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Abstract

This thesis develops a structure suitable to study the roughness perception of natural rough

surfaces rendered on a haptic display system using fractals. A background on traditional

methods for describing surface roughness is given. Fractals are used to characterize one-

dimensional surface profiles using two parameters, the amplitude coefficient and the frac-

tal dimension. Synthesized fractal profiles are compared to the profiles of actual surfaces.

Fractal techniques are extended to two-dimensional surfaces. The Fourier Sampling theo-

rem is applied to solve the fractal amplitude characterization problem for varying sensor

resolutions. A framework for an anisotropic characterization of two dimensional fractal

Brownian surfaces is developed. A method for anisotropic fractal surface simulation with

varying sensor resolutions is given. Synthesized fractal profiles are used to conduct a sur-

face roughness perception experiment using a haptic replay device. The most important

factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of

the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the

fractal dimension was negatively correlated with perceived roughness.
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1 Introduction

We are very adept at picking up objects and identifying their properties by exploring and

manipulating them with our hands. By merely grasping an object we can immediately tell

if it’s made out of metal or not by our sense of temperature. Stroking our finger tips across

the object allows us to make judgements about the surface finish - whether it’s smooth or

rough, slippery or sticky. These types of sensations, observed through the skin’s mechan-

oreceptor nerve endings, such as vibration, adhesion, and temperature, make up our cuta-

neous sense. Another class of observations can be made based on the forces applied to our

limbs. For example we can estimate the mass of an object by holding it in our hand and even

judge the rotational inertia by turning it while grasped in our hand. These kinds of obser-

vations make up our kinesthetic perception. Combined, our cutaneous and kinesthetic

senses form our haptic perception [1]. 

Although there are many surface properties that affect our haptic perception of an

object, it has been suggested that the single most important non-visual cue affecting our

perception of a material is the surface roughness [2]. Qualitatively we know that wood, pol-

ished metal, and sandpaper all have different surface roughness. We can even use rough-

ness to make further distinctions between like objects, such as two different pieces of

sandpaper with different grits, fine and coarse. Most commonly the lateral motion explor-

atory procedure, in which the fingertips are lightly rubbed over a surface, is used to sense

surface roughness [3][4]. However it is sometimes more effective to use tools to explore

surface roughness. In interviewing blind field paleontologist Professor G.J. Vermeij, it was

found that he uses his fingernail to examine fossil specimens for surface roughness and fea-

tures while using a hypodermic needle to probe for submillimeter fine features [5]. Using

the needle as a fine feature exploration tool has been so successful that his sighted col-

leagues have begun using the technique. Because the design of haptic interfaces often only

allows a single point of contact between the user and the virtual world such as the single
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finger thimble of the PHANToM [6] or the hand grip of a force feedback joystick, the

needle or stylus method of haptic exploration appears a plausible model of virtual surface

interaction to study roughness.

1.1 Motivation
Unmanned planetary exploration space programs by NASA have steadily been increasing

in scope during the later half of the 1990s. Unmanned orbiting probes mapped the surface

with radar. During the summer of 1998 the Sojourner rover of the Pathfinder project rolled

a few meters across Mars and began sending images and spectroscopy data back to geolo-

gists on earth. Now a two rover mission is planned for 2003. One of the main goals of these

missions has been to study the Martian geology. Automated devices do not possess the

sophistication to synthesize the complex pattern of information inherent in geological

materials to conduct the science by themselves [7]. "Field study...absolutely requires

human geologists to be involved intimately" [7].

Of course it is not practical to send a geologist on all surface missions to Mars.

Remotely operated vehicles appear to remain a fixture of upcoming Martian missions for

some time to come. All explorations occur through telepresence, a "mediated presence" of

the remote environment through the robotic vehicle [8]. The ultimate telepresent system

would closely approximate the experience for the scientist as if exploring one’s immediate

environment [8]. The ability of planetary scientists to conduct geology through virtual envi-

ronments created by rovers wandering through remote terrain have been tested in mock up

Mars missions in the deserts of California, Arizona, Peru and most recently Nevada. Cur-

rently the primary sensors used by remote geologists are high-resolution cameras, aug-

mented with some spectrometer and chemical sensors. The haptic experience is completely

absent in previous and upcoming virtual environments used for exploring Mars. However

field geologists use haptic sensations to help conduct their studies. The feel of a hammer

striking a rock, the feel of the ground underfoot, and the grittiness felt between fingertips

to differentiate between silt or clay, are all part of the exploration process [8].

One possible method of haptically interacting with the geometric data of the virtual

environment is to model a single point of contact like a stylus. Vermeij’s stylus tool helps

him identify fine fossil features on the order of 1 mm and below. As an expert in paleon-
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tology he knows what these features can signify in a fossils. He has described an example

in which he corrected an erroneous fossil classification by sighted colleagues based on the

color they observed of a specimen of sea shell. With the stylus tool Vermeij observed the

presence of tiny teeth-like features which constituted the salient classification feature of the

fossil [5]. A virtual stylus tool could similarly be used to explore the surface of a rock. This

leads to the question: what kinds of things could we potentially learn from the surface

roughness of a rock from a geological standpoint?

1.1.1 Geological Considerations of Rock Texture
A rock’s surface appearance is referred to as its texture [9]. Specifically the characteristics

determining rock texture are grain size, grain shape, grain orientation, and the relative pro-

portion of grains and matrix material [10]. In rock engineering, texture has been shown to

be a useful tool for predicting mechanical performance, such as crack propagation [11],

drillability, and cuttability [10]. Available textural data will influence the selection of

equipment in rock engineering [10]. For planetary geology, rock texture yields insight into

the origins of a rock.

One of the two properties used to classify igneous rocks is their texture (the other

being their mineral content). Igneous rocks are formed either underground or at the surface

when molten rock cools and crystallizes. Depending on the amount of time taken for the

rock to cool crystals can grow to sizes visible to the unaided eye. These igneous rock tex-

tures containing visible grains are classified as phaneritic textures. Rocks with crystals

barely or not visible to the eye are classified as having aphanitic textures. Rocks that have

visible grains surrounded by an aphanitic matrix are designated as having a porphyritic tex-

ture [9].

Rocks that slowly cool underground have phaneritic textures, such as plutonic rocks

that form from magma intruding into preexisting solid rocks. Phaneritic rocks include gran-

ites, diorites, and extremely course-grained pegmatites. Grain growth in phaneritic rocks

will depend on pressure as well as time spent cooling. Extrusive rocks form from lava flow-

ing onto the surface of the earth and rapidly cooling. These volcanic rocks have little time

for crystals to form or grow, resulting in aphantic textures. Basalts have aphanitic textures.

If a volcanic rock cools so rapidly that no crystals form the resulting texture is described as
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glassy. Obsidian and pumice are two different types of volcanic glasses [9]. Although

pumice is a glass it can be differentiated from obsidian by its tiny cavities formed by bub-

bling, highly gaseous magma.

Sedimentary rocks form from accumulated sediment, fragments of rock that have

been transported by wind, water, or ice, or precipitating out of solution in water. Texture in

sediments is determined by the size, shape, and arrangement of the transported particles.

Most sediments are the product of erosion of preexisting rocks. Sediment grain size is

determined by the parent rock being eroded along with the nature and energy of the trans-

port medium. Coarse-grained granites will produce larger grains than eroded aphanitic

rocks. Sediments could be broken down by a glacier, worn-down by white water, or remain

unchanged in mudflows. Grain shape will also be affected by the transport medium. Irreg-

ular grains will lose their angularity and become rounded in abrasive media such as swiftly

flowing rivers. The farther a particle is carried, the more rounded it will become. Another

phenomenon associated with the distance of transported particles is sorting. As sediment is

carried, particles requiring greater energy to be moved get left behind. Well sorted sedi-

ments, such as those created by wind, will have a narrow range of sizes. In glaciers and

flooding rivers sedimentary deposits will be poorly sorted [9].

Loose sedimentary particles are classified by their particle size. The smallest parti-

cles, those below 2mm, make up mud, sub classified into clay, silt, and sand, while larger

particles make up gravel, consisting of granules, pebbles, cobbles, and boulders.   Sedimen-

tary rocks formed from lithification of loose particles are classified by their particle sizes.

Finer grained rocks include mudstones, such as shale, siltstone and sandstone, while grav-

els form conglomerates and breccias [9].

Texture is used in geology to classify various rocks and add insight into the forma-

tion of the rocks. In igneous rocks, texture indicates cooling time and cooling mechanism.

Since sedimentary textures are determined by the arrangement, shape, and size of deposited

particles, these properties can be used to indicate sediment classification. As the grain

shape indicates transport mechanism and distance, sedimentary texture could potentially be

used for deductive geology. In the next section the texture characteristics that will hopefully

yield geological information will be quantified in terms of surface metrology metrics. 



5

1.1.2 Quantifying Roughness and its Haptic Perception
At this point it appears that roughness could be useful to study from a geological standpoint,

and that the single point of contact stylus method could work with current haptic devices

as a model for interaction with virtual surfaces. Even with this motivation the problem

needs to be further defined. How can surface roughness be measured and how can it be

applied to roughness perception? 

First is the problem of quantifying the surface roughness of a rock. Metrologists

have had difficulties defining surface roughness [42], so it’s no surprise that pyshcophysi-

cists have had problems as well [1]. Psychophysicists have been studying roughness per-

ception with human subjects interacting with gratings or other defined surfaces

[72][73][74]. This is clearly not the same as interacting with a natural surface such as that

of a rock. Defined surfaces are easily quantifiable using statistical measures from surface

metrology. For quantifying what appears to be the random surface of a rock this thesis turns

to fractals. With the fractal characterization in place the second part of the problem can be

investigated: how to apply a fractal characterization of roughness to a perception experi-

ment.

1.2 Thesis Outline
This thesis develops a structure suitable to study the roughness perception of natural sur-

faces rendered on a haptic display system using fractals. The chapters are organized to pro-

vide a background on traditional methods of describing surface roughness, to use fractals

to characterize and synthesize profiles of rough surfaces, to extend the fractal techniques to

anisotropic surfaces, and finally to conduct a surface roughness perception experiment on

a haptic replay device.

Chapter two reviews traditional methods of analyzing roughness taken from the

field of surface metrology. For the most part this involves statistical analysis of two dimen-

sional surface profiles. Limitations and complications using these mathematical tools are

discussed.

Chapter three explores fractal methods to characterize the surface roughness of

materials using the fractal dimension and amplitude coefficient. Fractal versus standard
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surface metrology techniques are compared. Using measured parameters new realistic sur-

faces are simulated. The surface metrics of the simulated surfaces are then compared to the

metrics of the actual surfaces. 

In chapter four the fractal techniques for describing surface roughness are extended

for height profiles of a two-dimensional surface. A brief review of surface metrology sta-

tistical tools is given. The capabilities and limits of using fractal methods with structure ten-

sors to characterize isotropic and anisotropic surfaces are discussed. The sampling theorem

is applied to enable a fractal characterization regardless of the resolution of the measuring

instrument. Finally a general fractal characterization and generation of anisotropic surfaces

is given.

Chapter five describes a roughness perception experiment utilizing synthesized

fractal surface profiles displayed on a haptic interface. Subjects used a force feedback joy-

stick to explore virtual surface profiles and report which of the profiles they felt was

rougher. The most important factor affecting the perceived roughness of the fractal profiles

was the RMS amplitude of the surface, although in some cases the fractal dimension did

have a small effect. 

Chapter six summarizes the thesis and contributions. It also suggests future research

areas utilizing fractals for telepresent geology and haptics.

1.3 Contributions
The main contributions of this thesis are

•Developing an anisotropic characterization of two-dimensional fractal Brownian 
surfaces that extends the previous idea of fractal dimension as a function of direc-
tion to include an amplitude coefficient as a function of direction.

•Applying the Fourier sampling theorem to solve the fractal amplitude characteriza-
tion problem for varying sensor resolutions.

•Using a fractal surface characterization and synthesized fractal surfaces to study 
roughness perception with a haptic device.

It is hoped that a reader of this thesis will take away an alternative framework for

studying the haptic perception of rough surfaces. Instead of using artificial, deterministic

surfaces for pyschophysical perception studies, fractal surfaces can be used to better reflect
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naturally occurring roughness. Since it is difficult to manufacture a large set of these types

of fractal surfaces, the flexibility of a haptic replay device can be used to display a large

range of synthesized fractal surfaces. The method of fractal characterization presented also

gives an advantage over traditional metrology metrics: a scale independent characterization

of surfaces. 
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2 Surface Metrology Review

Studying the roughness perception of natural rough surfaces such as rocks rendered on a

haptic display system requires the ability to characterize the surface roughness. With a set

of metrics to describe a rough surface we can attempt to generate random surfaces based on

the real surface profiles. We begin in this chapter with a review of traditional methods of

surface metrology for one-dimensional profiles. Limitations and complications using these

mathematical tools are discussed. 

2.1 Statistical Measures
Surface metrology methods have been employed extensively in manufacturing to describe

the surfaces for fabricated objects. Other fields such as cartography, hydrodynamics, air-

craft engineering, highway engineering and bioengineering have also employed these

methods [14]. We now review some of the more common metrics used to describe two-

dimensional surface profiles in an attempt to apply them to the description of roughness

properties of natural surfaces. 

2.1.1 Amplitude Probability Density Function
The Amplitude Probability Density Function (APDF) is used describe the height informa-

tion of a profile z(x). The APDF is the probability that a profile ordinate is within a height

interval of z and z+δz. The APDF can then be used to compute other amplitude statistics,

such as the mean departure from the mean reference line and the root mean square deviation

relative to the mean line. Digitally the APDF is constructed by creating a histogram of n

height intervals and dividing the number of ordinates in each interval by the total number

of ordinates. In Principles and Applications of Tribology, Bhushan recommends using 15-

50 height intervals for general random data, trading off between accuracy and resolution

[45]. In this thesis histograms are constructed with 50 height intervals spanning the mini-

mum and maximum heights of the profile. An example of an APDF is given in figure 2-1.
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Figure 2-1. Amplitude Probability Density Function for a Concrete Profile

2.1.2 Amplitude Parameters
Amplitude measures one of the most widely used ways to describe the roughness of a sur-

face. With a single value these parameters quantify the amplitude of the profile ordinates

from a reference line. Other parameters quantify the shape of the distribution of the heights

of an APDF. 

2.1.2.1 Ra, The Mean Departure from the Reference Line
One of the most frequently used amplitude measures in surface metrology is Ra, the mean

departure of the profile from the mean reference line. In continuous form Ra is defined as 

(2.1)
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(2.2)

where pi is the probability density at the ith level of the APDF and Δzi is the height of the

ith level of the APDF [42]. 

2.1.2.2 Rq, The Root Mean Square Deviation from the Mean Line
A second amplitude measure that we use is Rq, the root mean square deviation from the

mean line. In continuous form Rq is defined as 

(2.3)

[42]. 

While Ra and Rq are useful in measuring the amplitude of the profile, we attempt to

describe the shape of the waveform by computing two other metrics, skew and kurtosis.

These parameters are derived from the third and fourth central moments of the continuous

APDF and the profile. 

2.1.2.3 Sk, Skew
Skew is a measure of symmetry of the height distribution of the profile, with a zero value

of skew indicating a symmetrical distribution. Examples of probability density functions of

positive and negative skewness, and a symmetrical skew of 0 are shown in figure 2-2. 
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Figure 2-2. Probability Density Functions with Different Skewness

Skew is defined as

(2.4)

where p(z) is the continuous amplitude probability density function [12]. In discrete form

the skew is

(2.5)

[12].
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ness Examples of probability density functions with different values of kurtosis are shown

in figure 2-3. Skew and kurtosis can be used to check if a distribution is Gaussian. A sym-

metrical Gaussian distribution will have a zero skew and a kurtosis of 3 [45].

