ht) 
and gi-VB(gt) are statistically the same, whereas B(ht) 
and B(gt) are not. In order to obtain statistically equiv- 
alent graphs, the position axis must be scaled differently 
than the time axis. Thus B(t) is merely self-affine. As 
we will see, the distinction between self-similar and self- 
affine fractals has some bearing on the method used to 
estimate the fractal dimension. 

Self-affine fractals can be used as models of rough sur- 
faces since, when they are in the form of linear profiles, 
they have power spectral density functions of the form 
(1). When 2 _< a < 3, the fractal dimension D can be 
estimated from the relation D = 2.5- a/2, correspond- 
ing to 1 < D < 1.5 [Mandelbrot, 1983]. However, the 
above expression relating a and D may not be reliable 
when D>l.5 [Brown and Scholz, 1985]. Figures 1 and 
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Fig. 1. Self-ai•_ne fractal with fractal dimension D-1.5, 
generated using the algorithm of Fournier et al. [1982]. 

2 give an example of a self-affine fractal and its power 
spectral density function. 

The moments of the power spectrum provide a useful 
description of the surface roughness. The nth moment 
is defined as: 

rn, -- k"G(k)dk (2) 
o 

where k0 corresponds to the profile length A0. In practice 
the upper limit of integration is the Nyquist cutoff cor- 
responding to a wavelength of twice the sample interval. 
The derivative theorem for the Fourier transform implies 
that m0 is the variance (mean square value) of heights on 
the profile, m2 is the variance of slopes, and m4 is the 
variance of curvatures. When G(k) represents a self- 
affine fractal then (2) gives m0 = a 2 = •A02(2-v), where 
• depends on the constant C in (1). This is the scaling 
law for the rms height a. For the case D-1.5, Sayles 
and Thomas [1978] refer to • as the "topothesy," and 
they tabulate its value for various surfaces. Wong [1987] 
defines a different constant, the crossover length b, such 
that the standard deviation of heights is • = b(•o/b) 2-v, 
thus • - b 2D-2. The crossover length is in fact the same 
generalized topothesy suggested by Berry and Hannay 
[1978] in a comment to Sayles and Thomas [1978]. One 
important property of the crossover length is that when 
Ao = b then a -- b. 

10 

10-2 

D----- 1.51 

o 

lO *61 ........ I ........ I ........ I ........ I ........ 
10'" 10 '3 10 '2 10 '• 10 0 1,] 

WAVENuMBER / 2/T (L") 
Fig. 2. Power spectral density function for the self-affine 
fractal of Figure 1. The dashed curve is a least squares 
fit for wavenumber/2•r < 3.0 x 10 -•. The slope gives the 
fractal dimension D- 1.51. 

• •k 0 • 
Fig. 3. Definition of terms used in the evaluation of the 
divider method for estimating the fractal dimension of 
a self-affine fractal. 

Estimating the Fractal Dimension 

The calculation of the fractal dimension from its pre- 
cise definition is difficult, therefore less general alter- 
native methods must be used in practice [Mandelbrot, 
1983, 1985]. Each alternative method has some limits 
to its applicability. Two methods of estimating the di- 
mension of a self-affine fractal have been used frequently. 
The spectral method has already been discussed. The 
other method is known alternatively as the ruler, com- 
pass, or divider method. This is performed conceptu- 
ally by opening a pair of dividers to some distance r 
and walking them along the profile to estimate its total 
length. The total number of steps (total length of the 
line) is plotted as a function of r on a log-log plot. If 
linear, this curve has a slope of 1-D [Mandelbrot, 1983]. 
This method, or a derivation of it, will always give the 
correct value of D for self-similar fractals. This method 
has also been widely applied to self-affine fractals [e.g. 
Aviles et al., 1987; Okubo and Aki, 1987; Cart and 
Warfiner, 1987; Turk et al., 1987]. However, the di- 
vider method will give the correct fractal dimension for 
self-affine fractals only under certain conditions [Man- 
delbrot, 1985; Wong, 1987], and indeed some values re- 
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Fig. 4. Graph of (4) for several values of the fractal 
dimension, D. For r <• b the slope of the curves is 1- D, 
but for r >> b the slope is always close to zero. 
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ported from this method seem to be anomalously low. 
Thus, use of the divider method warrants some caution. 
To illustrate this point, I will recount an evaluation of 
the divider method given previously by Wong [1987] and 
follow with an example. 

