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A Review of  Methods  Used to Determine  the Fractal  
Dimens ion  o f  Linear Features  I 

Brian Kiinkenberg 2 

An in-depth review of the more commonly applied methods used in the determination of the fractal 
dimension of one-dimensional curves is presented. Many often conflicting opinions about the dif- 
ferent methods have been collected and are contrasted with each other. In addition, several little 
known but potentially useful techniques are also reviewed. General recommendations which should 
be considered whenever applying any method are nmde. 
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I N T R O D U C T I O N  

Although an increasing number of  papers provide a theoretical basis for observ- 
ing fractal behavior in geomorphological phenomena, the selection of  a method 
which can provide a consistent and reliable determination of  the fractal dimen- 
sion remains unresolved. Many methods have been developed, but most have 
their practical and/or theoretical limitations. In this paper I will review many of 
the methods used to determine the fractal dimension of  curves or one-dimen- 
sional profiles. Theoretical bases for the methods described below can be found 
in a number of  texts and papers (e.g.,  Feder, 1988; Turcotte, 1992; Peitgen, 
JiJrgens, and Saupe, 1992). 

Determining the fractal dimension of linear features--natural features with 
a topological dimension of  one-- is  a process undertaken in a wide variety of 
fields (Table 1). Linear features exist in their own right (e.g.,  coastlines, river 
networks, fault traces), and a wide variety of  appropriate methods to determine 
their fractal dimension have been developed (Table 2). However, cuts or slices 
of greater dimensional phenomena (e.g., topographic contours or profiles) can 
also be analyzed using those same methods, methods which can be easier to 
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Table 1. A selection of Applications of Methods Used to Determine the Fractal Dimensions 
of Linear Features 

Method Applied to Comments Citation 

Area/perimeter 

Box counting 

Divider relation 

Kocak's law 
Power spectrum 

Digitized shorelines and 
contours 

Digital cloud images 

Digital images of craters on 
Mars 

Sinkhole perimeters 
Digitized shorelines and 

contours 
Photographs of vegetation 

River networks extracted 
from a DEM 

Fracture patterns determined 
from remote imagery 

Used physical dividers to 
measure lava flows 

Digitized contours Culling and Datko, 
1987 

Digitized shorelines and D -  elevation (increased) Goodchild, 1982 
contours 

Digitized shorelines Definite break at a Kent and Wong, 1982 
consistent distance 

Line skeletons o1 cave Exhibited fractal behavior Laverty. 1987 
passages contours D - elevation (increased) Roy et aL, 1987 

Drainage basin perimeters D - fairly consistent Breyer and Snow. 
(between 1.06-1.12) 1992 

Digitized cartographic lines D - scale of map MOiler, 1986, 1987 
Areas of lakes Kent and Wong, 1982 
Natural rock surfaces D" scale of analysis Brown and Scholz, 

1985 
Digital model of seafloor D" scale and direction, Fox and Hayes, 1985 

t~m I to 100? km 
Natural rock surfaces D - scale and direction, Power et at.,  1987 

from 10 -s to I0 ~ m 
Digitized waces of faults D" scale from I0 5?? to Scholz and Aviles, 

105 m 1986 

D" elevation (increased) Goodchild, 1982 

D -  constant from 0.5 km Kent and Wong, 1982 
to 20 km 

D constant between t and Lovejoy, 1982 
I000 km 

Woronow, 1981 

Larger sinkholes - fractal Reams, 1992 
D" elevation (increased) Goodchild, 1982 

Breaks in plot delimited Morse et al.,  1985 
vegetation types 

Above a certain scale the Tarbonton et aL, 1988 
network is space-filing 
(D" 2) 

D" multifractal from one Vignes-Adler et al., 
area; D -  1.5 from 1991 
another 

Lava shape is scale- Bruno et al.~ 1992 
invariant 

D - elevation (increased) 
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Table I. Continued 
i 

Method Applied to Comments Citation 

25 

Variogram Various geophysical Burrough, 1981, 1984 
phenomena 

Soil profiles Found very high values of Burrough, 1984 
D 

Soil pH Found very high values of Culling, 1986 
D 

Digitized maps Consistently identified two Culling and Datko, 
fractal regimes 1987 

DEMs Mixed results; D - direction Klinkenberg and 
and the method used to Goodchild, 1992 
create the DEM 

Ice sheet height profiles Clear fractal structure; D" Rees, 1992 
derived from Landsat data ice thickness 

implement, and require far less computational power, than those methods which 
must be used when analyzing the greater dimensional phenomena. In addition, 
reducing the dimensionality of, for example, a surface or volume, means that 
the nature of the fractal can be altered (Mandelbrot, 1989). Thus, although a 
topographic surface or a cloud are self-affine fractals (see discussion below), 
horizontal slices or contours through those phenomena exhibit self-similar be- 
havior, and the fractal dimension of the slice or contour can be directly related 
to that of the surface (Orey, 1970). This dimensionality-reduction process doesn't 
always alter the fractal nature since profiles of self-affine surfaces remain self- 
affine. 

