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The power spectral density 1PSD2, in its two-dimensional form, has been designated as the preferred
quantity for specifying surface roughness on a draft international drawing standard for surface
texture. The correct calculation of the one-dimensional PSD from discrete surface profile data is given,
and problems in using fast Fourier-transform routines that are given in some of the standard reference
books are flagged. The method given here contains the correct normalizing factors. Twoways to reduce
the variance of the PSD estimate are suggested. Examples are shown of the variance reduction possible
in the PSD’s.
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1. Introduction
Characterization of optical surfaces frequently in-
volves the power spectral density function, often
called the power spectral density 1PSD2. It can be
calculated from measurements of the bidirectional
reflectance distribution function 1BRDF2 or from sur-
face profiles made by an optical or a mechanical
profiler. The PSD, in its two-dimensional form, has
been designated as the preferred quantity for specify-
ing surface roughess.1 Because different types of
measuring instruments have different surface spatial
bandwidth limits, the rms roughness that would be
measured with a specific type of instrument can be
determined by the integration of the two-dimensional
PSD between the surface spatial frequency band-
width limits that are appropriate for that particular
instrument. As is shown in this paper, in order to be
consistent with PSD values obtained from various
types of instruments, the area under the two-sided
PSD curve should equal d2, the square of the bandlim-
ited rms roughness for the sample.

In principle, the method of obtaining the PSD from
measured surface profile data is straightforward.
One can take the square of the Fourier transform of

the surface profile or take the Fourier transform of
the autocovariance function that has been calculated
from the surface profile, both of which should yield an
identical estimate of the one-dimensional PSD.2
There are well-documented ways of converting a
one-dimensional PSD into the two-dimensional form.3,4
The problem is in obtaining the correct one-dimen-
sional PSD from one-dimensional surface profiles.
Although the equations are explicit in integral form,
actual surface data are discrete digitized data points,
each of which is an average over the area covered by
the probe of the profiler, and the profile is of a finite
length.5

Generally speaking, to obtain a true PSD of a
surface that has random roughness, we must take an
ensemble average of PSD estimates calculated from
profiles made at many different places on a surface.
A PSD calculated from a single profile measurement
is meaningless because the graph is exceedingly noisy
and nonreproducible. PSD estimates from surface
profiles taken on different parts of the same isotropic
surface are inconsistent, and, for a given spatial
frequency, they can differ by orders of magnitude.

To obtain an ensemble average PSD from surface
profile data, there are two options. A large number
of profiles can be taken at different places on the
surface, the one-dimensional PSD estimate calcu-
lated from each profile, and the resulting graphs
averaged together to obtain a smooth, noise-free
curve. Realistically, to obtain an acceptably smooth
PSD for surface profiles that contain 1000 to 5000
data points, this means averaging together at least 20
PSD estimates from profiles taken at different places
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on the sample. Taking this many profiles is exceed-
ingly time consuming, so this option is not practical.

The second option is to smooth the PSD estimate of
a single profile 1or a small number of profiles2 without
introducing artifacts. When the profile length repre-
sents a much lower surface spatial frequency than is
needed in the PSD, i.e., when the correlation length of
the relevant surface features is much shorter than the
total profile length, the profile can be broken into
small pieces, the PSD estimate calculated from each
subprofile, and the estimates averaged together. Of
course, when this method is used, the low-frequency
components in the original surface profile are lost.
Both variance reduction methods, which are attempts
to achieve the ideal ensemble average condition, are
discussed in this paper. They both yield PSD curves
that should represent the surface structure in the
bandwidth region determined by the profile measure-
ments.

Throughout the paper, we are assuming that the
surface topography is random and isotropic. If there
is periodicity or unidirectional surface structure, pro-
files need to be taken parallel and perpendicular to
the structure direction, and the one-dimensional PSD
calculations need to be handled separately. Conver-
sion to the two-dimensional PSD has already been
discussed for this case.3,4

A frequent problem and an area of confusion in
calculating PSD’s from surface profiles arise in obtain-
ing the correct normalizing factor for the PSD. We
realize that the general subject of normalization is
well documented in the fast Fourier-transform 1FFT2
literature, but considerable areas of confusion can
arise. For example, there are numerous books that
describe methods of estimating power spectra, and
these methods may involve questions of one sided
versus two sided, sum-squared amplitude, mean-
squared amplitude, or time-integral-squared ampli-
tude. Thus it may not be totally obvious as to how
surface roughness profile measurements can be re-
lated to the PSD and be compatible with BRDF
measurements or theory. It is not necessarily
straightforward to change from the time and fre-
quency domain to the length and surface spatial
wavelength domain, and there are numerous ex-
amples in the literature 1which are not referenced
here2 in which authors have incorrect normalizing
factors on their PSD’s.