Figure 2-3. Probability Density Functions with Different Kurtosis

In continuous form the kurtosis is defined as

(2.6)

[42]. In discrete form the kurtosis is

(2.7)
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[42].

In terms of a surface profile, increasing kurtosis for a symmetric distribution signi-

fies an increased amount of ordinates near the mean value (figure 2-4). Profiles with a neg-

ative skewness have larger number of height ordinates above the mean value (figure 2-4).

The functions in figure 2-4 were synthesized with a heuristic algorithm utilizing a random

number generator to illustrate profiles with different skew and kurtosis distributions.

Figure 2-4. Simulated Profiles Demonstrating Skew and Kurtosis

2.1.3 Spacing Parameters
While the previous parameters have tried to describe amplitude and shape of peaks in the

profile, other techniques try to measure the spacing between the peaks. The autocorrelation

function (ACF) of the profile is used to compute two of these spacing parameters, the root

mean square (RMS) wavelength and the peak density above the mean value. The ACF,
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from 
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(2.8)

The RMS wavelength, λRMS, is the RMS distance between peaks and is found from

(2.9)

[42] where σ is the standard deviation of the profile and σ’ is computed from the second

derivative of the ACF at the origin

(2.10)

[42].

The peak density above the mean line, pp, is the expected number of peaks per unit

length. Since all of our profiles have the mean subtracted out, pp is the number of peaks

above 0. The second and fourth derivatives of the ACF evaluated at τ=0 and the variance

are used to compute pp [42]

(2.11)
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the same problem leading to conflicting answers. In this thesis the three-point definition is

used because of its simplicity and wide use.

For fractal surfaces the derivatives at the origin of the ACF are undefined. Antici-

pating that the surfaces will exhibit fractal properties we explore fractal methods of describ-

ing roughness in chapter 3. 

2.1.4 Surfaces Indistinguishable to Statistical Parameters
One problem with descriptive amplitude statistics is that it is relatively easy to find two dif-

ferent surfaces that have the same statistics. In figure 2-5 two square surfaces with the same

amplitude but different spatial frequencies of .1 and 1 Hz are shown. The statistical param-

eters for the surfaces are given in table 2-1. The mean departure, RMS amplitude, skew and

kurtosis are the same for each surface. Of course, the ACF related measures will be differ-

ent.

However, peak density estimation using the three-point counting method also runs

into difficulty. Because of the broad plateaus of the square waves no single point is between

two lower points, causing no peaks to be counted. For either surface the algorithm fails to

generate a non-zero result. This illustrates the definition-dependent nature of some of the

statistics.

As discussed in the next section, complications with amplitude statistics are associ-

ated with the definition of the gross geometry and surface features. These geometry factors

affect the calculated values of the parameters and must be removed 

Table 2-1. Metric Comparison of Square Wave Surfaces
Surface Ra Rq Skew Kurtosis

Surface .1 Hz 0.4900 0.4900 -.0240 -47.01

Surface 1 Hz 0.4900 0.4900 -.0240 -47.01
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Figure 2-5. Two Surfaces with Equivalent Amplitude Parameters

2.2 Errors of Form

2.2.1 Removing Gross Geometry
In surface metrology engineering surfaces have three components, surface roughness, wav-

iness, and form [42]. Each component considers height variations in the surface of increas-

ing wavelength respectively. Exact definition of the difference in wavelength between

roughness and waviness is left ambiguous in the literature, as it is application dependent

[45] or changes from manufacturing process to process [42]. Complicating the matter is the

controversy surrounding whether or not waviness should be included with roughness as a

part of the surface texture, and separating waviness from the form of the piece being ana-

lyzed [42]. One definition used for form geometry is that it consists of spatial components

with a wavelength 1/3 or ¼ of the sample length or greater [42]. The sample length and the

sample resolution will also affect the roughness parameters [45]. We use the definition of

surface roughness as the variations in height of the surface relative to a reference plane [45].

Defining the reference line determines the mean height, tilt, and curvature which are sub-

tracted from the height data before calculating the roughness parameters [45]. This sepa-
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rates the roughness from the form of the object. For example when a flat sample is placed

such that it is not normal to the sensor, the surface profile generated will be sloped, gradu-

ally increasing or decreasing. A curved surface such as a ball will have a surface roughness,

but its overall curvature is not considered to be a part of the roughness. These gross geom-

etry effects must be removed from the profile before computing any surface metrics.

For a manufactured object the form is known from the design. Using a least-squares

fit to a parameterization of the form geometry (line, circle, etc.) establishes the reference

line. The form geometry of a rock is not well defined. While we choose samples that are

nominally flat over the sample length, there is still going to be some tilt that needs to be

removed.

For a rock we can define form geometry as any slants due to misalignment of the

sample, or curvature or waviness inherent to the sample, that can be removed with a second

order polynomial fit to the data. This is accomplished by fitting a polynomial of the form 

(2.12)

to the profile where the coefficients of the equation are computed using a least squares fit.

The fitted curve is computed and subtracted from the profile, flattening it out. After the fit

has been subtracted from the profile, the mean of the ordinates is computed and subtracted

from the ordinates to give the profile a zero mean. For the work in this thesis it was deter-

mined empirically that a quadratic worked well for the rock samples used. This scheme can

effectively match a ¼ wavelength sine wave, the spatial definition of form components sug-

gested by Whitehouse [42]. Some examples of removing slant and curvature are given in

figure 2-6 of a 63 mm long concrete profile sampled with a spatial resolution .0097mm/

sample.
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Figure 2-6. Original Data and Data with Tilt Removed for a Profile of Concrete

2.2.2 Removing features
When computing the statistical parameters of roughness the gross geometry effects of wav-

iness and form were excluded because they do not comprise the texture of the object. Sim-

ilarly surface features need to be identified and removed before computing roughness

parameters. Like the definition of waviness and form, the definition of a feature is some-

what arbitrary and application dependent. For the application of this thesis a feature is a

bump, ridge or hole that can be individually detected. When these features become so

numerous and small that they cannot be perceived individually they then become part of

the texture. An example of removing features from a concrete sample, a conglomerate of

pebbles and a matrix of sand and cement, is given to illustrate the difficulties in defining

what a feature is.

In figure 2-7 the top profile of the concrete contains a large feature located between

26 and 31 mm along the 45 mm sample. While fitting a polynomial works to remove gross
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rest of the profile. Instead we use a heuristic algorithm to identify and remove such features.

For the case of the concrete the following conservative algorithm was found to be effective

in removing distinct bumps and valleys that are not representative of the overall texture of

the sample.

The profile is filtered with a low- pass, phase-corrected, Butterworth filter [67] with

a corner spatial frequency of 0.15 cycles/mm (or about 1/5 the frequency content of the

sample data). The filtered profile is shown against the original profile in the top plot of

figure 2-7. The low pass profile is subtracted from the original profile to leave the higher

frequency information shown in the second plot. The Rq value of the high frequency profile

is computed. The algorithm then searches the low pass profile for ordinates with magni-

tudes over 2.5*Rq. This value has been empirically determined to work well with concrete

samples in identifying features. A continuous collection of ordinates over this amount is

considered a feature. The identified feature is finally extended by a safety margin of thirty

percent of its original length when removing points. The margin is necessary because oth-

erwise the ordinates below 2.5*Rq that are still a part of the feature would be left behind.

The 30% percent margin insures that the entire feature is removed. Feature selection by this

algorithm is shown in the bottom profile of figure 2-7. 

The amount of arbitrary definitions used in the heuristic algorithm illustrates the

application dependent nature of identifying a feature. The features in the concrete were

large holes and the algorithm was developed to find them. If the thinner holes were just as

deep as the large holes they would have been identified as a feature when they would have

been perceived as part of the texture. The algorithm would have had to be changed for this

scenario, and in all likelihood would have to be changed for a different material. This exam-

ple also illustrates the difficulties in using statistical parameters along with arbitrary defi-

nitions of geometry and features to characterize surface roughness. In the next section other

difficulties are briefly discussed that indicate that a simpler, more robust method of surface

characterization is needed.
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Figure 2-7. 44.4 mm long concrete profile sampled with a spatial resolution .0099mm/sample.

2.3 Application Difficulties
The biggest difficulty in using statistical surface metrology parameters is implementing

them to be measurement invariant. Many of the parameters are at least partly dependent on

arbitrary definitions. The values of parameters will change depending on what constitutes

object geometry as opposed to surface roughness and how the two are separated. Peaks can

be defined in numerous ways leading to different values for the same surface [14][42].

Metrologists using different measuring instruments will also calculate different statistical

roughness parameters. While the surface roughness is an intrinsic property, the actual mea-

sured roughness is not. The measured surface roughness is a function of the bandwidth of

the measuring instrument [45]. Furthermore the length of the sample measured will change

the value of amplitude statistics as well. It has been shown that the variance of the heights

increases proportional to the sampling length squared [14]
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Poon and Bhushan report that roughness parameters initially increase with L before reach-

ing a constant value [15]. Multiple definitions for the desired scan length have been sug-

gested [42][16][17]. 

What we begin to realize with these inconsistencies is that roughness is application

dependent. Roughness for one application is waviness for another [45]. In addition to the

measurement inconsistencies, the diverse set of disciplines that the applications for surface

roughness covers has led to the development of multiple yet similar roughness metrics [14].

Whitehouse has termed this a "parameter rash" [43]. Fractals are examined in the next chap-

ter in search of a simplified roughness characterization that is invariant to measurement

devices and setup. For a current survey of a variety of surface metrology techniques the

author of this thesis recommends the article "Quantitative Characterization of Surface Tex-

ture" [44].
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3Fractal Methods

In this chapter we explore fractal methods to characterize the surface roughness of rocks

such that we can realistically simulate new surfaces based on measured parameters. We

compare the use of standard surface metrology techniques and fractal methods to analyze

various surface samples. Simulated surfaces are generated from measured parameters. The

surface metrics of the simulated surfaces are then compared to the metrics of real surfaces.

The relationship between the fractal parameterization and a surface metrology amplitude

statistic is explored. This relationship is used to create simulated surfaces with metrics that

closely approximate the parameters of the original surface. 

3.1 Fractal Methods

3.1.1 Fractal Dimension
Fractals have been used to describe irregular shapes that do not lend themselves to descrip-

tion by Euclidean geometry. Natural structures such as mountains, coastlines, clouds and

snowflakes, in addition to recursive, self-similar structures (figure 3-1) such as the Von

Koch snowflake curve [23] are examples of shapes that exhibit a fractal nature. Each of

these objects has a non-integer fractal dimension, 1.4, 2.3, etc., measuring how much space

it occupies [24]. The most significant digit, such as the 2 of 2.3, represents the Euclidean

dimension. For example a straight line has a topological dimension of one, and a square has

a dimension of two. The second part of the fractal dimension, the fractional part varying

from .0 to .999..., is called the fractal increment [24]. The higher the dimension, the more

space the curve occupies. All of the profile curves we analyze fall between one and two.

Because fractal geometry has been used to describe natural phenomena [49], we

explored it as a possible tool to describe and synthesize rock surfaces. Several attempts

have been made to use the fractal dimension to characterize the roughness of rock surfaces

[25][26]. We use two methods to measure the fractal dimension. The first method measures
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the compass dimension of a surface profile. The second method characterizes the surface

with two parameters, the fractal dimension and an amplitude coefficient.

Figure 3-1. Recursive Fractal Structure, Von Koch Snowflake Variant [12]

3.1.2 Measuring Fractal Dimension
One way to measure the fractal dimension of a curve is to measure its compass dimension.

A common example illustrating the compass dimension is measuring the length of a coast-

line with a ruler. The distance measured will depend on the size of the ruler used. If a person

walks along a coastline measuring the length with a meter stick he will measure a certain

distance. If the measurement is done again with a smaller ruler the distance will be greater.

One can imagine using smaller rulers to measure more details of the coast. The compass

dimension relates the number of rulers used, N, to the ruler size, r [49].
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Figure 3-2.  Measuring the fractal compass dimension for the Von Koch Snowflake Variant of Figure 3-1 on 
page 23 by chord fitting. The linear relationship when plotting number of chords vs. chord size on log-log 
scale is characteristic of fractals.

The procedure we use to measure the compass dimension is to first select a range

of sizes of the chords that will be fit over the profile. Then, beginning with the first ordinate,

the Euclidean distance to the next ordinate is computed. If the chord length is not exceeded

we move onto the next point until it is. The first point exceeded is now the new origin point

where the next chord is fitted. Shelberg, Moellering, and Lam use an algorithm that inter-

polates a new point between the two ordinates to match the chord length [27]. In the present

work, interpolating points did not affect the dimension significantly and therefore this was

not done.

This fitting process is repeated until chords have been fit over the entire profile. The

number of chords is recorded. The process is repeated until all the chord lengths have been

used. The number of chords N is plotted against the chord size r on logarithmic axes (figure

3-2). The graph of this log-linear relationship is called a Richardson plot [51]. We then fit

a line to the plot using a least squares fit. The slope of the fitted line is the compass dimen-

sion. 
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The algorithm for selecting the chord lengths is based on the method reported by

Shelberg [27] and used by Longley [28]. The Euclidean distance between each coordinate

is computed and averaged to give an average chord length of r. The new chords are com-

puted from ri=2kir, where ki are 35 equally spaced points between 1 and 10. The points are

adjusted to be spaced between 2 and 9, or even 2 and 8 if the logarithmic plot of N versus

r plot is not linear, indicating that the profile is not fractal over the scales chosen. The values

of ki are adjusted to give a linear plot over the largest range of scales possible. We found

that plot would be become nonlinear for scales near the resolution of the sensor, and for

scales at the same magnitude as the profile length. The same effect has been reported in pre-

vious work [29][46]. 

Measuring the spectral exponent β of the profile is the second method we employ

to measure the fractal dimension. Random noises with spectral densities inversely propor-

tional to frequency are commonly found in nature and take the form [12]

(3.2)

When β=0 the slope is zero, all frequencies are represented in equal amounts, and

white noise is generated. If a profile was generated from this spectral density by using the

inverse Fourier transform the points in the trace would be completely uncorrelated. For β=2

the spectral density represents Brownian motion. This is the same type of Brownian motion

discovered by botanist R. Brown in 1827. He observed that the motion of particles sus-

pended in fluid is irregular and erratic [12]. If the motion of one of these particles was

graphed out over time in one dimension, the spectral density computed from the motion

would yield β=2. 

For 1<β<3, the noise is called fractal Brownian motion (fBm). The traces made by

these noises are fractal, and we can measure the fractal dimension from the spectral density

[12]. By plotting the log of the spectral density versus the log of the frequency and fitting

a line to the resulting plot, we can measure β from the slope of the fitted line (figure 3-3).

Although noises vary in time, our curves vary in space. For our application this means our

spectral densities are computed as a function of spatial frequency instead of time frequency.

P f( )
1
fβ
----∝
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Once we have measured β we can compute the fractal dimension from [12]

(3.3)

Our β measurement is only taken from the linear portion of the plot. At these scales the pro-

file is considered to be exhibiting fractal behavior. The other points are discarded before

making the fit. In figure 3-3 the PSD drops sharply off at the frequency of the sampling

length, .05 samples/mm. The linear fit also excludes points above the spatial resolution of

the sensor, 15.62 samples/mm. 

The spectral method of finding the fractal dimension has the advantage of being

faster to compute than the compass dimension technique. However the power spectrum

method of finding the fractal dimension has a larger variance than the compass method

[26]. 