Determining the fractal dimension of a self-similar feature is generally 
easier than determining the fractal dimension of a self-affine feature, as will be 
discussed in the following sections. Determining whether a one-dimensional 
feature is self-affine is also a simpler process. If one can interchange or rotate 
the axes of the coordinate system used to map the feature without producing 
any fundamental changes, then the feature has the minimum requirements for 
self-similarity. For example, exchanging the (x, y) values which define a contour 
line alters nothing essential--both sets of axes carry the same information. How- 
ever, one cannot exchange the (x, y) values of a topographic profile--even 
though both axes may be measured in the same units--since the vertical axis 
integrates different information (i.e., gravity) than does the horizontal axis. Even 
more obviously, the trace of a particle through time has axes which represent 
different information (time and distance). More formally, with self-affine fractals 
the variation in one direction scales differently than the variation in another 
direction (Mandelbrot, 1985). 
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Name of method 
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Table 2. Methods Used to Estimate the Fractal Dimension" 
I I 

Relation Estimate of the fractal dimension 

Area/perimeter A c~ p , - /o  Plot log A against log P,  slope is 
relation 2 / D  

A =area 
P = perimeter 

Box counting n e~ b - o  Plot log n against log b, slope is 
- D  

n = number of filled boxes, 
b = box size 

Divider relation L(r)  c~ r I - o  Plot log L(r)  against log r, slope is 
I - D  

Korcak's law 

L(r) = length of trail 
z = step size 
Nr(A > a) c~ a .o/2~ 

(Empirical relation for N,(A > a) = number of areas 
islands) above size a 

Line-scaling X - NV~; Y - N v' 

Vr H' = - -  
Vx 

X. Y = standard deviation of x-, 
),-coordinates, respectively (see 
text for details) 

Power spectrum P(to) c~ w "~  - z m  

Variogram 

P(w)  = the power 
w = the frequency 
( l(Zp - Zq)2l ) ot (dp,¢) (4 21J, 

Z e, Z,~ = elevations at points p 
and q 

dpq = distance between p and q 

Plot log N,(A > a) against log a, 
slope is - (D/2)  

1 
IfH' = 1, D = -  

V 
otherwise D = 2 - H' 

Plot log P(w)  against log w, slope 
is -(5 - 2D) 

Plot log ( [ . . .  ] ) against log dpq, 
slope is (4 - 2D) 

= statistical expectation. For references see sources listed in Table I and throughout the text. 

T h e  d i s t i nc t i on  b e t w e e n  se l f -a f f ine  a n d  s e l f - s i m i l a r  p rof i les  is an  e l u s i v e  
o n e ,  h o w e v e r  ( M a n d e l b r o t ,  1985).  C o n s i d e r  a f rac tu re  su r f ace .  O n e  c o u l d  a r g u e  
tha t  s i nce  the  fo r ce s  w h i c h  c r e a t e d  the  f rac tu re  a c t e d  d i f fe ren t ly  in d i f fe ren t  
d i r ec t i ons  ( i . e . ,  t he  s t r e s s  w a s  a n i s o t r o p i c ) ,  t he  r e su l t an t  prof i le  is a n a l o g o u s  to 
a t o p o g r a p h i c  prof i le ,  a n d  s h o u l d  t h e r e f o r e  be  c o n s i d e r e d  as a se l f -a f f ine  prof i le  
( see  Sake l l a r iou  e t  a l . ,  1991 for  a f u r t h e r  d i s c u s s i o n  o f  the  se l f -a f f in i ty  o f  rock  
s u r f a c e s ) .  T h a t  the  ma te r i a l  p rope r t i e s  t h e m s e l v e s  will  h a v e  an  o b v i o u s  ef fec t  
o n  the  na tu r e  o f  the  prof i le  a d d s  a f u r t h e r  c o m p l i c a t i o n .  T h u s ,  for  ana ly t i ca l  
p u r p o s e s ,  w h e t h e r  a prof i le  is s t u d i e d  as a se l f - a f f ine  c u r v e  o r  as a s e l f - s i m i l a r  
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curve may ultimately depend on the objectives of  the research (e.g., Carr and 
Warriner, 1987). 