The purpose of this paper is to help clarify some of
these possible areas of confusion. We discuss the
calculation of PSD’s specifically with surface rough-
ness in mind. We hope to clarify how the one-
dimensional PSD can be calculated correctly and to
flag problems in using FFT routines given in some of
the standard reference books. Although the meth-
ods presented here may not be the only way to achieve
correct normalized one-dimensional PSD’s, they will
at least alert the experimenter to problem areas and,
it is hoped, will help make future-published PSD’s
accurately represent the surface statistics.

In this paper we discuss the basic theory we have
used for obtaining the one-dimensional PSD from
surface profile data, both in the integral form and in
the digitized form. We show that the PSD obtained
from digitized data has the correct normalizing factor
by calculating the area under the two-sided PSD
curve and showing that it is equal to d2, as measured
by a surface profiler.

2. Power Spectral Density of Surface Roughness

2.A. Basic Theory
In the theory presented here, we restrict the discus-
sion to the calculation of a one-dimensional PSD from
surface profile data and show how this relates to a one
dimensional BRDF, which describes scattering con-
fined to a plane. For isotropic random surface rough-
ness, the one-dimensional measured PSD can be
modeled with an analytic function and then used to
obtain an estimate for the corresponding two-dimen-
sional PSD. This procedure is discussed elsewhere,6
as is the two-dimensional BRDF.6

If z1x2 is the surface roughness height as a function
of distance x, a finite-length Fourier transform may be
written:

Z1k2 5 e
0

L

dx z1x2exp12ikx2, 112

where k is the wave number. Because surface profile
measurements of z1x2 yield digitized data, we assume
that the surface roughness data set consists of N
values for z1x2 that are measured at equally spaced
intervals Dx over a total length L 5 NDx. If these
discrete surface height data are adjusted to have a
zero mean value, i.e., there are equal heights above
and below a mean surface level, and are denoted by
z1n2, n 5 0 = N 2 1, then the mean square of these
N values, called the mean-square roughness d2, is
given by

dN
2 5

1

N o
n50

N21

z21n2. 122

This value is bandwidth limited, as the magnitude of
the highest surface spatial frequency resolved in the
measurement process is fc 5 12Dx221, which is the
Nyquist frequency.

The digital analysis in this paper is based on
standard FFT methods. The digital equivalent of
Eq. 112 yields the Fourier transform Z1m2 as

Z1m2 5 Dx Ẑ1m2, 2N@2 # m # N@2, 132

where

Ẑ1m2 5 o
n50

N21

z1n2exp122pimn@N2,

2N@2 # m # N@2. 142
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Distance and wave number are now digitized with
x 5 nDx and k 5 2pfm. The fm 5 m@1NDx2 are the
spatial frequency components of the surface rough-
ness. Note that typical FFT routines evaluate only
the Ẑ1m2, as in Eq. 142, but to have the proper units and
magnitude for the PSD, the coefficient must be in-
cluded, as in Eq. 132.

When the rms roughness d 9 l, a first-order
perturbation theory calculation of the one-dimen-
sional BRDF for scattering of a normally incident
monochromatic plane wave of wavelength l by ran-
dom surface roughness yields

BRDF 5 12p@l23cos u F1u, l27 0Z1k2 02

L 8 , 152

where u is the scattering angle, F1u, l2 is an optical
factor unrelated to surface roughness, and 7· · ·8 de-
notes ensemble average. The averaged PSD is given
by

PSD 5 7 0Z1k2 02

L 8 , 162

where the wave-number argument for scattered light
is k 5 12p@l2sin u. Actually, k is a vector that, in this
one-dimensional analysis, can be positive or negative.
As shown in Fig. 1, positive and negative values of m
correspond to scattering angles u in the first and the
second quadrants, respectively. Also, the argument
of Eq. 162 can be k . 2p@l, but this pertains to
evanescent fields rather than scattered fields that
propagate away from the surface.