Figure 3-3. 1/fβ Noise of Concrete Profile 20mm long. A line can be fit to the range of frequencies for 
which the profile exhibits fractal behavior.

While the fractal dimension is a measure of the frequency content of the profile, it

doesn’t indicate the height magnitudes of the profile. A self similar object, such as a fractal,
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appears similar or even identical to itself regardless of magnification scale [12]. At different

magnification scales a profile exhibiting fractal properties will have the same fractal

dimension. However with increasing magnification scales the scan length decreases and

with it the measured height variance decreases [13]. One dimension value can be charac-

teristic of several different fractal Brownian motion profiles with different average height

amplitudes. A second parameter is needed to characterize the surface.

3.1.3 Amplitude Coefficient
In addition to the fractal dimension D, Ganti and Bhushan measure a scale independent

amplitude coefficient C that relates the amplitude of the frequency contents. They report

that C increases monotonically with the variance of surface heights and also report increas-

ing surfacing friction with increasing C [13]. The amplitude coefficient is the second

parameter measured from the profile and is used to simulate a fractal surface.

The structure function has been used in studying surface roughness as an alternative

to the correlation function [21]. Structure functions are able to show functional changes

more clearly than ACF [14]. For functions exhibiting fractal Brownian motion the structure

function has a linear relationship with length [65]. The amplitude coefficient is measured

from the structure function [13]

(3.4)

where τ is an increment of length and η is the lateral resolution of the profiling instrument.

When computing the structure function τ varies from the lateral spacing between points to

the length of the sample being examined. The structure function is the expected mean

square difference in height over a distance τ [45].

(3.5)

In practice the structure function was computed from the profile data by circular convolu-

tion. For a profile of N points the calculation is [13]

S τ( ) Cη2D 3–
τ

4 2D–=

S τ( ) 1
L
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2
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(3.6)

After computing the structure function the log of S is plotted versus the log of τ (fig-

ure 3-4). A line is fit to the linear portion of the plot by a least-squares approximation. Using

equation 3.4 the amplitude coefficient can be computed from 

(3.7)

where m is the slope of the fitted line.

Figure 3-4. Structure Function for a concrete sample 20mm long. A line can be fit to the linear portion of the 
plot. The measured slope can then be related to the amplitude coefficient C. The plateau portion of the plot 
continues on until τ=20mm, but is not displayed. 
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3.2 Synthesizing a Surface: Fractal Brownian Motion 
using Fourier Filtering
One of our goals is to be able to conduct a psychophysical roughness experiment with a

haptic replay device using realistic synthesized surfaces. An experiment with synthesized

surfaces has the advantage of not requiring the collection of multiple profiles over a range

of different surface roughness metrics. Synthesized surfaces could be made to the desired

range of surface metrics. Fractal geometry has been used in computer graphics to generate

mountainous landscapes, plants, and water surfaces [24]. These objects are generated to

appear natural on a computer screen without a quantitative comparison to their real coun-

terparts. Using the measured fractal parameters of actual surfaces we can try to generate our

own synthetic surfaces and see how they compare to real surfaces using both fractal and

traditional surface metrology metrics. Our first step is to find a fractal algorithm to synthe-

size surfaces with.

The first algorithm we tried was based on the "Fractal motion using Fourier filtering

method" described in The Science of Fractal Images [12]. The Fourier Filtering method

works by imposing the spectral condition of fractal Brownian motion, P(f)α1/fβ, onto the

coefficients of the discrete Fourier transform. However this condition uses only the fractal

dimension. This does not allow adjusting of the amplitudes of the generated surfaces. 

3.2.1 Synthesizing a Surface with a Fractal Dimension and an Amplitude 
Coefficient

Ganti uses a similar 1/fβ power spectral density function to generate fractal surfaces

but also includes an amplitude parameter C that scales the amplitudes of frequencies [13]

(3.8)

P fk( )
C1K

2πkf0( )5 2D–
-------------------------------=

C1 Cη2D 3–=

K Γ β( ) π 2 D–( )[ ]sin
2π

-----------------------------------------------=

f0
1
L
---=
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The amplitude coefficient C is related to the variance of the heights by [13]

(3.9)

where Rq is equivalent to the variance σ [42]. This enables us to synthesize a surface with

any desired root mean square amplitude. 

To synthesize a surface the conditions of equation 3.8 are imposed onto the coeffi-

cients of the discrete Fourier transform [12][13]

(3.10)

The real and imaginary parts of the Fourier coefficients Hk are computed from 

(3.11)

[13] for a desired profile of N points, where random_sign is randomly ±1, and rand is a

random Gaussian number from 0 to 1. We then form Hk’ using the complex conjugate oper-

ator *

(3.12)

The conditions of the power law are imposed onto Hk’ by
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(3.13)

where f is the fundamental frequency, 1/L, the inverse of the desired length of the profile.

We then compute our synthesized function, X(t), using our random coefficients and the dis-

crete inverse Fourier transform [10]

(3.14)

One problem with using this method is that the generated surface repeats itself

every x=2πn intervals. To circumnavigate this problem we divide the surface we would like

to generate into 5.12 mm fragments of 512 equally spaced points, generating a new set of

Fourier coefficient pairs for each fragment. The newly generated fragment has a constant

added to it so that it is attached to end of the last fragment. This process continues until the

new surface is complete. 

The original algorithm calls for N Fourier coefficient pairs to compute N points of

a surface. With our segmenting algorithm we are able to use fewer coefficients to compute

each point. This leads to large computational savings in taking the inverse Fourier trans-

form. If we compute a 3072 point surface we need 512 Fourier coefficient pairs. When we

compute each point using the inverse Fourier transform (equation 3.14) we compute 512

pairs of sine and cosine functions. By breaking up the surface into six, 512 point surfaces,

we can compute each point using only 512 coefficient pairs, and only 512 pairs of sine and

cosine functions instead of 3072 pairs of functions. 
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3.2.2 Modeling Fractal Surfaces with a White Noise - Transfer Function 
Model - An Alternative
In vehicle dynamics transfer function models with a white noise input have been used to

model the input disturbances due to the roughness of roads [35]. Thomas represented the

power spectral density of an average road as proportional to 1/fβ, with β=2. [35]. A stochas-

tic process can be realized from a white noise sequence operated on by a transfer function

[36]. As can be seen from figure 3-3 the PSD has the linear portion that is fractal, but flat-

tens out for lower frequencies. A transfer function with a magnitude response can be made

to model both the flat spot and the linear fractal portion to give a more complete model of

the measured PSD. The transfer function coefficients could be measured off the actual

PSD. New profiles with the same behavior could be synthesized by operating the transfer

function on a white noise sequence of random values. It seems to have the advantage over

the fractal characterization in that it also models the roll off at lower frequencies. 

However this model is not easily developed into a workable form for two dimen-

sional surfaces with anisotropic behavior as described in chapter four. As such it is not fur-

ther developed in this thesis but rather left here as a suggestion to alternatively model one-

dimensional profiles.

3.3 Surface Characterization Experiment Description
This experiment was conducted to explore the performance of various roughness metrics

and fractal characterizations of surfaces, and how synthesized surfaces compare to actual

surfaces that they are based on. Profiles of concrete were collected and used to examine sur-

face metrics and fractal characterizations. Various types of sandpaper that were qualita-

tively different but had the same grit rating were also compared to see how their metrics

differed. New profiles were synthesized based on the measured properties of painter’s

sandpaper and compared to the original profiles.

3.3.1 Profile Sensing
Before surface profiles could be collected for examination, different sensing devices were

tried in order to find the most practical method of profile sensing. Three different sensors

were used to take profiles of a known surface: a micro-machined stylus with strain sensitive

cantilever previously developed for biomedical research [31], a commercially available
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laser displacement sensor, and an ordinary phonograph cartridge stylus that is usually used

to play records. The output of a stereo phonograph stylus is a two-channel velocity signal

that can be added and integrated to produce a profile [32]. Phonograph styli employed in

this fashion have been used to measure displacements with resolutions comparable to

atomic force microscopes, but with a much larger dynamic range [30]. However in that

work the phonograph stylus was deflected with a sine wave input of constant frequency,

and not actually used for surface profiling. The signal that was measured was the velocity

signal of the phono cartridge and was not integrated to recover any profile shape.

Figure 3-5. Profiles From Different Sensors, Micro-machined cantilever, laser displacement sensor and 
phonograph stylus

The test surface was composed of five copper strips approximately .09 mm thick

with adhesive backing laid onto a circuit board. In figure 3-5 we compare profiles of test

surface taken by each of the three sensors [32]. While we were able to use the phono car-

tridge to capture the shape of the copper strips on the test surface by integrating its velocity

signal, a consistent integration error would indicate a slant in the test surface. While this

sensor was the most economical, it was unusable because the integration error made it
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impossible to distinguish DC component features in the profile. It is possible to remove the

DC curvature if the gross geometry of the surface is known a priori. However as the appli-

cation of this thesis is for the irregular surfaces of rocks, the gross geometry will usually be

more complicated than for flat surfaces. This makes it more difficult to remove DC drift

accurately.

The micro-machined force probe, while providing high resolution, low noise pro-

files, failed catastrophically under slight loads far too easily to be of practical use. The

probe required a computer controlled actuator with the ability to servo with sub-millimeter

precision to keep the cantilever in contact with the surface without exerting so much force

that it off. The cantilever had an approximate working range of 2mm before catastrophic

failure. Numerous micro-probes also broke by inadvertent touches or merely dropping the

sensor. The easiest sensor to use, while still providing usable profiles, was the laser dis-

placement sensor.

3.3.2 Experimental Setup
Surface height profiles were collected with an Omron Z4M-N30V reflective laser

displacement sensor. The sensor is able to measure the distance of an emitted laser spot

with a resolution of 4µm. Moving a sample across the front of the sensor generates its

height profile. All of the height profiles collected were one-dimensional. The resolution is

limited by internal electrical noise of the device. Spatial resolution of the sensor is deter-

mined by its spot size of 64µm [33]. Using the Nyquist sampling criterion, the maximum

spatial frequency we can measure with this sensor is 7.81 cycles/mm. Profiles were spa-

tially filtered with a phase corrected Butterworth filter with a corner frequency of 7.81

cycles/mm. Twenty millimeter sections of data were selected from the sample profiles for

analysis. 

A motorized linear stage moved the sample in front of displacement sensor at a

fixed velocity. The position of the stage was read with an optical encoder with a resolution

of 2.37e-3mm/tick. The velocity of the stage and the sampling of the height profile were

controlled by an MS-DOS computer operating at a sampling frequency of 4.5 kHz. A spa-

tial sampling resolution of .008mm to .01mm was achieved with this setup. Photos of the
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linear stage, laser sensor, and a sandpaper sample in position to be profiled are given in

figure 3-6.

3.3.3 Measurement Procedure Summary
A summary of the surface measurement procedure is given in figure 3-7. The procedure

describes the process of computing surface metrics, both fractal and statistical, after a sur-

face profile has been collected.
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Figure 3-6. Profiling Equipment Setup Photos
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Figure 3-7. Procedural Flowchart

3.4 Experiment Results

3.4.1 Utilizing Surface Metrics
Profiles of a concrete block were taken in five different areas. Typical concrete profiles are

given in figure 3-8. From the profiles 20 mm sample lengths were selected. This involved

selecting lengths that are absent of features. In the third profile a large feature is located

between 26 and 31 mm. Instead of trying to fit a linear equation to the feature, the length

chosen to compute the surface metrics excluded this feature. In section 2.2.2 a heuristic

algorithm for selecting features was described. In the second profile at approximately x=24

mm, a large surface variation can be seen. This was considered to be part of the surface tex-

ture as opposed to a feature because its width is narrower than the spatial definition we use

for form geometry: one fourth of the distance of the sample length. 
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Figure 3-8. Concrete Profiles measured with the apparatus shown in figure 3-6.

The measured surface metrics of the concrete block are summarized in table 3-1.

The amplitude parameters, Ra, the average deviation, and Rq, the RMS deviation, are both

measured from a mean reference line of zero. The standard deviation of the kurtosis is of

the same order of magnitude as its mean, demonstrating the difficulty of measuring it con-

sistently. Although the Kurtosis is difficult to measure, our experimental value is far below

three indicating that the profile does not have a Gaussian height distribution.

Table 3-1. Concrete Block Surface Metrics

The frequency content of the profile can be examined by looking a plot of its power

spectral density. A comparison of the concrete's PSD to a PSD of painter’s sandpaper is

given in figure 3-9. While we can use the PSD to examine under what scales the profiles

exhibit the linear behavior characteristic of fractals, differentiating between the two by

Skew Kurtosis Ra(mm) Rq(mm) PD (Pks/mm) Compass 
Dimension

Spectral 
Dimension

Amplitude 
Coefficient 

Mean 1.331 -2.27e4 .087 .111 3.97 1.038 1.163 .023

Std .072 1.24e4 .012 .016 0.155 .016 .078 .015
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mere examination can be more challenging. The fractal dimension and amplitude coeffi-

cient quantifies the differences between the two plots. 

The mean compass dimension was consistently smaller than the mean spectral mea-

surement of the fractal dimension. We found this to be the case for a synthesized von Koch

fractal of known dimension as well. Low values of the fractal dimension calculated by the

compass method have been noted previously [25]. However the compass dimension has a

much smaller standard deviation than the spectral dimension.

Figure 3-9. PSD of Concrete and Painter’s Sandpaper. A line can be fit for frequencies which the sample 
exhibits fractal behavior. 

Now we have set of parameters that describe four things about a profile, the shape

of the height distribution, the amplitude parameters, the peak density, and the Fractal

parameters. Of the distribution parameters, kurtosis seems the least valuable because it is

hard to measure, but it can indicate if the profile has a Gaussian distribution. The fractal

parameters are a method of describing the PSD. The amplitude and peak density parameters

describe the profile in physically intuitive terms. We can now use all of these parameters

to try and describe the profiles of different types of sandpaper.
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Figure 3-10. Sandpaper Profiles for 10 mm long samples measured with laser displacement sensor. with a 
resolution of .008 mm/sample. The profiles were filtered with a 19th order Butterworth low pass filter with a 
corner spatial frequency of 7.2 (1/mm).

One hundred and sixty grit aluminum oxide and garnet sandpaper, along with

painter’s 100 grit sandpaper, were profiled (figure 3-10) and had their surface metrics com-

puted1. The tabulated results are presented in table 3-2. At the same grit rating the ampli-

tude parameters Ra and Rq successively decrease between garnet, aluminum oxide, and

painter’s sandpaper. As expected, the amplitude parameters decrease with increasing grit

rating for all samples.

1.  Garnet sandpaper is qualitatively sharpest and fastest cutting; painter’s sandpaper is the least sharp.
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Table 3-2. Sand Paper Comparisons

There is also a difference between the fractal dimension measurements of the sam-

ples with the same grit. Using the compass dimension, the fractal dimension decreases

between garnet, aluminum oxide and painter’s sandpaper, and then decreases for decreasing

grit. The spectral fractal dimension does nearly the same, with the exception that the fractal

dimension of 100 grit painter’s sandpaper is slightly larger than aluminum oxide. 

Examining the height distribution parameter kurtosis indicates that none of the dif-

ferent types of sandpaper have a Gaussian height distribution. The skew of the different

sandpapers shows that aluminum oxide sandpaper has a greater skew than the garnet sand-

paper at each grit rating. 

Originally the aluminum oxide and garnet sandpaper profiles contained large noise

spikes that caused unusually large spectral fractal dimension measurements as compared to

the painter’s sandpaper. The spikes were probably caused by spurious reflections of a com-

bination of the grit adhesive and the odd shiny grit on the aluminum oxide and garnet sand-

paper. The dull painter's sandpaper had no such spikes. Krylon® photographic dulling

spray was used on the sandpaper to eliminate these reflections. It was also used on the

painter’s sandpaper to test the effect of the spray on the amplitude parameters. The Rq and

Ra values were less than 1.1% and 2.5% smaller than the untreated sandpaper. While the

spray ameliorated the spectral fractal dimension measurement problem, it had little effect

on the other parameters.