Suppose we have a self-affine fractal trace with a nom- 
inal length A0 digitized at discrete intervals of length r 
(Figure 3). The vertical fluctuations over the distance 
r are, on average, equal to the standard deviation of 
heights a. There are A0[r segments in all and the total 
length of the line A as a function of r is approximately: 

r 

Recalling that for a self-affine fractal over distance r the 
standard deviation of heights is a - b(r/b) 2-19 [Wong, 
1987], then (3) becomes: 

A -- Ao [1 -F (rlb)2(X-D)] '/2 (4) 

The behavior of this equation is shown in Figure 4. Since 
the fractal dimension D > 1, then for r << b we obtain 
A • Ao(r/b) x-D. Thus log(A) vs. log(r) has slope I-D. 
However, for r >> b then A • A0. In this case, calcu- 
lation of D using the slope of the r-A curve will always 
give D•I. The crossover length b is interpreted as the 
horizontal resolution above which the divider method 
breaks down. Apparently, to obtain meaningful results 
from the divider method, one must have data digitized 
at a scale much smaller than the crossover length. How- 
ever, even without prior knowledge of b a simple solution 
to this problem exists. 

From the definition of b and (4) we notice that, if 
the ordinate of the self-affine fractal is multiplied by a 
constant greater than I so as to increase the standard 
deviation of heights a, then the effective crossover length 
can be increased relative to the sample interval. Thus 
for a given range of divider lengths r, the limit r << b 
can be reached and the correct fractal dimension ob- 
tained without actually changing the sample interval. 
A computer program was written to demonstrate this 
procedure, and the results of calculations for the self- 
affine fractal of Figure I are shown in Figure 5. The 
crossover length needn't be known ahead of time. One 
can simply magnify the profile height repeatedly by var- 
ious factors until a stable estimate of D is obtained. In 
fact, whenever the divider method is used, the stability 
of the results should be tested in this manner. 

The arguments just made were based on a modified 
version of the divider method, where the sample interval 
r was held constant at each step and the opening of the 
dividers varied. However, the same conclusions hold for 
the true divider method, where the divider lengths are 
held constant and the sample interval varies. While the 
results aren't shown here, a computer program imple- 
menting the true divider method was written and run 
for the self-affine fractal of Figure 1. The results are 
nearly identical to Figure $. 

The crossover length can be estimated from the power 
spectral density function. From (1), (2), and the defini- 
tion of b the constant of proportionality in (1) is found 
to be C = (4- 2D)(2•r)4-2Db 2D-2. However, plots of 
the power spectral density are normally presented in 
terms of the reciprocal wavelength (l/A) rather than the 
wavenumber k. In this case (1) can be written: 

G(1/A) - (4- 2D)b2D-2(l/A) -(s-2D) (5) 
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Fig. 5. The divider method applied to the self-affine 
fractal of Figure 1. The labels "n" represent the power 
of 10 (10") by which the vertical axis of the fractal was 
magnified prior to the application of the method. The 
labels "D" are the resulting fractal dimensions obtained 
from a least squares fit to the left-most five points on 
each curve. 

This provides a technique to estimate b. From Figure 2 
the crossover length is b • 10 -s. The rms roughness a is 
proportional to b •/2 when D-1.5. The maximum value 
of r used in Figure 5 to determine D is 16. Therefore to 
make r small, say r < 0.lb, the vertical axis of Figure 1 
must be magnified by at least 400 (- [10.16. 1000]U2). 
After this magnification, the divider method will give the 
correct fractal dimension (Figure 5). Using published 
plots of G(1/A) the crossover length is found to be b • 
10 -s- 10 -• m for natural joints [Brown and Scholz, 1985] 
and b • 5-100 m for the 1906 section of the San Andreas 
fault [Scholz and Aviles, 1986]. 

Conclusions 

Self-affine fractals are useful models of the surfaces 
of rock fractures. The scaling properties of these sur- 
faces are described by two parameters, the fractal di- 
mension and the crossover length. The divider method 
and the spectral method for estimating the fractal di- 
mension of the profile of a rough surface are compared. 
Both methods yield the same results if the horizontal res- 
olution at which the profile is measured is smaller than 
the crossover length, or equivalently if the amplitude of 
the profile is magnified appropriately. For resolutions 
greater than the crossover length, the divider method 
always yields fractal dimensions close to 1. This demon- 
strates that care must be taken when using the divider 
method to estimate the fractal dimension of a self-affine 
fractal. 
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