The number of  methods which can be used to determine the fractal dimen- 
sion of  a linear feature is relatively large (Table 2), and new methods can (and 
are) always being derived. The type of linear feature analyzed, whether self- 
similar or self-affine, must be carefully considered when selecting an appropriate 
method. Some methods can work with features of either type, while others 
should only be applied to self-similar features or, if they are applied to self- 
affine features, must be applied in a very considered manner. For some methods, 
if the curve is self-similar, then the fractal dimension is computed one way. If 
the curve is self-affine, then the fractal dimension is computed in another way. 
The interpretation of the dimensions produced by the various methods also 
requires careful consideration of several aspects, such as whether the differences 
between (theoretical) expectations are the result of  the method (i.e., the practical 
implementation) or of the fractal model (Brown, 1987; Dubuc et al . ,  1989a; 
Andrle, 1992). 

Two main aspects of method-based problems can be identified. Is the method 
being used in a proper manner? This aspect is discussed in detail in the following 
sections. The second method-based problem relates to the usually statistical 
means by which the fractal dimension is calculated. If least-squares regression 
is used to determine the slope of a curve--and for most methods the fractal 
dimension is some function of slope-statistical considerations must be properly 
observed or the derived parameters may be suspect. Although the slope can be 
determined from a hand-drawn line (e.g.,  Mark and Aronson, 1984), the results 
can be unreliable. For that reason, and since confidence limits for the derived 
parameters are often also desired, a statistical procedure such as least squares 
is the preferred method (McBratney and Webster, 1986). This aspect is consid- 
ered further in the following sections. 

All of the methods described in this review (Table 2) produce a mono- 
fractal dimension. The literature on multidimensional fractals is a developing 
one (Lovejoy and Schertzer, 1986; Mandelbrot, 1988, 1989; Feder, 1988). Few 
of the methods presented herein have been (or even could be) extended to multi- 
fractal dimensional analyses, as has, for example, the box counting method by 
Lovejoy and Schertzer (1987). It is important to separate the observation of  
discrete fractal elements (cf. Andrle and Abrahams, 1989, 1990) from truly 
continuous multidimensionality since, in most cases, the question of whether a 
mono- or a multidimensional fractal is the more appropriate model has not been 
answered. The results of  any analysis must be carefully scrutinized for evidence 
of multidimensionality. One way to check for such behavior is to plot the re- 
siduals from the best-fitting line of slope and check for evidence of nonlinearity 
(Andrle, 1992). 

One drawback common to every method of obtaining the fractal dimension 
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is that discretization of the phenomenon being investigated will result in a meas- 
ured fractal dimension that is different from its theoretical fractal dimension 
(i.e., the dimension which would be obtained if we were able to work in con- 
tinuous space with its infinite detail). The coarser the discretization, the greater 
the expected difference. However, the direction that that difference will take is 
open to question (Gilbert, 1989, Table 1) found instances of both a decrease 
and an increase in the fractal dimension with greater decimation of the original 
data. Thus, to assume that discretization--achieved by removing finer details-- 
will always result in a lesser fractal dimension--as some authors have assumed 
(e.g., Shelberg, Moellering, and Lam, 1982)--is inappropriate. Since the im- 
plementations of some methods are themselves discretizations of continuous 
expressions, that, in itself, may affect the derived fractal dimension (Dubuc et 
al . ,  1989a). 

A different type of problem, one which afflicts many of the methods dis- 
cussed below, is that the dimension of the whole may not equal the dimension 
of the parts. Consider, for example, the case of horizontal cuts (e.g., contours) 
of a self-affine surface. For most surfaces, this will produce a suite of self- 
similar curves (Fig. 1). Matsushita, Ouchi, and Honda (1991) prove that the 
fmctal dimension of the entire suite of curves (De.~.) will generally be greater 
than the fractal dimension of a single curve ( D ~ )  extracted from that suite (Dsc. 

- • 

= I ~  0 " - < 9  o ° -  ~ < ~ >  

o 

; ' go i ' ' 0 1 20 50 60 

x 

Fig. 1. Contour plot of a fractal surface (D = 2.35). The fractal dimension of the bolded contour 
line is calculated to be 1.21. 
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< De.s.). The example they present, of curves derived from a fractal surface of 
dimension 2.5, shows D~+~. = 1.50 and, for the single longest curve, D .... = 
1.32 (also see Ouchi and Matsushita, 1992). 

Matsushita et al. (1991) present a formula which relates the fractal dimen- 
sion of a single contour line to the fractal dimension of the surface: D .... = 
(2/1 + H). In comparing the results of that formula to the more often used D 
= 2 - H we can see why so many studies have reported that contour-based 
dimensions are often lower than those reported for the surface (Fig. 2). This 
fact should be taken into consideration whenever a subset of the level set is 
used. 