3.4.2 Examining Synthesized Fractal Surfaces
We used the Ganti's method of Fourier filtering [13] to synthesize surfaces using the fractal

dimension and amplitude coefficient measured from a profile of 100 grit painter's sandpa-

Sample Skew Kurtosis Ra(mm) Rq(mm) PD (Pks/
mm)

Compass 
Dimension

Spectral 
Dimension

Amplitude 
Coefficient 

Al-Ox 60 .183 -7.25e4 .063 .081 1.83 1.122 1.333 .150

Garnet 60 -.296 -2.77e4 .079 .103 2.187 1.151 1.388 .427

Al-Ox 100 .151 -7.34e5 .034 .045 1.441 1.07 1.127 .035

Garnet 100 .131 -2.20e5 .046 .062 2.153 1.122 1.174 .099

Painter’s 
100

-.619 -2.0e6 .028 .036 .312 1.01 1.129 .005
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per (figure 3-11). The surface metrics of the measured surface and the generated surfaces

are presented in table 3-3. When simulated with the measured fractal dimension amplitude

coefficient the synthesized amplitude parameters Rq and Ra are smaller than the measured

amplitude parameters by 2.6 and 2.9 times respectively. Since we can relate Rq to the ampli-

tude coefficient C by equation 3.9, we verify if our amplitude coefficient has been under-

estimated by our measurement technique. The predicted value of C for the measured Rq is

.0062, nearly the same as the measured value. We synthesized the surface again using

C=.12 to achieve a surface with an Rq value closer to the measured surface.

The peak density metric was greatly dependent on the resolution we chose for gen-

erating our fractal, decreasing with decreasing fractal resolution. Whether or not this would

influence a user’s perception of two haptically displayed surfaces with the same fractal and

amplitude properties but with different resolutions could be measured by the peak density.

The surface we generated with the larger amplitude coefficient of .12 was generated at the

same spatial resolution as the measured original profile. Its peak density was 83% of the

measured surface peak density value. The smaller value of the peak density could be attrib-

uted to the smaller Rq value of the generated surface. The surface simulated with C=.0063

failed to generate peaks large enough to be counted by our algorithm.    

Table 3-3. Sand Paper and Synthesized Surface Comparisons. Note that the synthesized surface using the 
measured amplitude coefficient of the sandpaper had much smaller amplitude parameters than the actual 
sample.   

Profile Skew Kurtosis Ra(mm) Rq(mm) PD (Pks/mm) Spectral 
Dimension

Amplitude 
Coefficient 

Painter’s 
Sand Paper

-.874 -1.396e6 .0285 .0386 .4999 1.166 .0063

Simulated 
C=.0063

.0663 -9.996e7 0.110 .0132 0 1.1543 3.967e-5

Simulated 
C=.12

.1560 -1.532e6 .0293 .0374 .4167 1.254 .0012
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Figure 3-11. Actual versus Synthesized Profiles. The profiles are respectively, Painter’s 100 grit sandpaper, 
fractal simulation with parameters set to D=1.166, C=.0063, and fractal simulation with parameters set to 
D=1.166, C=.12. The surface metrics of these profiles correspond to each of the three rows in table 3-3.

3.4.3 Experiment Accomplishments and Applications
Methods of surface roughness metrology were reviewed. Synthesizing new surfaces was

accomplished by characterizing surfaces by two properties relating to their power spectral

density functions: the fractal dimension, which relates to the power of the frequency con-

tents of the profile, and the amplitude coefficient, which describes the amplitude of all fre-

quencies. The amplitude coefficient measured by the structure function was able to predict

the measured RMS amplitude of the profile. 

Surfaces were compared using amplitude parameters, and a two-parameter fractal

characterization. These parameters were used to compare sandpaper of the same grit rating

but made of different materials. It was found that the amplitude parameters of aluminum

oxide and painter’s sandpaper were smaller than those of the sharper garnet sandpaper of

the same grit classification, while the amplitude parameters over all decreased with increas-

ing grit. Fractal dimension D of aluminum oxide sandpaper and painter’s sandpaper was
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smaller than for garnet sandpaper of the same grit. As the grit increased the fractal dimen-

sion decreased, illustrating decreasing fractal dimension for smoother surfaces.

Synthetic surfaces were generated from the measured fractal parameters of painter’s

sandpaper using a modified Fourier filtering method. The resulting profile while having a

larger fractal dimension than the actual surface had amplitude parameters Ra and Rq

approximately 34% and 38% of the measured values. We found that the structure function

method of measuring the amplitude coefficient could predict the actual Rq value. A synthe-

sized surface using the measured fractal dimension and an increased amplitude coefficient

was used to create a surface with amplitudes approaching the measured Rq. Although gen-

erated with a larger amplitude coefficient, this synthesized surface approached the original

measured profile in terms of amplitude parameters and peak density.

We are able to use two parameters to synthesize new surfaces, the fractal dimen-

sion, D and the amplitude coefficient, C. The value of the amplitude coefficient is adjusted

to generate a fractal surface with a desired RMS amplitude, Rq. In chapter 5 we describe a

psychophysical roughness perception experiment that utilizes fractal surfaces synthesized

by this method and displays them on a haptic replay device. Before we do that, chapter 4

extends the fractal techniques from two dimensional profiles to the three dimensional case

of surfaces.
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4Two-Dimensional Fractal 
Surfaces

In this chapter surface roughness is described for the two-dimensional case. Analogs of the

statistical roughness parameters for one-dimensional profiles are reviewed for two-dimen-

sional surfaces. Other surface metrology methods that consider anisotropic surfaces using

spectral and correlation techniques are examined. The capabilities and limits of using frac-

tal methods with structure tensors to characterize isotropic and anisotropic surfaces are dis-

cussed. Finally the sampling theorem is applied to enable fractal characterization and

generation of anisotropic surfaces.

4.1 Two-Dimensional Surface Metrology Methods
In chapter 2 methods from the field of surface metrology were described to characterize

one-dimensional surface profiles. Statistical parameters were computed to describe the

mean and RMS amplitude of the profile as a measure of its roughness. Additionally the

shape of the height distribution of the profile was described by the skew and kurtosis

parameters. In this section extensions to computing these parameters from two dimensional

surface height data are reviewed. The statistical parameters presented for both one- and

two-dimensional data contain the underlying assumption that the measured surface is iso-

tropic. Quantifying the degree of surface isotropy is done by using the autocorrelation and

power spectral density functions of the surface.

4.1.1 Removing Gross Geometry
In the one-dimensional profile case the surface roughness was separated from the form of

the object before computing any roughness amplitude parameters. This was accomplished

by fitting a second order polynomial to the profile to remove slant, curvature or waviness;

along with setting the mean level of the profile to zero. Similarly for a two dimensional sur-
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face the trends and form geometry of the surface are removed by fitting a least-squares

mean or datum plane 

(4.1)

to the surface data,  before any amplitude statistics are computed [14][18]. A higher

order polynomial may be used the fit the form but is usually not required [14]. The statis-

tical roughness parameters are computed from the residual surface,  formed by sub-

tracting the least-squares from the original surface [18]

(4.2)

4.1.2 Statistical Parameters for 2-Dimensional Surfaces
Several 1-D profile metrics such as the root mean square amplitude, skew, and kurtosis,

have 2-D surface definitions to describe the amplitude and distribution of the surface height

data. To distinguish between 1-D profile and 2-D surface parameters we follow the naming

convention that has variables beginning with the capital letter ’S’ variables denoting 2-D

surface parameters as opposed to variables using captial ’R’ for 1-D measurements [19]. 

Amplitude parameters are widely used to describe the magnitudes of the departures

of profiles and surfaces from a reference line or plane. For a surface the RMS deviation

from the datum plane, Sq is given in continuous form as [14]

(4.3)

integrated over a surface area A. The discrete form of Sq can be computed from [18]

(4.4)

where M and N bound the ordinates in the x and y directions. While insensitive to the sam-

pling intervals, this metric is sensitive to the size of the sampling area [18], similar to how

1-D amplitude metrics are sensitive to the sampling length. In non-stationary processes the

variance of the amplitudes increase with scan length [20][22][34].
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Symmetry of the distribution of the surface height ordinates is measured by the

skew parameter. The discrete form of skew for a surface is [18]

(4.5)

Kurtosis measures the peakedness or bluntness of the surface height distribution. The dis-

crete form for kurtosis of a surface is [18]

(4.6)

The way in which the surface profile skew and kurtosis describe the shape of a height dis-

tribution is identical to profile skew and kurtosis. Again, a Gaussian height distribution will

have a skew of 0 and kurtosis of 3. Examples of how skew and kurtosis affect height dis-

tributions are given in chapter 2 (figure 2-2 and figure 2-3). These parameters assume that

surface is isotropic in that there is no distuinguishment of the location of any height ordi-

nate, and that there is only one value of the metric for a scanned surface. 

Describing the spatial properties of surfaces typically begins with peak counting.

For one-dimensional profiles the peak density is a common spatial parameter to begin with.

The two-dimensional surface parameter analog is the summit density, computed in units of

peaks/mm2 [18]

(4.7)

where is the number of summits and valleys, and  is the product of the interelement

spacing in the x and y directions. However, like peak density, the summit density value is

dependent on the definition of a summit [18]. Unfortunately there are numerous summit

definitions, varying from the highest point lying within four or eight nearest neighbors [37],

the highest point within a small zone [38], and contour-based summit detection [39]. This

spatial property isn’t able to characterize the degree of isotropy of the surface.
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4.1.3 Spectral and Correlation Methods for Anisotropic Surfaces
The parameters discussed in section 4.1.2 give no insight about whether or not the surface

properties change with direction. Numerous surfaces exhibit anisotropic behavior. For sur-

faces manufactured with a cutting tool anisotropy arises from the pattern of marks left by

tool. In surface metrology the lay of the surface measures the direction of the predominate

pattern left by the manufacturing process. In geology, materials formed by sedimentary lay-

ering is an example of surface anisotropy. The presence and degree of anisotropy can be

examined with the autocorrelation and power spectral density functions of the surface.

The autocorrelation function is frequently used to analyze observational data with

random characteristics [41]. In surface metrology the autocorrelation function can be used

to compute the texture aspect ratio of a surface Str which indicates the degree of anisotropy

of a surface [40]. The areal or area autocorrelation function is the expected value of the

product of two points a distance  apart [42]. Computing the area autocorrelation, AACF,

can be done by first computing the area auto covariance function

(4.8)

The computation of the AACF is completed by normalizing with the value of the ACVF at

the origin, which is also the variance of the surface [14]

(4.9)

An example of an AACF of an isotropic surface is given in Figure 4-1 on page 49. At the

origin the AACF has a value of 1, and decays to 0 with increasing distance. Depending on

the direction away from the origin the AACF will decrease with varying speeds. By exam-

ining the decay distances to 0.2 in various directions the degree of anisotropy can be mea-

sured. The texture aspect ratio of a surface Str is 

(4.10)
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where df is the fastest decay distance to 0.2 on the normalized AACF, ds is the slowest

decay distance to 0.2 on the normalized AACF. The decay distance of 0.2 has been selected

by convention in the surface metrology field. For values of Str approaching one the surface

displays stronger isotropy while values approaching zero indicate anisotropic behavior, In

surface metrology Str=0.5 is considered the cutoff between a surface being isotropic and

anisotropic [18]. 

Figure 4-1. Areal Auto Correlation Function of a Fractal Isotropic Surface

In surface metrology surfaces frequently have a prominent texture left by the man-

ufacturing processes. The angle of the pattern is called the lay direction of the surface. The

direction of the texture pattern can be measured using the areal power spectral density

(APSD). The APSD can be computed from the discrete two dimensional Fourier transform

[41]
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(4.11)

and then squaring the magnitude of the complex Fourier pair to find power spectral density

(4.12)

An example of a power spectral density function of a surface is given in figure 4-2. In this

particular figure the APSD is displayed as an image intensity map instead of the 3-dimen-

sional isometric view used for the AACF in figure 4-1. Both methods are used for display

in surface metrology. Because of the high value of the APSD at its center and steep dropoff

it was found easier to examine the APSD with an image intensity map.

Figure 4-2. Areal Power Spectral Density Function of a Fractal Isotropic Surface
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The texture direction of a surface or lay direction, Std is defined as the angle where

the maximum power occurs in the APSD [18]. This assumes that the texture aspect ratio

indicates anisotropy and is less than 0.5.

Using Str and Std to analyze geological materials isn’t necessarily appropriate

because they are not formed by machining processes. They may not have anisotropic

behavior due to texture patterns in one direction resulting from machining operations.

However the idea of using spectral methods to examine for anisotropic behavior is a start.

Later in this chapter we will use the APSD for characterizing surfaces as fractals and gen-

erating new surfaces with anisotropic behavior.

This section does not provide an exhaustive set of parameters available to describe

surfaces. Additional metrics used to characterize surfaces can be found as a part of the pro-

posed "Birmingham 14" set of metrics [14]. Numerous other parameters can be found in

the Handbook of Surface Metrology [42]. However the increasing catalogue of metrics has

lead to what Whitehouse coined as "parameter rash" [43]. So far, the parameters dealing

with anisotropic properties have simplified the behavior to one angular direction. Instead

of using fourteen or even five parameters to describe a surface we again turn to fractal

methods to simply the surface characterization while enabling description and synthesis of

multi-angular anisotropy.

4.2 Fractal Methods
In chapter three fractal methods for describing one-dimensional profiles of rough surfaces

were discussed. Multi-dimensional fractal analysis has been used for classification of med-

ical images [47], studying outlines of particles such as sediments [48], and satellite texture

analysis [55]. For the application of this thesis, real surfaces, two-dimensional fractals will

have to be used for both analysis and synthesis. Sythesized fractal terrains have been used

in movies since the early eighties with great success beginning with the classic computer

generated Genesis scene in Star Trek II: The Wrath of Kahn [12]. However almost all frac-

tal mountain terrains in computer graphics are homogeneous and isotropic [24]. For ana-

lyzing real surfaces anisotropic surfaces must be considered to describe and synthesize two-

dimensional surfaces with fractals.
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4.2.1 Measuring the Fractal Dimension of Surfaces
Many of techniques used to measure the fractal dimension of profiles, such as the compass

divider method, Minkowski coverings, and spectral methods, can be applied to measuring

the fractal dimension of a surface with some modification. The common introductory frac-

tal dimension problem of measuring the length of the British coastline and the land frontier

of Portugal illustrates the compass divider method [49]. As discussed in chapter 2 the total

distances of boundary profiles are measured by fitting lines of various lengths to the profile.

The distance measured changes with each measuring length scale used. Plotting the mea-

sured distance versus the measuring length scale on a log-log scale creates the Richardson

Plot of the boundary profile [51]. If the profiles are fractal a straight line will be plotted

whose slope can be related to the fractal dimension. This can be applied to surfaces as well

by intersecting a horizontal plane with the surface to create boundary profile, called the

zeroset [46]. While the fractal dimension of the zeroset will be computed to be between one

and two, , Mandlebrot speculated that the surface fractal dimension will be

exactly the dimension of the intersection plus one, D+1. This has been found to be true for

some uniform, isotropic surfaces [46]. Because of these restrictions we do not use this

method; however this does illustrate the idea that one profile can be used to measure the

fractal dimension of am isotropic surface. 