2.B. Unaveraged Power Spectral Density
In this subsection, we consider one estimate of a PSD
and realize that the true PSD is an ensemble average
of many such estimates. We call the PSD estimate
the unaveraged PSD. This is consistent with the
software packages that accompany all commercial
profilers that calculate an unaveraged PSD from a
single profile. This usage is so widespread that
researchers almost never take an ensemble average of
PSD estimates when reporting measured PSD’s.

We view the PSD as two-sided. Here we use the
FFT periodogram method to estimate the PSD from
surface profile measurements. With Eqs. 132 and 142,
we convert Eq. 162 to the digital equivalent of an
unaveraged PSD function as

0Z12pf 2 02

L
=

0Z1m2 02

NDx

5
Dx

N 0o
n50

N21

z1n2exp122pimn@N202 . 172

Note that the argument k 5 2pf = 2pm@1NDx2. The
only part of this digital conversion of k that changes is
the index m. Thus we show the argument of Z as
simply m. As in Eq. 112, the exponent of e in Eq. 172 is
2ikx = 2i32pm@1NDx241nDx2. We now define the
unaveraged PSD, PN1m2, as

PN1m2 5
Dx

N 0o
n50

N21

z1n2exp122pimn@N202 5 NDxP̂N1m2,

2
N

2
# m #

N

2
, 18a2

where

P̂N1m2 5 3 0 Ẑ1m2 02

N2 4 , 2
N

2
# m #

N

2
. 18b2

We recall that standard FFT routines typically evalu-
ate only the summation term Ẑ1m2 and that aliasing
requires special treatment of the m 5 6N@2 terms.
Also, as discussed below, many7–9 PSD definitions are
given in the form of Eq. 18b2. However, to have the
proper units and magnitude for PN1m2, the coefficient
Dx@N must be included with the summation term in
Eq. 18a2. The PN1m2 is a sample PSD estimate, which
is based on a single surface profile that contains N
points. As mentioned above, this estimate has a
large variance about the true PSD that is shown in
the numerical results. We know from PSD estima-
tion theory using FFT methods7,8 that, for a given fm,
the variance of PN1m2 is independent ofN and approxi-
mately proportional to the square of the true PSD.
In other words, PSD’s calculated from surface profile
data measured in different places on the same surface
will yield widely varying and inconsistent results for a
given fm. This problem can be partially overcome if
K PM1m2 functions are calculated from subsets of a
single profile, each having M points, where M , N,
with N being the number of points in the total profile.
The K PSDM1m2 functions may then be averaged so
that the variance in the PSD is reduced by 1@K. This
topic is discussed further in Subsection 2.C.

We may integrate the PSD over the Nyquist band-
width limits of surface spatial frequency to obtain the
area. Parseval’s theorem says that the area under
the PSD curve should equal the mean-square rough-
ness. This provides the proper normalization for the

Fig. 1. Schematic diagram of a normally incident beam on a
rough surface described by the random variable z1x2 and scattered
light at positive and negative scattering angles u.
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PSD. We obtain this result as follows:

e
2fc

fc

df
0Z12pf 2 02

L
5

1

L e
2fc

fc

df 0e
0

L

dx z1x2exp122pifx202.
192

Letting dx = Dx, df = 1NDx221, L 5 NDx, x 5 nDx, and
f 5 m@1NDx2 in Eq. 192 yields the equivalent digital
expression:

1 1

NDx2
2

31⁄20Z12N@2202 1 o
m521N@2211

1N@2221

0Z1m202 1 1⁄20Z1N@22024
5

1

N2 o
n50

N21

o
n850

N21

z1n2z1n8251⁄2 exp32pi1n2n824

1 o
m521N@2211

1N@2221

exp32pim1n2n82@N4

1 1⁄2 exp3pi1n2n8246 . 1102

The terms in parentheses on both sides of Eq. 1102
contain the sums over the index m and reflect the
aliasing inherent in discrete Fourier transforms,
where the m 5 6N@2 terms have been written
explicitly and weighted 1@2 of the other terms in the
sum. The right-hand side of Eq. 1102 may be greatly
simplified, as the term in the parentheses on the
right-hand side reduces to Ndn,n8, where dn,n8 is the
Kronecker d function. The Kronecker d function and
Eq. 122 permit the double sum on the right-hand side of
Eq. 1102 to be reduced to NdN