The divider method is arguably the most popular method of determining 
the fractal dimension of linear features (Gilbert, 1989; Clarke and Schweizer, 
1991). It also has the most published variants, and it will be the first method 
considered in this paper. The second method which will be considered is the 
box counting method, another widely used method, particularly in physics and 
meteorology. This is, in part, because it can be applied to any dimensional set-- 
a fact which increases its usefulness significantly. Following the review of the 
box counting method, there will be a discussion of the power spectrum method. 

o 
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Fig. 2. The relation between the fractal dimension and the value of  H, as determined by Matsushita 
eta/. (1991). 
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This methodology requires the most sophisticated data preprocessing, a require- 
ment which probably limits its applications. The variogram method and several 
area-scaling methods wilt then be discussed. Finally, the relative new line- 
scaling method of Matsushita and Ouchi (1989) will be presented, followed by 
a brief mention of several other methods. 

Following the reviews of the various methods, some general conclusions 
will be made. 

THE DIVIDER METHOD 

The divider method has long been used to determine the length of carto- 
graphic lines (Maling, 1992). Richardson's (1961) investigations into the scale 
dependencies of  border lengths, one of  the key building blocks in the devel- 
opment of  Mandelbrot's concept of fractional dimensions (Mandelbrot, 1967), 
has justifiably become one of the more cited references in the divider method 
literature. Because of the ease with which this method can be implemented-- 
using either physical or computational dividers--a large number of studies have 
used the divider method to determine fractal dimensions of  features ranging 
from particle shapes to lava flows (Table 1). This breadth of applications has 
resulted in a large number of independent reviews and a suite of contradicting 
recommendations (see below). As an illustration of the isolated efforts which 
can be observed, some have even referred to this method as being a "relatively 
new" technique (Power and Tullis, 1991)! 

The divider method can be implemented in a number of  ways, but the basic 
implementation is to "wa lk"  the divider along the line and record the number 
of steps required to cover the line. By systematically increasing the width of 
the divider and repeating the stepping process, the relation between step size 
and line length over a range of  resolutions can be determined. Calculation of 
the fractal dimension follows (Table 2). 

The main problem with the divider method relates to the remainder--the 
fact that most often a non-integer number of steps is required to cover the line. 
The most commonly applied solution--the addition of the fractional step length-- 
was found by Aviles et al. (1987) to produce slightly higher dimensions than 
when the number of steps was either rounded up or down. Mandelbrot (personal 
communication to anonymous reviewer) recommends retaining the remainder. 
While Gilbert (1989) concluded that the divider method was flawed and pro- 
duced unreliable results, most authors have found the method to be fairly reliable 
when tested on curves of known fractal dimension (e.g., Aviles et al . ,  1987; 
Peitgen, Jfirgens, and Saupe, 1992). The results of  practical applications have 
been somewhat mixed, however. In some cases, the divider dimensions have 
closely corresponded to those obtained by spectral analyses (Brown, 1987), 
variogram analyses (Roy, Gravel, and Gauthier, 1987), and other methods (Kent 
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and Wong, 1982). However, in other cases the divider dimensions have not 
corresponded at all (Cart and Benzer, 1991; Klinkenberg and Goodchild, 1992). 
Given the recent findings of  Matsushita et al. (1991) it is not surprising that 
some differences have been reported. 

Several different implementations of the divider method have been devel- 
oped: Schwarz and Exner's (1980) fast algorithm, Batty and Longley's (1986) 
equipaced polygon method, Clark's (1986) HYBRID method, and Kennedy and 
Lin's (1986) FAENA method. These alternative implementations were devel- 
oped primarily to speed up the "pacing" process. Given the ever increasing 
processing power of workstations, the need to look for computational shortcuts 
has been greatly reduced, and the traditional implementation should be the 
method of  choice (cf. Hayward, Orford, and Whalley, 1989). In particular, 
since these implementations are all approximations of the original technique, 
they all produce dimensions different from those produced by the traditional 
implementation. 

The divider method may also produce different dimensions because some 
methods--when determining the length of the curve--use the first point along 
the curve intersected by the divider as the next "walking" point (e.g., any of 
the fast methods, and the way that some authors appear to have implemented 
the divider method--Muller, 1986 is one example), whereas other methods use 
the last point intersected by the divider as the next "walking" point (e,g., the 
traditional approach). Mandetbrot (1986) demonstrates that the two choices pro- 
duce different dimensions--(1/H) and 2--H, respectively. This explains why the 
divider dimension for an exact mathematical fractal such as a Koch curve is 
different from its theoretical dimension, since that dimension is determined, in 
effect, by using the first point intersected. 

Additional problems with the divider method include a dependency of the 
fractat dimension on the starting position when counting, on the selection of the 
minimum and maximum '~tep size, and the small islands problem (see below). 
As many authors have noted, where the divider commences its walk can greatly 
influence the results. To alleviate this problem, a large number of starting po- 
sitions should be selected and the values averaged. Andrle (1992) suggests 
randomly selecting a point along the line and then stepping out to either end 
from that point. He found that after using approximately 50 randomly deter- 
mined starting points, the standard deviation of the dimensions was minimized. 