Analogous to the divider method, triangular tiling of the surface also uses a Rich-

ardson plot to compute the fractal dimension [52]. The area of the surface is computed by

fitting the surface with equilateral triangles of one size. This computation is repeated mul-

tiple times for various triangle sizes. A log-log plot of the surface area estimated by the tri-

angles versus triangle edge size then produces a Richardson plot for the surface. Adding

two to the slope gives the fractal dimension of the surface. Another covering scheme is the

Minkowski Comforter, which uses spheres to sweep out a volume over surface [46]. Also

searching for linear relationships graphed over a log-log scale is the Hurst Plot, which sep-

arates height differences at various spacings in the data [53]. Although this method is only

useful for isotropic surfaces Russ has modified its use into the Hurst Orientation Transform

to measure the directionality of surface anisotropy [46].

1 D≤ 2<



53

4.2.1.1 Measuring Fractal Dimension with Power Spectral Density Functions
The two-dimensional Fourier transform has found applications in image analysis,

television display, radar, and analysis of other two-dimensional data sets. In chapter two

the power spectrum of a one dimensional fractal Brownian motion profile was given as pro-

portional to . The fractal dimension of a profile was quickly determined by computing

the power spectral density and relating the slope  to the fractal dimension. It is possible

to make extensions to higher dimensional self-affine fBm processes. The power spectrum

for a fBm surface is [12][54]

(4.13)

where k is the vector spatial frequency and  is the euclidean distance. The fractal dimen-

sion can be related to  by

(4.14)

where E is the euclidean dimension [12]. By substituting equation 4.14 into equation 4.13

and setting E=2, the power spectrum for a fractal surface can be expressed in terms of its

fractal dimension

(4.15)

This proportionality relationship will be the basis used to model rough surfaces. Now we

will use it to measure the fractal dimension over a surface. The procedure begins by com-

puting the two-dimensional Fourier transform of the height data z(x,y), using equation 4.11

and then forming the two-dimensional power spectral density function by taking the mag-

nitude of the Fourier transform (equation 4.12.). A power spectral density function is

shown in figure 4-2. The radial magnitude lines originating from the center of the APSD

combine the information for all profiles in the same corresponding direction. Sampling the

APSD along each of these radial lines is equivalent to sampling profiles in different direc-

tions from the original height data [50]. The fractal dimension is computed from each of
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the radial lines in a similar fashion as described in chapter two. A radial line is selected at

an angle from the APSD (see figure 4-3). 

Figure 4-3. APSD and Power Spectral Density Along Radial Line. 

The APSD magnitudes at an angle  are selected by forming a one-dimensional frequency

magnitude matrix r, and then computing the frequency coordinates  and

. The power spectral density in the direction  is the collection of magnitudes

at those coordinates. A least squares line is fitted to the spectral power magnitudes over a

log-log scale. By ignoring the first few Fourier coefficients near the center of the APSD that

contains the low frequency information, any structual information for the entire surface

data is skipped [50]. The slope of the fitted line is related to the fractal dimension from

equation 4.15 by

 (4.16)
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This is the fractal dimension for that angle. The angle is varied to build up a collection of

fractal dimensions along each radial line. Because the APSD is symmetric the angle only

needs to be varied from . The size of the APSD limits how many radial lines can

be selected. By plotting each of the fractal dimensions on polar coordinates the direction-

ality of the fractal dimension can be examined. This type of plot is called a rose plot [46].

An isotropic rose plot is given in figure 4-4, contrasted with an anisotropic surface rose plot

in figure 4-5.

Figure 4-4. Rose Plot of Fractal Dimension of Isotropic Surface
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Figure 4-5. Rose Plot of Fractal Dimension of Anisotropic Surface.

In addition to computing the APSD magnitudes the phase space should also be cal-

culated. While the two-dimensional phase space is not used to find the fractal dimension it

should be checked to ensure randomness, a necessary property for the surface to be fractal

[46]. The phase angle is found by dividing the imaginary part of the Fourier coefficient by

the real part, and then taking the arctangent of the quotient [56].

 (4.17)

A random phase space for an isotropic fractal is shown in figure 4-6.
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Figure 4-6. Phase Space of Isotropic Surface

4.2.2 Characterizing Surfaces Review
A number of research papers have used the Weierstrass-Mandlebrot function as a fractal

characterization of engineering surfaces [34][59][60]. Similar to fractal Brownian motion

 noises, the Weierstrass-Mandlebrot function has a power spectrum that is inversely

proportional to the frequency raised to a constant. The continuous power spectrum of the

W-M function for a profile is approximated by [58]

(4.18)

where A is an amplitude coefficient and  is the inverse of the sample length and must be

greater than one. This power spectral relationship has also been extended to two-dimen-

sional surfaces [59]
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(4.19)

Using this function the fractal dimension D and the amplitude coefficient A provide a two-

parameter, scale invariant characterization of an isotropic surface. However for the profile

case described by equation 4.18, Ganti and Bhushan noted that when they changed the lat-

eral resolution of the sensor that there was also a lateral shift in the power spectrum,

although the slope was preserved. While the new power spectrum gave the same fractal

dimension, a different amplitude parameter A was computed, thus demonstrating that D is

unique and independent of the sensor resolution, while the change in A is not explained by

the W-M function [13]. Because different sensors are employed in surface metrology for

different applications the instrument resolution needs to be taken into account to measure

scale invariant fractal parameters that characterize the surface. Otherwise a fractal charac-

terization is no better than using the statistical parameters that vary with sample length and

instrument resolution.

To get around the scale invariance problem in the one-dimensional profile case

Ganti and Bhushan used structure functions to compute an amplitude coefficient indepen-

dent of the sensor resolution used to measure the surface. This was discussed in chapter 2.

We attempt to extend using structure functions to the two dimensional surface case.

4.3 Structure Functions
Structure functions have been used in the study of optics [63], stratified media [62], fluid

mechanics for turbulent flow [61], random process analysis [64][65][66]. They have also

found some use in surface metrology as an alternative to the correlation function [20].

Some benefits of structure function are its stability, that it does not require high pass filter-

ing before computation, and its ability to show functional changes more clearly than the

auto correlation function [14].

One previous work with surface metrology and structure functions used a two

dimensional structure function to compute fractal parameters as a function of angle to

investigate anisotropy due to the lay of the surface left by machining. In this work the struc-
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ture function was very sensitive to any trends in the surface, so it required the form error of

the surface to be removed by mean plane, and if necessary, further polynomial fitting [68]. 

4.3.1 Relating Structure Functions to Fractal Parameters
The structure function was discussed in chapter 2 in conjunction with computing

the amplitude coefficient of the fractal characterization of a profile. In that chapter the frac-

tal dimension was computed from the power spectral density. The fractal dimension and

the sensor resolution were used with the structure function to compute an amplitude coef-

ficient. The surface was then characterized by the spectral density relationship using the

fractal dimension and amplitude coefficient (equation 3.8). In two dimensions for a locally

isotropic field, the structure function has the same form as the profile structure function

[65]

(4.20)

where C is a constant and m can be related to the fractal dimension. A similar relationship

between the profile spectral density and structure function also exists for the field structure

function and spectral density [65]

(4.21)

where

(4.22)

Although equations 4.20 through 4.22 were developed for locally isotropic fields, we will

use these relationships to attempt to use structure functions to characterize an anisotropic

fractal surface. The procedure is to compute the fractal dimension as a function of direction

using the spectral density, compute the structure function, and similar to the Rose plot for

fractal dimension, compute the amplitude coefficient as a function of direction. Like the

amplitude coefficient for a profile, the dependence between the amplitude coefficient and

the sensor resolution in the structure function will need to be found.
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4.3.2 Computing the Structure Function For Surfaces
In field form the structure function is the expectation value of the difference squared

between a function and its value at the origin [64]

,    (4.23)

For computing the discrete form of the structure function of a field we turn to circular con-

volution again [13]

(4.24)

, , 

for a square field of size N+1 where the points are equally spaced in the x and y directions.

4.3.3 Examples of Structure Functions
Figure 4-7 shows the structure function of the isotropic surface represented by the

APSD in figure 4-3. Unsurprisingly the structure function appears isotropic in all directions

near the center.
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Figure 4-7. Structure Function Isotropic Surface

Now the structure function of an anisotropic surface is taken. An anisotropic surface

is generated so that the fractal dimension changes from 2.1 to 2.4 at  and a con-

stant amplitude coefficient (generating surfaces is covered in section 4.4). The APSD of the

surface is given in figure 4-8. 
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Figure 4-8. Anisotropic APSD

The structure function for this surface is given in figure 4-9. Looking at figure 4-9 illus-

trates some serious problems in trying to use structure functions on anisotropic surfaces.

Instead of the distinct edge where the fractal dimension changes, the structure function is

distorted. This poses a great difficulty in that it is uncertain whether there is one or more

changes in the surfaces properties at any given angle. We have to remember that structure

functions were developed for isotropic fields, and now we see the problem in using them

on anisotropic surfaces. We abandon this method for characterizing anisotropic fractal sur-

faces.
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Figure 4-9. Structure Function of an Anisotropic Surface

4.4 Sythesizing Fractal Surfaces
In this section we examine generating fractal surfaces with a power law, explore problems

with remeasuring the amplitude coefficient of a resampled surface (simulating decreasing

sensor resolution), and then apply the sampling theorem to reformulate our fractal relation-

ship. Finally we propose a full anisotropic characterization of a fractal surface that takes

into account the sensor resolution.

4.4.1 Generating Isotropic Fractal Surfaces
The procedure for generating a two-dimensional surface with fractal Brownian motion

 behavior is similar to the procedure for generating fBm profiles in chapter three. A

fractal power spectral density law that describes the surface is chosen. The real and imagi-

nary parts of a Fourier coefficient are generated such that the phase is random. The coeffi-

cient is then made to obey the power law. Finally the two-dimensional inverse Fourier
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transform is used to transform the array of coefficients into a surface. We illustrate this pro-

cess with an isotropic surface based on equation 4.15. The equation is multiplied by a con-

stant C to describe the power spectrum of an isotropic fractal surface with constant fractal

dimension and constant amplitude coefficient

(4.25)

The magnitudes of the Fourier coefficients are defined as the power spectral density [41]

(4.26)

where A is the complex matrix of the Fourier coefficients with indices i and k. Our Fourier

matrix A is a square matrix of size N. The matrix is divided into four quadrants, I, II, III,

and IV, that calculating the coefficients is organized around. The naming of the quadrants

is somewhat confusing as they do not follow the traditional counter-clockwise ordering.

This is because the Fourier transform matrix does not have the DC component of the spec-

trum in the center of the matrix. It is much easier to visualize the Fourier power spectrum

with the DC component in the middle of the spectrum. In all previous figures of the two-

dimensional power spectral densities the DC component of the spectrum has been shifted

to the center of the spectrum. After computing A we use the Matlab® command FFT-

SHIFT(X) to swap the first and third quadrants and the second and fourth quadrants of the

matrix before computing the power spectrum [67]. Unshifted and shifted power spectra are

compared in figure 4-10. The quadrant names we use correspond to the quadrants of the

shifted power spectrum in the usual counter clockwise orientation beginning with quadrant

I in the uppermost right hand corner. The naming convention is illustrated in figure 4-11.

P k( ) C
k 8 2D–

--------------------=

A i( k ),
2 P k( )=



65

Figure 4-10. Unshifted And Shifted Power Spectrums
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Figure 4-11. Quadrant Mapping

Assignment of the Fourier matrix terms begins with defining the real and imaginary

parts of the quadrant IV coefficients

(4.27)

                  

i=1,2,...N/2.   k=1,2,...N/2

where random sign is a random positive or negative sign, and rand is a random number

from 0 to 1. This gives a magnitude of C for the coefficient at i, k, while giving a random

phase angle. The complex coefficient is formed by adding the real and imaginary parts

(4.28)

The coefficient is finally completed by substituting equation 4.25 into equation 4.26, taking

the square root to solve for the Fourier coefficient A(i,k), and evaluating the expression at

the i, k coordinates
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(4.29)

In equation 4.29 we have explicitly substituted the discrete scaled frequency for the fre-

quency vector k with the magnitude of the coordinates i,k scaled by the distance of the side

of the sample, L. 

As the power spectral density is symmetric, the quadrant II magnitudes are equal to

the quadrant IV magnitudes. The coefficients are formed from the complex conjugate of

the quadrant IV coefficients.

(4.30)

where i0=N-i, and k0=N-k.

To find the coefficients of the quadrants I and III the procedure outlined in equa-

tions of 4.25 through 4.30 is used again, this time assigning the coordinates as

(4.31)

At the origin i=0, k=0 equation 4.29 will to tend to . For this case we set A(0,0)=0. This

simply eliminates the DC component of the spectrum.

Once all the Fourier coefficients are determined the surface can be computed by

using the discrete inverse Fourier transform [57]

(4.32)

The surfaces generated for this research were computed in Matlab® using the fast inverse

Fourier transform in two dimensions, IFFT2 [67]. An isotropic surface of fractal dimension

D=2.2 and amplitude coefficient C=.01 is synthesized by this method is shown in figure 4-

12.
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Figure 4-12. Synthesized Isotropic Surface, D=2.2, C=.01

4.4.2 Sampling Theorem
Previously in Section 4.2.2 we described the shifting power spectrum when different sen-

sors are used to sample the surface. This creates a problem when trying to do a fractal char-

acterization. While the fractal dimension D is constant because the slope of the spectrum is

preserved, its shifting changes the measured amplitude coefficient. Russ notes this problem

in Fractal Surfaces, referencing a graph of two power spectra from elevation profiles col-

lected by two different sensors by Majumdar and Bhushan [46]. The spectra are displaced

by several orders of magnitude on the power axis, while the fractal dimensions measured

are within .05 of each other. Russ described the spectra displacement in the graph as unex-

pected and unexplained. The sensors used to take the elevation profiles had two different

resolutions of 1 µm for the optical interferometer, and 1 nm for the scanning tunneling

microscope [69]. We hypothesize that differing sensor resolution can account for the power

spectra shifting. In our simulations of surfaces we notice the same shifting problem after

sampling generated surfaces to a lower resolution. We can solve this problem by taking into

account the sensor resolution by applying the sampling theorem for Fourier transforms.
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Functions that are sampled experience a reduction in their Fourier coefficients by a

factor of 1/Δw, where Δw is the spacing between sampled points [70]. For a one-dimen-

sional sequence of sampled points f(k), the sampling theorem is [70]

(4.33)

where ℑ is the Fourier transform operator and N is the number of points. Previously our

surface was modeled on the fractal Brownian motion power relationship for the profile case

(equation 4.13)

(4.34)

By substituting equations 4.34 and 4.33 into the one-dimensional relationship between

power and spectral density

(4.35)

we get the fBm power relationship for sampled one-dimensional functions

(4.36)

The work in this thesis toward a two-dimensional fractal characterization that took

sensor resolution into account began with structure functions. The structure functions did

not work with anisotropic surfaces so another way to explain power spectra shifting was

needed. To address this we can apply the sampling theorem for the two-dimensional case

to find an analogous relationship to equation 4.36. The two-dimensional sampling theorem

takes the form [71]

(4.37)
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where Δw and Δq are the sample spacings in the orthogonal x and y directions, respectively.