2 . Then Eq. 1102 becomes

1 1

NDx2
2

31⁄20Z12N@22 02

1 o
m521N@2211

1N@2221

0Z1m2 02 1 1⁄20Z1N@22 024 5 dN
2 . 1112

Equation 1112 may be rewritten in terms of the PSD, as
defined in Eq. 18a2, as

1

NDx 31⁄2PN12N@22

1 o
m521N@2211

1N@2221

PN1m2 1 1⁄2PN1N@224 5 dN
2 . 1122

This result shows that the area under the two-sided
PSD curve equals dN

2 , the bandwidth-limited mean
square of the surface roughness.

Many references 1for example, Refs. 7–92 give alter-
native definitions for the PSD as a one-sided function
defined only for m 5 0, 1, 2, . . . , N@2. Because
Parseval’s theorem must still be satisfied, the PSD
must be scaled accordingly. Some one-sided defini-
tions appear as

P̂N1m2 5 11@N22 0 Ẑ1m2 02, m 5 0 or N@2, 113a2

P̂N1m2 5 12@N22 0 Ẑ1m2 02, m 5 1, 2, . . . , 1N@22 2 1,

113b2

because 0Z1m20 is even for real data z1n2, or as

P̂N1m2 5 11@N22 0 Ẑ1m2 02, m 5 0 or N@2, 114a2

P̂N1m2 5 11@N223 0 Ẑ1m2 02 1 0 Ẑ1N 2 m2 024,

m 5 1, 2, . . . , 1N@22 2 1. 114b2

Both definitions as given in Eqs. 1132 and 1142 automati-
cally satisfy

o
m50

N@2

P̂N1m2 5 dN
2 . 1152

Although Eqs. 1132–1152 are concise, they are unphysi-
cal for use as a PSD to relate roughness to the BRDF,
as they are defined only for positive frequencies and
are a factor of 2 too large. Many FFT-based commer-
cial routines for calculating PSD’s include smoothing
algorithms and yield a one-sided PSD.10 Modification
to convert one-sided PSD software to yield two-sided
PSD’s should be straightforward. Nevertheless, in
order for the PSD estimates to have the proper units
and magnitudes to represent the spectra of surface
roughness physically, the PSD should be two sided
and have coefficients as shown in Eq. 18a2.

2.C. Averaged Power Spectral Density
To calculate the scattering from an optical component
such as the BRDF in Eq. 152, ideally we would like to
have an ensemble average of PSD estimates, 0Z1k202@L,
associated with the spatial components of surface
roughness. One way to obtain such an average is to
assume statistically ergodic and stationary surface
statistics and to take multiple surface profiles of
length N, calculate PN1m2 results from each profile,
and then form an averaged PSD. Although this
process is time consuming, as it is necessary to take
many independent profile measurements, it has been
done here for one case, and the results are presented
in Section 3.

Another way to obtain an ensemble average of PSD
estimates is to assume that the surface profile is
many times longer than the correlation length of the
surface roughness. We can then break this single
profile into many shorter segments, each significantly
longer than the correlation length, and can again
form an average PSD as outlined below or from
existing software.7,8 In this case, the variance of the
PSD estimate is significantly decreased at the ex-
pense of losing low spatial frequency information and
having fewer spatial frequency values. We interpret
this result as an ensemble average of the one-
dimensional, two-sided PSD of the surface roughness.