The selection of the smallest and largest step sizes is not without its prob- 
lems also. Selecting too small an initial step size will result in length values 
that don't  vary with step size. If  such values are included in the slope deter- 
mination, they will tend to decrease the slope and, thereby, reduce the apparent 
fractal dimension of  the feature. Because of this, various criteria have been 
suggested for the selection of  the smallest step size. The smallest step size should 
be: (1) twice the shortest distance between any two points (Andrle, 1992), and 
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(2) one-half the average distance between adjacent points (Shelberg, Moellering, 
and Lam, 1982). Selecting too large an initial step size will reduce the number 
of data points used in the slope determination. 

Selecting the largest step size is a much more subjective decision. The 
larger the step size, the greater the effect that partial steps have and, as was 
discussed above, partial steps affect the value and variability of the derived 
dimension. Andrle (1992) recommended that the largest step size(s) not be used 
in order to minimize the effects of partial steps. Concomitantly, this reduces the 
likelihood that multiple fractal elements or multifractal behavior can be identi- 
fied, since the fractal dimension would be calculated over a narrower range of 
scales. 

Other reasons can be found for specifying a reduced maximum step size 
when using the divider method on self-affine curves. Wong (1987) and Brown 
(1987) demonstrated that the derived dimensions converge to a value of one if 
the step sizes are greater than a value referred to as the crossover length (b). If 
the maximum step size remains smaller than the crossover length, the dimension 
should be representative--what Mandelbrot (1985) refers to as the local fractal 
dimension (also see Peitgen and Saupe, 1988, p. 64 for further elaboration). 
When working with self-similar linear features the crossover length is not a 
concern. 

A general rule for setting the maximum step size when working with self- 
affine features can be derived from the formula presented in Brown (1987): the 
greater the (expected) fractal dimension of the profile, the smaller the maximum 
step size should be relative to the standard deviation in heights. Since the cross- 
over length is dependent on both the fractal dimension (which won't  be known 
until after the measurement is made) and the vertical roughness (Brown, 1987; 
also see Mandelbrot, 1985, last sentence of section 7) suggests that greatly 
exaggerating the values of the vertical component significantly decreases the 
likelihood of the step size increasing past the crossover length. This is because 
the crossover length increases concomitantly. After an appropriate amount of 
magnification of the vertical component values, the derived fractal dimension 
should become stable (Brown and Scholz, 1985, Fig. 5). 

The notion of a crossover length is not without its critics, however (Carr 
and Benzer, 1991). Rescaling the vertical component independently of the hor- 
izontal component changes the geometric relation between the two which, there- 
fore, will change the results of the divider-length relation--an important dis- 
tinction if one is interested in analyzing the apparent self-similarity of a profile. 
When scaling a self-affine curve, if the horizontal coordinates are multiplied by 
a factor r, the vertical coordinates should be multiplied by a factor of r 2 - D  

(Mandelbrot, 1982; Malinverno, 1989). In light of this we must rationalize 
Brown's (1987) rescaling " f ix . "  Interestingly, Ouchi and Matsushita (1992) 
reported that vertical exaggeration of the surfaces used in their analyses did not 



Fractal Dimension of  Linear Features 33 

significantly alter the fractal dimensions derived from those surfaces. Of course, 
the question of whether the dimension obtained using the divider method is 
theoretically meaningful must always be considered since its determination is a 
mechanical process which will always return a numerical value. 

Clarke and Schweizer (1991) exaggerated the vertical component of  some 
profiles and found that doing so changed little of their results. However, the 
largest exaggeration factor they used was only a ten times magnification--Brown 
(1987) used factors of  up to 104 , and only after the values had been exaggerated 
by a minimum of 102 were any significant changes noted. Furthermore, Clarke 
and Schweizer (1991) selected step sizes which spanned the crossover length, 
ensuring that the derived dimensions would always be close to one--the ap- 
proximate value of  their reported dimensions. Although they felt that their results 
served to cast doubts on Brown's work, the results actually lend some credence 
to the work. The dimensions reported from the ten times magnification were 
closer to the dimensions obtained from a variogram analysis of the surface than 
were the unmagnified dimensions. 

Other problems with the divider method include deciding how many step 
increments are necessary to produce reliable results, and deciding the interval 
between divider widths. Since the fractal dimension is derived from the slope 
of the line obtained from the log-log plot of feature length vs. step size, theo- 
retically a minimum of two points are all that are required. However, few people 
would consider the results of such an analysis reliable or representative, and it 
is usually suggested that between five and eight determinations be made (i.e., 
the step size be incremented five to eight times). Statistical reasoning suggests 
that evenly spaced values on the independent axis will improve the reliability 
of  the estimates derived from least-squares regression. This requires that the 
divider widths double between each set of  line determinations. However, these 
two concerns work against each other, since doubling the step size means that 
fewer length determinations can be made. This also means that small features 
(especially small islands) will tend to be excluded from the analysis, possibly 
producing an effect on the derived dimension similar to that reported above by 
Matsushita et al. (1991). This is one argument against using geometrically 
increasing step sizes. 