By substituting equation 4.37 into equation 4.26 we find fBm power relationship for a sur-

face

(4.38)

In the simulations, surfaces are always square with the same number of ordinates on a side,

and sampled with the same spacing Δw in both x and y directions. With this simplification

equation 4.38 becomes 

(4.39)

We simulate isotropic surfaces using the spectral methods described in section 4.4.1

to check that equation 4.39 will predict the same amplitude coefficient for a surface sam-

pled at various resolutions. A surface of 1024 by 1024 points was generated using

equation 4.39 as the fBm power law at a spatial resolution of 1 mm/sample. This surface

was then sampled at lower resolutions of 2 mm/sample and 4 mm/sample to simulate being

sampled by different sensor resolutions. Examples of the original and resampled surfaces

are given in figure 4-13. Only small sections of surface samples are shown as the higher

density plots are difficult to view printed. The fractal dimension was computed as previ-

ously described in section 4.2.1.1. After finding the fractal dimension for a particular radial

direction in the APSD, we perform one additional computation to find C. The intercept Ω

of the radial slice of the APSD shown (figure 4-3) is measured and used to compute C from

equation 4.39

(4.40)

For a simulated isotropic surface generated with fractal dimension D=2.2, C=1 and

a spatial resolution of 1mm/sample, the measured amplitude coefficients for the resampled

surfaces of 2mm/sample and 4mm/sample were C2=.995±.073 and C4=1.02±.11 respec-

tively. The measured amplitude coefficient of the original surface Co, had a mean value of

1.007 and standard deviation of ±.006 over all 16 directions. Compared as a percentage of

Co the amplitude coefficients of the resampled surfaces were C2=(98.1%±7.1%)Co, and

P k( ) A k( ) 2 1
Δw2
---------- 1

Δq2
--------- C

k 8 2D–
--------------------= =

P k( ) 1
Δw4
---------- C

k 8 2D–
--------------------=

C 10Ω( ) Δw4( )⋅=
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C4=(102%±10.9%)Co. Repeating the process for an isotropic surface generated with D=2.2

and C=.01 we find relative values for the resampled surfaces of C2=(102%±8.1%)Co, and

C4=(108%±9.7%)Co. The amplitude coefficients for the second case are plotted in polar

coordinates in figure 4-14.
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Figure 4-13. Original and Sampled Surfaces. All dimensions in mm.
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Figure 4-14. Amplitude Coefficients of Original and Sampled Surfaces

4.4.3 Fractal Description of Anisotropic Surfaces
At this point we try to put everything in this chapter together to describe fractal anisotropic

surfaces with parameters that are invariant with the sampling resolution. We illustrated

measuring the fractal dimension as a function of angle for both isotropic and anisotropic

surfaces (figure 4-4 and figure 4-5). The process for generating a two-dimensional isotropic

fractal Brownian motion surface based on a power law was discussed in section 4.4.1. In

section 4.4.2 altering the power law in equation 4.25 to take into account shifting power

spectrums from changing sampling resolutions kept measured fractal parameters constant

and enabled us to measure the amplitude coefficient. We add one more idea alluded to but

not explicitly stated in the previous section that is needed to complete the characterization.

In figure 4-14 the amplitude coefficient C is plotted as a function of angle in polar

coordinates for an isotropic surface. Similar to how the fractal dimension D was measured

and visualized in figure 4-5 for the anisotropic surface, we can also measure anisotropic

values of C and plot them on a Rose plot as a function of angle. We integrate this with the

other concepts to characterize an anisotropic fractal surface. A surface is characterized by

taking its two-dimensional Fourier transform and computing the two fractal parameters as
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a function of angle, C(θ) and D(θ), and using the sampling theorem to correct for power

spectral shifting due to different sampling resolutions. Once C and D are characterized as

a function of angle we can systhesize new surfaces with the same directional fractal prop-

erties as the original measured surface or define new fractal properties for the surface. 

4.4.3.1 Synthesizing Anisotropic Fractal Surfaces
With our approach to characterizing anisotropic surfaces stated, we can now apply it to

fractal surface synthesis. The procedures to generate Fourier coefficients based on a power

law and invert them to form a surface were described in section 4.4.1. Our power function

of equation 4.38 is now made capable of describing anisotropic surfaces by replacing the C

and D constants with amplitude and fractal dimension functions of angle, C(θ) and D(θ)

(4.41)

Each time we form a coefficient its frequency coordinates are used to compute θ. Then C

and D is found for that direction. For the surfaces the we systhesize we have set the sam-

pling resolutions to be the same in both directions, which simplifies the power law of

equation 4.41 to

(4.42)

As an example we take a look at a surface generated with a severe anisotropy. A

surface was generated so that its power function had a narrow band with fractal a dimension

of 2.25 and amplitude coefficient of .1, while the rest of the spectra has a fractal dimension

of 2.4 and amplitude coefficient of .008. The APSD is shown in figure 4-15. The surface

generated is shown in figure 4-16. The longer wavelengths tend of the lower fractal dimen-

sion anisotropy can be viewed along the y axis. The higher dimension, but lower amplitude

surface roughness is spread out all over the surface in almost all directions as expected. This

surface roughness can be seen in the close-up of the plateau of the surface in figure 4-17.
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Figure 4-15. APSD of Anisotropic Surface

Figure 4-16. Very Anisotropic Surface
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Figure 4-17. Close up section of figure 4-16

We simulated anisotropic surfaces using the spectral methods described in section

4.4.1 to check that equation 4.39 will predict the same amplitude coefficient for a surface

sampled at various resolutions. A surface of 1024 by 1024 points was generated using

equation 4.42 as the fBm power law at a spatial resolution of 1 mm/sample. The fractal

dimension and amplitude coefficient functions were defined as

(4.43)

This surface was then sampled at a lower resolution of 2 mm/sample. Compared as a per-

centage of the original surface amplitude coefficients Co, the amplitude coefficients of the

resampled surface was C2=(99.2%±9.4%)Co. The amplitude coefficients for the original

are plotted in polar coordinates in figure 4-18. The measured fractal dimension of the res-

ampled surface compared as a percentage of the original is D2=(99.8%±.6%)Do. The vari-

D 2.4 0 θ π 4 0 θ π– 4⁄≤ ≤,⁄≤ ≤,=
D 2.1 π 4 θ π 2 π– 4 θ π– 2⁄< <⁄,⁄< <⁄,=

C 0.04 0 θ π 4 0 θ π– 4⁄≤ ≤,⁄≤ ≤,=
C 0.01 π 4 θ π 2 π– 4 θ π– 2⁄< <⁄,⁄< <⁄,=
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ation of the resampled surface dimension is much smaller than the variation of the

amplitude coefficient.

Figure 4-18. Rose Plots of Co for Anisotropic Surface.

4.5 Haptic Display of Synthetic, Fractal, Two-
Dimensional, Surfaces
Once the surfaces are generated it would be instructive to haptically display them on a force

feedback device. Particularly it would be interesting to see if anisotropic behavior of sur-

faces can be detected through touch. Preliminary experimentation with haptically display-

ing synthetic, fractal, two-dimensional surfaces on a three degree of freedom force

feedback device was completed.

4.5.1 Haptic Display Setup Description
The surfaces were haptically displayed using a PHANToM Desktop® from SensAble

Technologies (see figure 4-19). The device can display forces in three directions to the user

at its pen end-effector. A dual 900 MHz Pentium processor computer operating Windows

2000 was used to control the PHANToM. A visual representation of the surface and the
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user’s proxy point was shown on the monitor. A servo loop of 1 KHz was achieved with

this setup. 

Interaction forces displayed to the user was computed by the Ghost v3.1 software

API. A triangle mesh of the fractal surface height maps had to be formed to render the sur-

faces with Ghost. The computer setup described running Ghost could render surfaces of

128 points by 128 points. Surfaces with more points would overwhelm and stop operation

of the system. 

Figure 4-19. PHANToM® setup 

4.5.2  Qualitative Results
Compared to the dynamic contact model used in chapter five, the surfaces felt rubbery

when rendered using the Ghost API. The surface spacing resolution at 0.078mm was also

somewhat low, but could not be avoided because of the computational constraints of the

setup. Still the surfaces could be explored and felt textured. This was adequate to conduct

preliminary explorations with detecting surface anisotropies. 

Fractal surfaces of dimension 2.2 with a narrow, 1/16π wide anisotropy in the

APSD were synthesized (see figure 4-20). The anisotropy had an amplitude coefficient of

5 compared to the rest of the surface at 0.2. The surfaces were fit with a fourth order poly-

nomial surface to remove the low frequency form. The surface amplitudes had maximum
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undulations of ±5mm. When haptically displayed, the anisotropic behavior of the surfaces

was felt pronouncedly when exploring in the direction of the anisotropy. In other directions

the surface was far less rough, while in the perpendicular direction to the anisotropy it was

far smoother.

Figure 4-20. APSD of Anisotropic Surface Displayed

While these are positive qualitative results, further refinement with the contact

modeling needs to be done before perception experimentation can begin. A quantitative

perception study using one dimensional fractal profiles is described in the next chapter to

relate fractal parameters to human roughness perception.
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5Roughness Perception of 
Fractal Surfaces

One of our goals in synthesizing fractal surfaces is to be able to use them to conduct rough-

ness perception experiments. Surface profiles were generated by the fractal algorithm

described in chapter 3 and were haptically rendered on a force feedback joystick. Subjects

were asked to use the joystick to explore pairs of surfaces and report to the experimenter

which of the surfaces they felt was rougher. Surfaces were characterized by their root mean

square (RMS) amplitude and their fractal dimension. The most important factor affecting

the perceived roughness of the fractal surfaces was the RMS amplitude of the surface.

When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimen-

sion was negatively correlated with perceived roughness.

5.1 Introduction
The perception of texture is an important means by which humans identify surfaces around

them. In field geology, scientists use texture to help identify rocks and determine their his-

tory (e.g., the amount of weathering they have been exposed to). The work presented in this

chapter is part of an effort to allow field geologists to explore remote planetary surfaces,

displayed as virtual surfaces in an immersive haptic and visual display. An important com-

ponent of the perceived texture of rock surfaces is their roughness, and the focus of this

chapter is the display of roughness using models that produce surface profiles similar to

those found in nature.

Previously in chapter 3 we identified two parameters, the amplitude coefficient and

fractal dimension, that are useful for generating synthetic surfaces similar to those mea-

sured using an optical profilometer on rock surfaces. Because the RMS amplitude is com-

monly used in surface metrology, has a physical meaning, and can be related to the

amplitude coefficient (equation 3.9 on page 30) we use it as our second parameter to char-
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acterize the surfaces. In this chapter experiments to determine how human subjects relate

perceived roughness to variations in these two parameters when interacting with the sur-

faces via a haptic display are described. 

5.2 Previous Work
Earlier surface roughness perception experiments had subjects touch metal gratings con-

sisting of rectangular grooves [72][73]. These studies showed that the dominant factor in

determining perceived roughness was the groove width. More recent work by Lederman

and Klatzky has argued for the viability of using a probe to encode vibration information

to discriminate roughness [74][75]. During these experiments subjects used a probe to

explore surfaces made up of a pseudo-random pattern of raised dots. It was found that the

perceived roughness of the patterns when using a probe or a finger increased with increased

interelement spacing until reaching a peak and then decreased [74].

A common feature of these experiments is that they use artificially constructed sur-

faces of predetermined heights. While the gratings are more deterministic than the spatially

randomized raised dots, the dot patterns still have only two heights: the height of the dot

and the flat surface it is resting on.

Other work has examined the use of stochastic methods for texture display [76][77].

In the present case, we are interested in the perceived roughness of irregular virtual surfaces

whose geometric properties (e.g., peak heights and spatial intensity) match those found on

rocks.

The work in this thesis used the fractal technique described in chapter 3 to simulate

the surface profiles because it was found it to favorably mimic rock surface profiles when

compared in terms of standard metrics from surface metrology. 

5.3 Experimental Setup
Fractal simulated surface profiles were haptically rendered on an Immersion Impulse

Engine 2000 force feedback joystick. Fourteen subjects, eleven male and three female,

from ages 21 to 34, participated in the experiment. Subjects were naive to the purpose of

the experiment. All subjects had at least minimal experience using haptic devices. Subjects

were asked to use the joystick to explore pairs of surfaces and report to the experimenter
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which one they felt was rougher, surface one or surface two. One surface was displayed at

a time. Subjects controlled which surface was displayed by clicking the joystick trigger.

Subjects were allowed to switch between surfaces as often as they desired and to explore

surfaces as long as they desired. A computer screen displayed the subject’s approximate

position in the virtual world (figure 5-1). The proxy point represents the end of the user’s

virtual stylus used to touch the virtual surface. The fractal surface is not graphically dis-

played to the user so that their perception of the surface roughness is not visually influ-

enced. A reference line through the mean value of the reference is used to indicate to the

subject the approximate location of the surface. 

Sixteen pairs of surfaces were given to subjects in random order. Assignment of sur-

faces as surface one or two was also randomized. Typically subjects spent fifteen to twenty

minutes exploring surfaces, with the shortest time being approximately ten minutes and the

longest being approximately thirty-five minutes.

Figure 5-1. Subject Interaction Screen 

Two different reference surfaces were compared to eight surfaces to form the six-

teen trial pairs. Each reference surface was compared to surfaces with a combination of

Reference Line
(visible)

Virtual Surface
(not visible)

User Proxy Point
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lesser, equal, and greater fractal dimension and RMS amplitude. Figure 5-2 demonstrates

the surface group pairings. Reference surface one is compared against each of the surfaces

of group one while reference surface two is compared against the group two surfaces.

The surfaces used in the experiment were generated in 20 mm lengths and patched

together to form 80 mm lengths. Each length was offset to meet that last one so that no dis-

continuity between lengths could be detected. Surface profiles were resampled to a resolu-

tion of 0.1545 mm/sample, five times the encoder resolution of the joystick1. This

reduction in memory usage allowed longer length segments to be used. Empirically this

was found to be the lowest resolution that could be displayed before the feel of the synthe-

sized profile changed noticeably. To illustrate why this happens the physical performance

capabilities of the joystick need to be examined. 

The joystick can display forces of up to 8.9 N with a bandwidth of 120 Hz with each

axis [78]. A typical minimum user lateral exploration speed is approximately 20 mm/s. The

maximum achievable spatial frequency that can be displayed at this speed is found by

dividing the bandwidth by the exploration speed. For a exploration speed of 20mm/s this

spatial frequency is 6 Hz. Inverting this shows that the maximum displayable spatial reso-

lution without Nyquist considerations is 0.1667 mm/sample while laterally exploring at 20

mm/s. This is just below the synthesized profile resolution of 0.1545 mm/sample. Increas-

ing the resolution of the sample makes does not change the feel of the surface while explor-

ing because the it is already above the spatial resolution capable of display with the 120 Hz

mechanical bandwidth of the force feedback joystick.

1.  The joystick used in the experiments had an encoder resolution of .0309 mm according to the source code 
provided by Immersion as compared to the .0203 mm resolution listed on the current website as of October 
12, 2000.
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Figure 5-2. Surface Pairings

5.4 Contact Model
Subjects explore the virtual surfaces through the force feedback joystick. Using a dynamic

model of stylus to surface contact, the forces are displayed to a user resulting from interac-

tion with the surface profile data. Previously we had begun with an initial model similar to

the Sandpaper system [79] that used tangential force feedback based on the change in

heights with a vertical restoring force based on the penetration depth into the profile. In a

previous project we found this model to be unsatisfactory when traversing surface profiles

taken from rocks [32]. We therefore implemented a dynamic model (figure 5-3) that repre-

sents the normal and tangential forces at the stylus-surface contact and accounts for the pos-

sibility of users breaking contact and bouncing or skipping over the valleys of the surface.