From the second method, we can calculate average
PSD estimates as follows. Assume that we have a
surface profile of length L that contains N data
points. We may subdivide this total length into K
segments 1which may overlap2, each having M 1a
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power of 22 values. We can calculate unaveraged
PSD estimates, PM

1k21m2, for segments k 5 1 = K, where

PM
1k21m2 5

Dx

M 0o
n50

M21

z1n2 w1n2exp12pimn@M202 ,

2
M

2
# m #

M

2
, 1162

and where the right-hand side of this equation should
be multiplied by 1@2 when m 5 6M@2. We have
introduced a window function w1n2 to reduce high-
frequency leakage. The set of K PSD estimates may
then be averaged to yield

PA1m2 5
S

K o
k51

K

PM
1k21m2, 1172

where a scaling factor S has been introduced. We do
this because the window function affects the PA1m2
values so that Eq. 1122 is no longer satisfied. We
determine the scaling factor S by calculating the area
under the PA1m2 curve. Analogous to Eq. 1122, we use
Eq. 1172 and calculate the area under PA1m2, which
yields

1

MDx 31⁄2PA12M@22 1 o
m512M@2211

1M@2221

PA1m2 1 1⁄2PA1M@224
5

S

K o
k51

K

dk
2 5 Sd2, 1182

where dk
2 is the mean-square roughness of the win-

dowed data associated with the area under the
PM

1k21m2 curve. We choose S such that

Sd2 5 dN
2 . 1192

This forces the area under the averaged PA1m2 curve to
be equal to dN

2 . The number of segments K is deter-
mined by the integer part of 1 1 1N 2 M2@Ms, where
Ms is the amount of segment overlapping, if any.
Segments k 5 1 = K contain data points
z31k 2 12Ms 1 14 = z31k 2 12Ms 1 M4.

3. Numerical Results
The numerical results presented here depend primar-
ily on FFT software that is commonly available.
Commercial software7,8 is also available to produce
smoothed PSD estimates. The averaged and unaver-
aged PSD results shown in this section use the
relations derived in Section 2. We show PSD esti-
mates calculated from surface profiles taken on two
different beryllium surfaces, samples 8 and 18, which
have been studied previously.6 Sample 8 was well-
polished bulk beryllium with a minimum of oxide
inclusions. It showed the typical grain structure of
bulk beryllium when viewed under a Nomarski micro-
scope. Sample 18 was sputtered beryllium on a
smooth 1,5-Å rms roughness2 silicon carbide sub-

strate. The sputtered beryllium was not polished.
When viewed under a Nomarski microscope, the
surface appeared to have a uniform distribution of
tiny grains.

Surface profile data for samples 8 and 18 were
taken with Dx 5 0.37 µm 11000-µm profile length2 and
Dx 5 0.037 µm 1100-µm profile length2. For the
1000-µm profile length, samples 8 and 18 had rms
roughnesses of 6.4 and 26.7 Å, respectively. The rms
roughnesses were 6.2 and 34.9 Å, respectively, for the
100-µm profile length. Note that the roughnesses
for the polished beryllium 1sample 82 were the same
for the two profile lengths, indicating that there was
no fine structure on the 100-µm profile that was being
missed on the 1000-µm profile, and, conversely, that
the long spatial wavelength surface structure had
heights that were similar to the shorter spatial wave-
length structure, suggesting a fractal surface. On
the other hand, the 100-µm profile roughness was
larger for the sputtered beryllium 1sample 182, suggest-
ing that the sputtered grains were being better de-
fined with the shorter sampling distance. The auto-
covariance length of sample 8 was ,0.4 µm, which
was somewhat longer than that of sample 18, with an
autocovariance length of ,0.2 µm.

The unaveraged PSD results that follow were ob-
tained from Eq. 182. The averaged PSD results were
obtained with Eqs. 1162–1192, and the window function

w1n2 5 1 2
2

M 2 1 0n 2
M 2 1

2 0 . 1202

Figure 2 shows unaveraged and averaged PSD’s for
sputtered beryllium, sample 18, on a log–log plot
versus spatial frequency, with Dx 5 0.37 µm. The
averaged PSD curve has been displaced an order of
magnitude higher for clarity. The PSD is in units of
angstroms squared times micrometers, and the spa-