The traditional divider method suffers from both practical and theoretical 
limitations. Because of  this, the surficial divider method is a potentially more 
robust replacement for applications which utilize isolines derived from DEMs. 
This method is conceptually equivalent to measuring linear features from maps 
of  various scales using a constant width divider. Starting with the isolines de- 
rived from the highest resolution data, their total length is determined. Then, 
the resolution of the data is reduced by selecting, for example, every second 
cell, and the isoline lengths are redetermined. The data subsampling process is 
repeated until the decimation is such that the nature of the original surface is 
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lost. The total length of the isolines at each determination is then used in the 
calculation of  the fractal dimension. The "step size" for a given determination 
is obtained by dividing the total contour line length by the total number of 
coordinate pairs (minus one). The slope derived from the log-log plot of the 
total contour line length against the step size (average chord length) is then used 
to determine the fractal dimension--as in the traditional method (Table 2). This 
"surficial dividers" method was described in Paumgartner et al .  (1981) as the 
variable magnification method. 

After each resolution change, the possible number of data subsamples is 
increased by a factor of four. If all possible samples are used in the analysis, 
this should increase the method's reliability. This method does not suffer from 
the small islands problem, the single line behavior outlined by Matsushita et al.  
(1991), or from the crossover length problem. Klinkenberg and Goodchild (1992) 
found that this method produced dimensions similar to those produced by the 
variogram method when applied to the surface, while the more traditional divider 
methods (including several of the faster alternatives) produced much lower di- 
mensions. When their data was reworked using the single contour line formula 
of  Matsushita et al .  (1991) the magnitude of  the differences was reduced but 
not eliminated. 

T HE  BOX COUNTING M E T H O D  
The box counting method is widely used to determine the fractal dimension 

of  many different phenomena (Table 1). Prior to its applications in fractal re- 
search, box counting was mainly used to quickly determine the area of irregular 
cartographic features (e.g., Gierhart, 1954; Maling, 1968). Since it can be 
applied with equal effectiveness to point sets, linear features, areas, and vol- 
umes, the box counting method is a widely used means of determining fractal 
dimensions. This method is also known as the grid or reticular cell counting 
method (Gagnepain and Roques-Carmes, 1986; Peitgen and Saupe, 1988), and 
has been shown to be equivalent to the Minkowski-Bouligond (or "sausage") 
dimension (Dubuc et a l . ,  1989b). 

The basic implementation, using the determination of a linear feature as 
the example, is as follows: 

1. Cover the feature with a single "box . "  
2. Divide the box into four quadrants, and count the number of cells oc- 

cupied. 
3. Divide each subsequent quadrant into four subquadrants, and continue 

doing so until the minimum box size is equal to the resolution of  the 
data, keeping track of  the number of quadrants or cells occupied at each 
step. 

The fractal dimension is easily obtained from the log-log plot (Table 2). 
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The box counting method, when applied to linear features, is usually ap- 
plied to cuts of a surface (e.g., contours) where the boxes overlay the cut lines. 
The method can be applied to profiles, however, as described below. 

Divide the profile lengthwise into, say, four equal parts and count the 
number of intersections of  a horizontal line at some specified vertical value 
(using only those values which occur at the section divides to determine if an 
intersection occurs). Then, increase the number of divisions and redetermine 
the number of intersections. Continue (geometrically) increasing the number of 
divisions and re-determining the number of intersections until the minimum 
resolution of the data is reached. Using a log-log plot of "box size" against 
the number of  intersections, the fractal dimension is equal to the slope times 
minus one. Shelberg, Moellering, and Lam (1983) described a similar procedure 
for determining the fractal dimension of  a surface, from which this procedure 
was abstracted. 

Several problems have been identified with the standard implementation of 
the box counting method (Liebovitch and Toth, 1989). The method requires a 
significant amount of computer memory and computational time since a very 
large number of cells have to be stored. Because of this problem, Liebovitch 
and Toth (1989) introduced a " fas t "  algorithm which, using a statistically-based 
sampling approach, does not require a complete enumeration of every cell at 
the higher resolutions. Their method is best applied only to datasets of low 
fractal dimensions, however, Sarraille (1991) has produced an implementation 
of  their method. 

Box counting also requires a large number of data points in order to produce 
correct dimension--Dubuc et al .  (1989a) reported instabilities in the method 
when the number of data points used was small. They also found that the method 
was sensitive to the level of quantization of the data. This sensitivity may apply 
to other methods, and should be investigated. 