This model was used to display rock surfaces collected by a laser displacement sensor to

planetary geologists during a NASA-Ames field experiment in February 1999 [32]. For the

experiment described in this paper we used this model to haptically display the synthesized

fractal profiles.
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Figure 5-3. Model Schematic

First a height profile as a function of position, yp(x), is generated by our fractal algo-

rithm. The stylus is then modeled as a mass, spring, damper system connected to the verti-

cal input of the user’s haptic interface device, yi. The horizontal position of the stylus is

directly coupled to the horizontal position of the interface. While in contact with the surface

the stylus dynamics are computed by

(5.1)

The contact point of the stylus against the surface is modeled as a frictionless con-

tact point. As illustrated by the magnified portion of figure 5-3, the normal force Fn is per-

pendicular to the tangent of the contact point. It is this reaction force that is displayed to the

user. The tangent is computed by taking the derivative of the surface with respect to the x

coordinate system, dyp/dx. In our application this derivative is pre-computed, as we know

the surface profile a priori. 

The normal force is the sum of x and y component forces.

(5.2)
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The y component represents the vertical reaction force. The x component represents the

horizontal reaction force

(5.3)

If the user’s position yi is ever greater than the profile height yp, contact is broken with the

surface and contact forces are set to zero. This allows the user to bounce off and back onto

the surface, especially while moving fast.

Because the subject can explore the surface freely, exact force levels displayed to

the subject are dependent on how they chose to explore the surface, e.g. depth of penetra-

tion into the virtual surface, and speed of exploration.

5.4.1 Model Parameters
For our application the model parameters were tuned for feel to give our virtual

stylus parameters of K=1.28 N/mm, M=1.85x10-6g and C=4.6x10-5 N/(mm/s). Examining

the mass and damping parameters shows that these elements are much smaller relative to

the spring element. It may seem that the virtual stylus is basically just a virtual spring. How-

ever when tuning the model parameters, interaction with the surface felt more realistic with

the small amount of mass and damping as opposed to when these elements were set to zero.

Simulations of the computed force of a model with only the spring force were compared to

the complete model to investigate the parameter effects.

A fractal profile used in the subject perception experiments was selected for the

model force simulations. The profile shown in figure 5-4 is 27 mm long and has a resolution

of 0.1545 mm/sample.

Fx Fy xd
dyp
 
 =
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Figure 5-4. Fractal Profile Used for Model Force Comparison Simulations

The profile of figure 5-4 was used as the input of a Matlab model of the virtual sty-

lus. The model computed the Fy reaction forces based on the computer control code. The

stylus penetration depth was assumed to be at the minimum point of the profile and held

constant. In practice the user sets this depth while interacting with the surface, adjusting

their depth as they react to the profile. The user’s lateral exploration speed was also held

constant, but the value of the speed was varied during different simulations. In the first sim-

ulation a user exploration speed of 20 mm/s was set as a reasonable minimum exploration

speed. In figure 5-5 the Fy reaction force as a function of time is plotted out for the two con-

ditions, the virtual stylus model force, and the spring force only. Examining the plot shows

no differences between the two plots. In this case it appears that there is very little differ-

ence between modeling with mass and damping, and modeling with only the spring.
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Figure 5-5. Force Profiles with exploration speed of 20 mm/s, M=1.85x10-6g, 

An exploration speed of 20 mm/s is quite slow. In reality most subjects explored

surfaces at an estimated speed of 120 mm/s. This estimation was based on observations of

subjects and some simple timing experiments. In figure 5-6 the difference between the

spring only force and the modeled force is much more evident. The spring force has not

changed due to the exploration speed. The modeled force has much higher and sharper

force peaks at each of the profile peaks. This can be attributed to the mass term which is

multiplied by the second time derivative of the profile, . The mass is constrained to the

surface, so it’s y direction accelerations are directly dependent on the lateral exploration

speed.
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Figure 5-6. Force Profiles with exploration speed of 120mm/s, M=1.85x10-6g

In practice it was found that although a small amount of mass improved the feel of

the haptic display of the virtual stylus, very little added extra mass compromised the simu-

lation, driving it unstable. To examine this the simulation was ran again with an exploration

speed of 120 mm/s and the mass doubled to 3.71x10-5 g. In figure 5-7 the modeled force

peaks are up to 1.5 N over the spring force alone. With very little extra mass the virtual

stylus model is beginning to command forces approaching the 8.9 N saturation limit of the

joystick.
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Figure 5-7. Force Profiles with exploration speed of 120mm/s, M=3.706x10-5g

5.4.2 Qualitative Model Feel
It has been reported that surfaces modeled without friction feel glassy [80]. While

we did not use friction in this model, during the experiment, none of the subjects com-

mented that surface felt glassy or slippery. There is a small amount of friction inherent to

the force feedback device we used. The Impulse Engine 2000 specifications report a max-

imum backdrive friction of 0.14 N [78]. It’s possible that a combination of factors including

the tangential forces displayed due to the irregularity of the surface, the backdrive friction,

and device inertia eliminates any slippery feel. 

Qualitatively, interactions with fractal surfaces with smaller RMS amplitudes

(.2mm-.27mm) using this model feel like using a stylus to stroke sandstone, while interact-

ing with fractal surfaces with larger RMS amplitudes (>.5mm) feels like stroking a weath-

ered conglomerate rock or broken concrete surface. 

5.5 Data and Analysis
Figures 5-8 and 5-9 show the percentage of subjects perceiving a surface rougher than a

reference surface. Data points are plotted along the x and y axis by their fractal dimension
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and RMS amplitude. The center spot labeled ref represents a surface (of fractal dimension

1.275, RMS amplitude 0.278mm) that was compared to other eight surfaces. For each of

the eight comparison surfaces, the percentage of subjects who reported that surface as

rougher than the center point surface is plotted along the z-axis. For example in figure 5-8,

71% of subjects reported that the surface of fractal dimension 1.35, RMS amplitude

0.350mm, was rougher than the reference surface. The reference surface response is set to

50%. This would represent the case of comparing the reference surface to itself, although

for fatigue considerations this case was not actually presented to the subjects.

Looking at figures 5-8 and 5-9 across the RMS amplitude axis, both cases show that

surfaces with a higher RMS amplitude are perceived as rougher. For all cases of different

RMS amplitudes between 71.4% to 100% of subjects reported the surface with the higher

amplitude to be rougher. The mean percentage of subjects reporting that a surface with a

higher amplitude to be rougher was 91.7% with a standard deviation of ±8.5% for both

cases.
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Figure 5-8. Perceived Roughness, Reference surface D=1.275, RMS amplitude .278mm
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Figure 5-9. Perceived Roughness, Reference surface D=1.425, RMS amplitude .75mm

It is much more difficult to discern any trends in roughness perception due to fractal

dimension by only examining the data plots. To check for the statistical significance of the

dimension and amplitude parameters we performed a logistic regression analysis. A logis-

tical regression analysis was chosen because subject responses are binary. After a subject

indicates which surface they believe is more rough, the result is recorded as positive or neg-

ative depending if they chose the test surface (positive) or the reference surface (negative).

For each case we fitted the subject responses to a multiple logistic regression model

of the form [81][82]

(5.4)
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using a software statistical analysis package [83]. Each coefficient  of the model repre-

sents a different experimental variable: fractal dimension, RMS amplitude, or a subject

variable. After computing the coefficients and their respective estimated standard errors,

we performed the Wald test for logistic regression models to check for statistical signifi-

cance [81]. The Wald test is conducted by first computing the univariate Wald statistic

, where  is the standard error of the ith coefficient. Next the two

tailed p-value of the Wald statistic is computed from the Chi-square on one degree of free-

dom distribution with a significance of =.05. For any p-value less than .05 we consider

the variable to be statistically significant.

The p-values for the coefficients are presented in tables 5-1 and 5-2. As expected

for both cases the p-value of the RMS amplitude is well below 0.05, indicating that this

variable is statistically significant. As the Wald statistic is positive in both cases, the like-

lihood of perceiving one surface rougher than the reference surface increases with increas-

ing amplitude. For the second case of higher fractal dimensions, 1.35 to 1.5, the p-value for

fractal dimension is 0.446. This indicates that this variable was not a significant factor in

perceiving surface roughness when comparing surfaces of fractal dimension greater than

1.35. Interestingly in the first case when comparing surfaces of lower fractal dimension, 1.2

to 1.35, the fractal dimension parameter has a p-value of .0128 and a negative Wald statis-

tic. With this p-value this variable does meet our test for statistical significance. This sug-

gests that when comparing fractal surfaces with dimensions between 1.2 and 1.35, the

surface with the lower fractal dimension contributes to it being perceived as rougher. 

This dichotomy between the higher and lower fractal dimension cases might exist

because as the fractal dimension decreases the surface becomes more coarse, enforcing the

perception of roughness. The difference between two surfaces with higher fractal dimen-

sions may not be noticeable to a person. This is supported by figure 5-9. Examining the two

trials where the RMS amplitude is the same, the percentage of subjects perceiving the sur-

face of dimension 1.5 and the surface of dimension 1.35 as more rough than the reference

surface of dimension 1.425, is 50% and 57%, respectively. This indicates a random prefer-

ence. Subjects reported that these two cases were difficult to distinguish.

βi

W βi SE βi( )( )⁄= SE βi( )

α
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Table 5-1. P-Values for Perceived Roughness when Comparing to Reference Surface 1: D=1.275, RMS 
Amplitude=.2781mm

Table 5-2. P-Values for Perceived Roughness when Comparing to Reference Surface 2: D=1.425, RMS 
Amplitude=.75mm

Coefficient Name Wald Statistic p-value
Fractal Dimension -2.48803 .0128
RMS Amplitude 4.47037 7.8085e-6
Subject 1 -1.027 .3044
Subject 2 -1.027 .3044
Subject 3 1.027 .3044
Subject 4 -1.5e-16 1
Subject 5 -.051 .9593
Subject 6 -1.815 .0696
Subject 7 -1.027 .3044
Subject 8 -1.027 .3044
Subject 9 -1.815 .0696
Subject 10 -1.027 .3044
Subject 11 -1.815 .0696
Subject 12 1.027 .3044
Subject 13 -1.027 .3044

Coefficient Name Wald Statistic p-value
Fractal Dimension -.76212 .446
RMS Amplitude 4.9217 8.581e-7
Subject 1 -6.63e-6 1
Subject 2 -1.734 .0829
Subject 3 -1.734 .0829
Subject 4 -2.504 .0123
Subject 5 -.966 .334
Subject 6 -.966 .334
Subject 7 -.966 .334
Subject 8 -.966 .334
Subject 9 -.966 .334
Subject 10 -.966 .334
Subject 11 -6.63e-6 1
Subject 12 -.966 .334
Subject 13 .719 .4721
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5.6 Conclusions
From examining both the data plots and the p-values the most important factor effecting the

perceived roughness of fractal surfaces is the RMS amplitude. The logistic regression indi-

cated that when comparing fractal surfaces with dimension 1.2-1.35, lower fractal dimen-

sion contributes to the perception of roughness. This agrees with previous work that

reported roughness perception increased with increasing groove width and increasing inter-

element spacing [72][73][74]. The changes in those surface parameters would have

decreased the fractal dimension as well. 

This effect does not hold when comparing surfaces of higher fractal dimensions -

those over 1.35. For these comparisons fractal dimension was statistically insignificant.

When comparing surfaces of the same RMS amplitude in the set of surfaces with fractal

dimension 1.35 to 1.5, the subjects’ selection were apparently random. 

In any case of fractal dimension, RMS amplitude is the overriding factor in deter-

mining surface roughness perception. When comparing surfaces of different RMS ampli-

tudes, subjects selected the surface with the higher amplitude as rougher 71.4% to 100% of

the time. 
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6Conclusions

This thesis has developed a structure suitable to study the roughness perception of natural

surfaces rendered on a haptic display system using fractals. Information was provided

about how surface roughness metrology is used in industry, its shortcomings, and how frac-

tals improves upon them. Fractal theory for two dimensional anisotropic surfaces was

developed. Synthesized profiles were applied to a roughness perception experiment. In this

chapter a summary of the work and the contributions is made. Possible areas where future

development could expand upon the work in this thesis are also discussed. 

6.1 Summary
The most significant idea developed by this thesis was a framework to characterize the

roughness of anisotropic surfaces exhibiting fractal Brownian behavior. Because fractal

Brownian behavior is so common in the surface roughness of natural objects and in

machined parts, the characterization can find use for a wide range of surfaces. The charac-

terization was simple in that it only used two functional parameters per direction, the fractal

dimension D, and the amplitude coefficient C. This is a vast improvement over the numer-

ous parameters of traditional surface metrology. The characterization is both useful for

measuring the roughness of surfaces and synthesizing new surfaces that exhibit realistic

roughness properties. New surfaces can be synthesized based on measured parameters or

be of arbitrary design.

This characterization took into account the sampling resolution of the measuring

device by utilizing the Fourier sampling theorem. This was necessary as the magnitude of

the power spectral density computed from a profile or surface height map shifts with chang-

ing resolution. This problem had previously occurred in fractal literature utilizing Fourier

transforms to compute spectral densities to measure fractal parameters. While the fractal

dimension is preserved with different sampling resolutions, the power measured decreases
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with decreasing resolution. This results in different amplitude coefficients being measured

for the same surface by different profiling instruments. By utilizing the Fourier sampling

theorem this decrease in power was accounted for to enable the measurement of consistent

amplitude coefficients for the same surface measured with different spatial resolutions.

 The fractal roughness characterization was developed as an alternative framework

for studying the haptic perception of rough surfaces. Instead of using artificial, determinis-

tic surfaces for pyschophysical perception studies, fractal surfaces can be used to better

reflect naturally occurring roughness. The fractal characterization of surface roughness is

also a better means of describing roughness than surface metrology methods. The fractal

methods give consistent results simplified to two parameters, while metrology methods

give perception scientists a confusing choice of parameters and inconsistent results. 

The roughness perception experiment performed utilized synthesized fractal sur-

face profiles displayed on a haptic interface. The flexibility of a haptic replay device was

used to display a large range of synthesized fractal profiles. It is much easier to simulate

these profiles than to machine them. This was a serious advantage in rapidly constructing

an experiment instead of manufacturing a series of test surfaces. New virtual surfaces can

be generated after initial testing of the experimental conditions and integrated within a day

at little cost. A new set of real surfaces would require another substantial investment of time

and resources to manufacture them. Subjects used a force feedback joystick to explore vir-

tual surface profiles and report which they thought were rougher. The most important factor

affecting the perceived roughness of the fractal profiles was the RMS amplitude of the sur-

face, although for a range of lower fractal dimensions, the fractal dimension did contribute

to the perception of roughness.

6.2 Contributions
The main contributions of this thesis were

• Framing an anisotropic characterization of two dimensional fractal Brownian sur-
faces.

• Applying the Fourier sampling theorem to solve the fractal amplitude characteriza-
tion problem for varying sensor resolutions.
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•Using a fractal surface characterization and synthesized fractal surfaces to study 
roughness perception with a haptic device.

6.3 Future Work Suggestions
There are several possible areas to extend the work of this thesis. Certainly many more per-

ception experiments of natural rough surfaces remain to be explored. The subjects’ ability

to discriminate between surfaces of similar amplitude but different fractal dimension is one

such test. A study of subjects’ perception of real fractal surfaces can now be done with a

consistent way to characterize such surfaces. The work in this thesis done on rendering

fractal surfaces on three dimensional force feedback devices such as the PHANToM was

very preliminary and needs further development to explore anisotropic surface perception.

Perhaps the most important idea in conducting these perception studies is that different

researchers can compare their results with a consistent method of quantifying rough sur-

faces.