Fig. 2. Graph of log1PSD2 versus spatial frequency for sample 18
calculated from surface profile data. The digitization interval
Dx 5 0.37 µm, and the profile length is 1000 µm. The averaged
and the unaveraged PSD’s are shown where the averaged curve is
intentionally displaced 1 order ofmagnitude above the unaveraged
curve.
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tial frequency is in units of inverse micrometers.
The total number of data points N 5 2661, M 5 256,
and Ms 5 128, which yields K 5 19 profile segments.
The smoothing calculation is considerably easier than
taking 19 independent profiles on different parts of
the surface and then averaging the PSD’s. Figure 3
shows comparable PSD curves for the same sputtered
beryllium surface with Dx 5 0.037 µm. Figures 2
and 3 are combined in Fig. 4, which shows the
averaged PSD’s plotted together on the same log–log
graph, where the X and n symbols are for Dx 5 0.37
and 0.037 µm, respectively. Because this sample
has an autocovariance length of ,0.2 µm, the shorter
sampling interval data, Dx 5 0.037 µm, should
provide the most accurate results at the higher
spatial frequencies 1the n curve2. On the other

hand, the longer sampling interval X curve should be
more reliable at the low spatial frequency end. Thus
we interpret the falloff of the X data to be caused by
lack of resolution, and the two curves of Fig. 4 appear
to be consistent.

Comparable results for polished beryllium, sample
8, are shown in Figs. 5–7, which correspond to Figs.
2–4 for sputtered beryllium, sample 18. Because
polished beryllium has a distribution of grain sizes,
the PSD curve has a negative slope from spatial
frequencies of 0.01–,2 µm21 and then drops precipi-
tously at higher frequencies, where little grain struc-
ture is present. On the other hand, sputtered beryl-
lium, sample 18, contains large numbers of grains
that have sizes in the 0.1–1-µm21 range. For lower
spatial frequencies, the substrate flatness dominates.

Fig. 3. Same as Fig. 2, except Dx 5 0.037 µm, and the profile
length is 100 µm.

Fig. 4. Graph of log1PSD2 versus spatial frequency for sample 18,
with the averaged curves in Figs. 2 and 3 combined. The calcu-
lated values marked by X and n are for Dx 5 0.37 and 0.037 µm,
respectively.

Fig. 5. Graph of log1PSD2 versus spatial frequency for sample 8
calculated from surface profile data. The digitization interval
Dx 5 0.37 µm, and the profile length is 1000 µm. The averaged
and unaveraged PSD’s are shown where the averaged curve is
intentionally displaced 1 order ofmagnitude above the unaveraged
curve.

Fig. 6. Same as Fig. 5, except Dx 5 0.037 µm, and the profile
length is 100 µm.
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Because sputtered beryllium, sample 18, hasmostly
high spatial frequency structure with a minimum of
low spatial frequency components, we used it to verify
statements made above concerning variance reduc-
tion by taking multiple profiles at different places on
the surface and forming averages of the PSD’s. For
these tests, we used Dx 5 0.037 µm. We took 20
160-µm-long profiles 14232 points@profile2 at differ-
ent places on the surface. Figure 8 shows unaver-
aged and averaged PSD’s calculated for the first 4096
data points in the profiles; again the averaged PSD
curve has been displaced an order of magnitude
higher for clarity. The data in Fig. 8 have been
plotted as log1PSD2 versus a linear spatial frequency
scale. Although there are 2048 data points in these

PSD curves instead of the 128 points in the PSD
curves in Fig. 3, the variance reduction appears to be
comparable. When the PSD’s from 10 profiles were
averaged together, the variance was approximately
twice that of the average of 20 PSD’s shown in Fig. 8.
In addition, PSD’s were calculated from single pro-
files containing 8192, 4096, and 2048 points. The
variances of these curves were similar, also in agree-
ment with theory, which states that the variance of a
PSD estimate is independent of the number of points
in the profile.

4. Conclusions
We have shown how to calculate a one-dimensional
PSD from digitized surface profile data using the
correct normalizing factor, so that the PSD is consis-
tent with one-dimensional PSD’s obtained from scat-
tering measurements. Because the PSD estimates
from digitized surface profile data inherently have
large variances relative to the true PSD, two smooth-
ing methods have been suggested. One method is to
take K profiles on different parts of the surface,
calculate the PSD from each profile, and then form an
averaged PSD. However, this method is time con-
suming, because it is necessary to take as many as
10–20 profiles to reduce the variance sufficiently.
Another method is to break a profile intoK subprofiles
that need to be independent, i.e., the correlation
length between surface features must be much less
than the total profile length, then calculate PSD’s
from all the subprofiles and average them. Both
approaches have been demonstrated to work effec-
tively for data taken on two different beryllium
surfaces.

This study was supported by Naval Air Warfare
Center Independent Research Funds.
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