The question of  defining the minimum and maximum box size was ad- 
dressed by Liebovitch and Toth (1989). The first two box counts (i.e., when 
one and four boxes are used) should not be used in the slope determination, nor 
should the box counts which occur when the cell size approaches the resolution 
of the data (i.e., when each data point falls in a single box). Dubuc et  al .  
(1989a) identified problems with the stability of the slope when the larger box 
sizes were included in the analysis. As with every other method which deter- 
mines the slope in log-log space, the cell sizes should change as a function of 
a power of  two so that they will be evenly spaced in the log space. Dubuc et  
al .  (1989a) found that doing so too rapidly covered the data, resulting in too 
few points in the log-log plot. Therefore, they did not use dyadic boxes. 

Box counting can also suffer from a " remainder"  problem. If  the boxes 
cannot cover the data evenly (e.g., if the raw data consists of  a 217 by 217 
army), then some cells will be missed if the box sizes increase geometrically. 



36 Klinkenberg 

Because of  this potential problem, some authors suggest first mapping the raw 
data onto a square unit. However, if the raw data was collected on a non-square 
frame (e.g., a 149 by 217 army), then that option will not be available. Very 
little has been written about this problem in the box counting literature. 

Lovejoy, Schertzer, and Tsonis (1987) present a detailed discussion of the 
box counting method and note that the boxes need not be square. By using 
rectangular boxes, for example, non-isotropic, multidimensional fractals can be 
studied. However, discussion of  such extensions to the basic method are outside 
of the scope of this paper, however. 

SPECTRAL METHODS 

Using spectral methods to obtain the fractal dimensions of features is an- 
other widely used method (Table 1). Although a rigorous method, it is com- 
putationally difficult and computer intensive (Bartlett, 1991). This method re- 
quires much more data preprocessing than any of  the other methods, all of  which 
work with the data "as is." Spectral methods require the raw data to be de- 
trended and tapered, and not doing so properly can greatly alter the results (Fox 
and Hayes, 1985; Cart and Benzer, 1991). They should only be applied to self- 
affine curves (i.e,, profiles) since the method will always return a fractal di- 
mension of one for self-similar curves (Peitgen and Saupe, 1988), Descriptions 
of the steps required to perform a spectral analysis for fractal purposes can be 
found in Huang and Turcotte (1989, 1992), Pentland (1984), Peitgen and Saupe 
(1988), and Turcotte (1992). 

An early application of the power spectrum method to the study of surface 
topography was reported in Sayles and Thomas (1978). Berry and Hanny (1978) 
subsequently placed those results into a fractal framework. It was not until Berry 
and Lewis (1980) that a formal link between the fractal dimension and the power 
spectrum was provided, however. Finally, Mandelbrot et al. (1984) cleared up 
some of the practical issues related to the method which had arisen in the 
literature. 

Power and Tullis (1991) mention several problems with applications of 
spectral methods. One problem is that the typical frequency progression used in 
FFT algorithms is arithmetic. This results in the higher frequencies being over- 
represented--relative to the lower frequencies--in the log-log plots used to de- 
termine the fractal dimension (Table 2). Other methods are easily adjusted to 
produce equally-spaced data points on the independent axis, which results in 
more stable least-squares parameters. A more significant problem is that several 
authors have made incorrect assumptions about the appropriate slope of  the 
power spectrum plot, perhaps because there are a variety of ways of expressing 
the power or amplitude spectra (Power and Tullis, 1991; also see Carr and 
Benzer, 1991). Dubuc et al. (1989a) reported lower precisions from power 
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spectrum methods when compared to their other results. They found that the 
points in the log-log plot rarely formed a straight line, increasing the instability 
of the least-squares derived values. 

The computational complexity of spectral methods is well illustrated by the 
series of papers by Huang and Turcotte (1989, 1990) and Goff (1990). In their 
first paper, Huang and Turcotte (1989) reported that the fractal dimensions of 
one-dimensional profiles were significantly lower (0.5) than the fractal dimen- 
sions of the surfaces (minus 1) as determined using two-dimensional FFT. Sub- 
sequently, an error in their formulation was noted (Goff, 1990). Huang and 
Turcotte (1990) re-examined their original work and reported that the dimensions 
(plus one) produced by the one-dimensional FFT were within statistical uncer- 
tainty of the two-dimensional FFT values. Thus, it appears that this method 
produces consistent fractal dimensions when applied to surfaces with differing 
topology dimensions. Nonetheless, the inherent complexity of spectral methods 
requires that they be carefully implemented--Power and Tullis (1991) found 
several examples where subsequent re-interpretation of previously published 
spectral analyses have dramatically altered the conclusions. 