The anisotropic fractal behavior described in this thesis was only over one set of

length scales. The framework could be extended for multi-fractal behavior, that is surfaces

that have different fractal dimensions over different scales [46]. The type of fractal

described in this thesis was limited to fractal Brownian surfaces, suitable for describing the

surface roughness of rocks and machined surfaces. Ways to encode the structural informa-

tion of a rock with the roughness information could be developed using a combination of

fractal techniques such as iterative fractal functions with fractal Brownian functions. It may

also be possible to encode this structural information using wavelets. Regardless of the

technique chosen to describe roughness, fractals remain an excellent method of character-

izing surface roughness.
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	3.1 Fractal Methods
	3.1.1 Fractal Dimension
	Fractals have been used to describe irregular shapes that do not lend themselves to description b...
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	3.3 Surface Characterization Experiment Description
	This experiment was conducted to explore the performance of various roughness metrics and fractal...
	3.3.1 Profile Sensing
	Before surface profiles could be collected for examination, different sensing devices were tried ...
	The test surface was composed of five copper strips approximately .09 mm thick with adhesive back...
	The micro-machined force probe, while providing high resolution, low noise profiles, failed catas...

	3.3.2 Experimental Setup
	Surface height profiles were collected with an Omron Z4M-N30V reflective laser displacement senso...
	A motorized linear stage moved the sample in front of displacement sensor at a fixed velocity. Th...

	3.3.3 Measurement Procedure Summary
	A summary of the surface measurement procedure is given in figure 3-7. The procedure describes th...


	3.4 Experiment Results
	3.4.1 Utilizing Surface Metrics
	Profiles of a concrete block were taken in five different areas. Typical concrete profiles are gi...
	The measured surface metrics of the concrete block are summarized in table 3-1. The amplitude par...
	The frequency content of the profile can be examined by looking a plot of its power spectral dens...
	The mean compass dimension was consistently smaller than the mean spectral measurement of the fra...
	Now we have set of parameters that describe four things about a profile, the shape of the height ...
	One hundred and sixty grit aluminum oxide and garnet sandpaper, along with painter's 100 grit san...
	There is also a difference between the fractal dimension measurements of the samples with the sam...
	Examining the height distribution parameter kurtosis indicates that none of the different types o...
	Originally the aluminum oxide and garnet sandpaper profiles contained large noise spikes that cau...

	3.4.2 Examining Synthesized Fractal Surfaces
	We used the Ganti's method of Fourier filtering [13] to synthesize surfaces using the fractal dim...
	The peak density metric was greatly dependent on the resolution we chose for generating our fract...

	3.4.3 Experiment Accomplishments and Applications
	Methods of surface roughness metrology were reviewed. Synthesizing new surfaces was accomplished ...
	Surfaces were compared using amplitude parameters, and a two-parameter fractal characterization. ...
	Synthetic surfaces were generated from the measured fractal parameters of painter's sandpaper usi...
	We are able to use two parameters to synthesize new surfaces, the fractal dimension, D and the am...



	4 Two-Dimensional Fractal Surfaces
	In this chapter surface roughness is described for the two-dimensional case. Analogs of the stati...
	4.1 Two-Dimensional Surface Metrology Methods
	In chapter 2 methods from the field of surface metrology were described to characterize one-dimen...
	4.1.1 Removing Gross Geometry
	In the one-dimensional profile case the surface roughness was separated from the form of the obje...
	(4.1)
	to the surface data, before any amplitude statistics are computed [14][18]. A higher order polyno...
	(4.2)

	4.1.2 Statistical Parameters for 2-Dimensional Surfaces
	Several 1-D profile metrics such as the root mean square amplitude, skew, and kurtosis, have 2-D ...
	Amplitude parameters are widely used to describe the magnitudes of the departures of profiles and...
	(4.3)
	integrated over a surface area A. The discrete form of Sq can be computed from [18]
	(4.4)
	where M and N bound the ordinates in the x and y directions. While insensitive to the sampling in...
	Symmetry of the distribution of the surface height ordinates is measured by the skew parameter. T...
	(4.5)
	Kurtosis measures the peakedness or bluntness of the surface height distribution. The discrete fo...
	(4.6)
	The way in which the surface profile skew and kurtosis describe the shape of a height distributio...
	Describing the spatial properties of surfaces typically begins with peak counting. For one-dimens...
	(4.7)
	where is the number of summits and valleys, and is the product of the interelement spacing in the...

	4.1.3 Spectral and Correlation Methods for Anisotropic Surfaces
	The parameters discussed in section 4.1.2 give no insight about whether or not the surface proper...
	The autocorrelation function is frequently used to analyze observational data with random charact...
	(4.8)
	The computation of the AACF is completed by normalizing with the value of the ACVF at the origin,...
	(4.9)
	An example of an AACF of an isotropic surface is given in Figure 4-1 on page 49. At the origin th...
	(4.10)
	where df is the fastest decay distance to 0.2 on the normalized AACF, ds is the slowest decay dis...
	In surface metrology surfaces frequently have a prominent texture left by the manufacturing proce...
	(4.11)
	and then squaring the magnitude of the complex Fourier pair to find power spectral density
	(4.12)
	An example of a power spectral density function of a surface is given in figure 4-2. In this part...
	The texture direction of a surface or lay direction, Std is defined as the angle where the maximu...
	Using Str and Std to analyze geological materials isn’t necessarily appropriate because they are ...
	This section does not provide an exhaustive set of parameters available to describe surfaces. Add...


	4.2 Fractal Methods
	In chapter three fractal methods for describing one-dimensional profiles of rough surfaces were d...
	4.2.1 Measuring the Fractal Dimension of Surfaces
	Many of techniques used to measure the fractal dimension of profiles, such as the compass divider...
	Analogous to the divider method, triangular tiling of the surface also uses a Richardson plot to ...
	4.2.1.1 Measuring Fractal Dimension with Power Spectral Density Functions
	The two-dimensional Fourier transform has found applications in image analysis, television displa...
	(4.13)
	where k is the vector spatial frequency and is the euclidean distance. The fractal dimension can ...
	(4.14)
	where E is the euclidean dimension [12]. By substituting equation 4.14 into equation 4.13 and set...
	(4.15)
	This proportionality relationship will be the basis used to model rough surfaces. Now we will use...
	The APSD magnitudes at an angle are selected by forming a one-dimensional frequency magnitude mat...
	(4.16)
	This is the fractal dimension for that angle. The angle is varied to build up a collection of fra...
	In addition to computing the APSD magnitudes the phase space should also be calculated. While the...
	(4.17)
	A random phase space for an isotropic fractal is shown in figure 4-6.


	4.2.2 Characterizing Surfaces Review
	A number of research papers have used the Weierstrass-Mandlebrot function as a fractal characteri...
	(4.18)
	where A is an amplitude coefficient and is the inverse of the sample length and must be greater t...
	(4.19)
	Using this function the fractal dimension D and the amplitude coefficient A provide a two- parame...
	To get around the scale invariance problem in the one-dimensional profile case Ganti and Bhushan ...


	4.3 Structure Functions
	Structure functions have been used in the study of optics [63], stratified media [62], fluid mech...
	One previous work with surface metrology and structure functions used a two dimensional structure...
	4.3.1 Relating Structure Functions to Fractal Parameters
	The structure function was discussed in chapter 2 in conjunction with computing the amplitude coe...
	(4.20)
	where C is a constant and m can be related to the fractal dimension. A similar relationship betwe...
	(4.21)
	where
	(4.22)
	Although equations 4.20 through 4.22 were developed for locally isotropic fields, we will use the...

	4.3.2 Computing the Structure Function For Surfaces
	In field form the structure function is the expectation value of the difference squared between a...
	, (4.23)
	For computing the discrete form of the structure function of a field we turn to circular convolut...
	(4.24)
	, ,
	for a square field of size N+1 where the points are equally spaced in the x and y directions.

	4.3.3 Examples of Structure Functions
	Figure 4-7 shows the structure function of the isotropic surface represented by the APSD in figur...
	Now the structure function of an anisotropic surface is taken. An anisotropic surface is generate...
	The structure function for this surface is given in figure 4-9. Looking at figure 4-9 illustrates...


	4.4 Sythesizing Fractal Surfaces
	In this section we examine generating fractal surfaces with a power law, explore problems with re...
	4.4.1 Generating Isotropic Fractal Surfaces
	The procedure for generating a two-dimensional surface with fractal Brownian motion behavior is s...
	(4.25)
	The magnitudes of the Fourier coefficients are defined as the power spectral density [41]
	(4.26)
	where A is the complex matrix of the Fourier coefficients with indices i and k. Our Fourier matri...
	Assignment of the Fourier matrix terms begins with defining the real and imaginary parts of the q...
	(4.27)
	i=1,2,...N/2. k=1,2,...N/2
	where random sign is a random positive or negative sign, and rand is a random number from 0 to 1....
	(4.28)
	The coefficient is finally completed by substituting equation 4.25 into equation 4.26, taking the...
	(4.29)
	In equation 4.29 we have explicitly substituted the discrete scaled frequency for the frequency v...
	As the power spectral density is symmetric, the quadrant II magnitudes are equal to the quadrant ...
	(4.30)
	where i0=N-i, and k0=N-k.
	To find the coefficients of the quadrants I and III the procedure outlined in equations of 4.25 t...
	(4.31)
	At the origin i=0, k=0 equation 4.29 will to tend to . For this case we set A(0,0)=0. This simply...
	Once all the Fourier coefficients are determined the surface can be computed by using the discret...
	(4.32)
	The surfaces generated for this research were computed in Matlab® using the fast inverse Fourier ...

	4.4.2 Sampling Theorem
	Previously in Section 4.2.2 we described the shifting power spectrum when different sensors are u...
	Functions that are sampled experience a reduction in their Fourier coefficients by a factor of 1/...
	(4.33)
	where ¡ is the Fourier transform operator and N is the number of points. Previously our surface w...
	(4.34)
	By substituting equations 4.34 and 4.33 into the one-dimensional relationship between power and s...
	(4.35)
	we get the fBm power relationship for sampled one-dimensional functions
	(4.36)
	The work in this thesis toward a two-dimensional fractal characterization that took sensor resolu...
	(4.37)
	where Dw and Dq are the sample spacings in the orthogonal x and y directions, respectively. By su...
	(4.38)
	In the simulations, surfaces are always square with the same number of ordinates on a side, and s...
	(4.39)
	We simulate isotropic surfaces using the spectral methods described in section 4.4.1 to check tha...
	(4.40)
	For a simulated isotropic surface generated with fractal dimension D=2.2, C=1 and a spatial resol...

	4.4.3 Fractal Description of Anisotropic Surfaces
	At this point we try to put everything in this chapter together to describe fractal anisotropic s...
	In figure 4-14 the amplitude coefficient C is plotted as a function of angle in polar coordinates...
	4.4.3.1 Synthesizing Anisotropic Fractal Surfaces
	With our approach to characterizing anisotropic surfaces stated, we can now apply it to fractal s...
	(4.41)
	Each time we form a coefficient its frequency coordinates are used to compute q. Then C and D is ...
	(4.42)
	As an example we take a look at a surface generated with a severe anisotropy. A surface was gener...
	We simulated anisotropic surfaces using the spectral methods described in section 4.4.1 to check ...
	(4.43)
	This surface was then sampled at a lower resolution of 2 mm/sample. Compared as a percentage of t...



	4.5 Haptic Display of Synthetic, Fractal, Two- Dimensional, Surfaces
	Once the surfaces are generated it would be instructive to haptically display them on a force fee...
	4.5.1 Haptic Display Setup Description
	The surfaces were haptically displayed using a PHANToM Desktop® from SensAble Technologies (see f...
	Interaction forces displayed to the user was computed by the Ghost v3.1 software API. A triangle ...

	4.5.2 Qualitative Results
	Compared to the dynamic contact model used in chapter five, the surfaces felt rubbery when render...
	Fractal surfaces of dimension 2.2 with a narrow, 1/16p wide anisotropy in the APSD were synthesiz...
	While these are positive qualitative results, further refinement with the contact modeling needs ...



	5 Roughness Perception of Fractal Surfaces
	One of our goals in synthesizing fractal surfaces is to be able to use them to conduct roughness ...
	5.1 Introduction
	The perception of texture is an important means by which humans identify surfaces around them. In...
	Previously in chapter 3 we identified two parameters, the amplitude coefficient and fractal dimen...

	5.2 Previous Work
	Earlier surface roughness perception experiments had subjects touch metal gratings consisting of ...
	A common feature of these experiments is that they use artificially constructed surfaces of prede...
	Other work has examined the use of stochastic methods for texture display [76][77]. In the presen...
	The work in this thesis used the fractal technique described in chapter 3 to simulate the surface...

	5.3 Experimental Setup
	Fractal simulated surface profiles were haptically rendered on an Immersion Impulse Engine 2000 f...
	Sixteen pairs of surfaces were given to subjects in random order. Assignment of surfaces as surfa...
	Two different reference surfaces were compared to eight surfaces to form the sixteen trial pairs....
	The surfaces used in the experiment were generated in 20 mm lengths and patched together to form ...
	The joystick can display forces of up to 8.9 N with a bandwidth of 120 Hz with each axis [78]. A ...

	5.4 Contact Model
	Subjects explore the virtual surfaces through the force feedback joystick. Using a dynamic model ...
	First a height profile as a function of position, yp(x), is generated by our fractal algorithm. T...
	(5.1)
	The contact point of the stylus against the surface is modeled as a frictionless contact point. A...
	The normal force is the sum of x and y component forces.
	(5.2)
	The y component represents the vertical reaction force. The x component represents the horizontal...
	(5.3)
	If the user’s position yi is ever greater than the profile height yp, contact is broken with the ...
	Because the subject can explore the surface freely, exact force levels displayed to the subject a...
	5.4.1 Model Parameters
	For our application the model parameters were tuned for feel to give our virtual stylus parameter...
	A fractal profile used in the subject perception experiments was selected for the model force sim...
	The profile of figure 5-4 was used as the input of a Matlab model of the virtual stylus. The mode...
	An exploration speed of 20 mm/s is quite slow. In reality most subjects explored surfaces at an e...
	In practice it was found that although a small amount of mass improved the feel of the haptic dis...

	5.4.2 Qualitative Model Feel
	It has been reported that surfaces modeled without friction feel glassy [80]. While we did not us...
	Qualitatively, interactions with fractal surfaces with smaller RMS amplitudes (.2mm-.27mm) using ...


	5.5 Data and Analysis
	Figures 5-8 and 5-9 show the percentage of subjects perceiving a surface rougher than a reference...
	Looking at figures 5-8 and 5-9 across the RMS amplitude axis, both cases show that surfaces with ...
	It is much more difficult to discern any trends in roughness perception due to fractal dimension ...
	For each case we fitted the subject responses to a multiple logistic regression model of the form...
	(5.4)
	using a software statistical analysis package [83]. Each coefficient of the model represents a di...
	The p-values for the coefficients are presented in tables 5-1 and 5-2. As expected for both cases...
	This dichotomy between the higher and lower fractal dimension cases might exist because as the fr...

	5.6 Conclusions
	From examining both the data plots and the p-values the most important factor effecting the perce...
	This effect does not hold when comparing surfaces of higher fractal dimensions - those over 1.35....
	In any case of fractal dimension, RMS amplitude is the overriding factor in determining surface r...


	6 Conclusions
	This thesis has developed a structure suitable to study the roughness perception of natural surfa...
	6.1 Summary
	The most significant idea developed by this thesis was a framework to characterize the roughness ...
	This characterization took into account the sampling resolution of the measuring device by utiliz...
	The fractal roughness characterization was developed as an alternative framework for studying the...
	The roughness perception experiment performed utilized synthesized fractal surface profiles displ...

	6.2 Contributions
	The main contributions of this thesis were

	6.3 Future Work Suggestions
	There are several possible areas to extend the work of this thesis. Certainly many more perceptio...
	The anisotropic fractal behavior described in this thesis was only over one set of length scales....
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