T H E  VARIOGRAM METHOD 

The variogram method is widely used in the determination of the fractal 
dimension of surfaces (Burrough, 1981, 1984) and appears to have properties-- 
in particular its ease of use--which make it a preferred method over spectral 
analysis (Cart and Benzer, 1991; Klinkenberg and Goodchild, 1992L Although 
it has been much tess commonly applied to strictly linear phenomena, the method 
is very easy to implement when analyzing self-affine profiles. By sampling a 
large number of pairs of points (of differing spacings) along the profile and 
computing the differences in their vertical values (e.g., z values) the fractal 
dimension is easily derived from the log-log plot of (expected differences in z) 2 
vs. distance between the point pairs (Table 2). 

The choice of the maximum point-pair distances used in the analyses re- 
quires some thought. The maximum distance between point pairs is usually 
taken to be one-half of the absolute maximum distance between points, although 
some authors have suggested considering much shorter maximums, such as one 
quarter the maximum distance (Roy, Gravel, and Gauthier, 1987). However, 
this rule may be more restrictive than necessary. Very linear relations extending 
out to absolute maximum distances have been noted (Klinkenberg and Good- 
child, 1992). More often, however, the dimensions associated with distance 
pairs that are greater than the suggested cutoff are larger than those associated 
with the distance pairs that are less than the suggested cutoff (Mark and Aronson, 
1984; Klinkenberg and Goodchild, 1992). The shortest point-pair distance used 
in the analyses will depend on the resolution of the data. 
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For statistical purposes, it is important that the sample of point pairs used 
in the analyses uniformly span the distance range. In order to obtain statistically 
valid averages for the z differences, the point-pair distances are usually placed 
in a number of  defined classes. This means that, as with the other methods 
which use linear regression in the determination of the slope, the distance classes 
should be selected so that they are evenly spaced in the log space used in the 
least-squares regression. Scatter of  the data points in the log-log plot can cause 
some instabilities in the Ieast-squares derived parameters. 

This method does appear to produce consistent fractal dimensions when 
applied to features with differing topological dimensions. Klinkenberg and 
Goodchild (1992) found that the variogram-derived fractal dimensions of  profiles 
were equal to the fractal dimension of the surfaces. Lovejoy and Schertzer (1987) 
criticized the variogram method, stating that the method only explores the scal- 
ing nature of the vertical fluctuations, and does not incorporate the scaling of 
horizontal structures. Although the variogram is a function of  differences in, 
usually, elevation, and horizontal distance, one could imagine a "flipped" var- 
iogram, wherein the vertical differences become the independent variable and 
the average (horizontal differences) 2 associated with each vertical difference the 
dependent variable. From this perspective their criticism does warrant some 
consideration. 

AREA-BASED METHODS 

Two area-based methods can be used to determine the fractal dimension 
of  linear features if those features form closed loops (Mandelbrot, 1975). The 
area-perimeter relation and Korcak's empirical relation for islands both have 
been used to determine the fractal dimension of lakes, contour loops, and islands 
(Table 1). If the data is appropriate, these are relatively simple methods to use 
and their implementation is fairly simple, requiring few of the decisions most 
of the other methods demand (Table 2). When using the area-perimeter relation, 
however, one must not confound the relation by using perimeters derived from 
sources of different scales (i.e., the area of a given feature will not change much 
when measured from sources of  different scales, but the perimeter measurements 
can change significantly). 

The requirement that the features form closed loops restricts the usage of 
area-based methods. For example, although all contours must eventually loop 
back upon themselves, they may not do so within the particular study area. 
Thus, few objects may be available for analysis. However, these methods should 
be fairly robust, since they will not suffer from the problems identified above 
with respect to the whole vs. parts dimension, or from the small islands problem. 
Sakellariou et al.  (1991) found the area-perimeter method to be the most stable 
and least ambiguous method of the four they considered (which included var- 
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iogram and spectral methods). Mandelbrot et al .  (1984) found the dimension 
obtained from an area-perimeter analysis to agree with the dimet,sion obtained 
from a spectra analysis. 

THE LINE SCALING M E T H O D  

One essential aspect of fractal features is their scaling nature. That means 
that the moment statistics of  a fractal feature are (theoretically) unstable (Man- 
delbrot, 1982). For example, the longer the topographic profile, the greater the 
observed variability in elevations (Ahnert, 1984). Building on that concept, 
Matsushita and Ouchi (1989) developed a method for the determination of the 
fractal dimension of  a linear feature which used the observed relationship be- 
tween sample sizes and sample variances (Table 2). 

The method is conceptually very simple to implement and works on both 
self-similar and self-affine curves. Samples of various lengths (say N) are taken 
from the curve and the standard deviations of  the coordinates along each axis 
are determined (say X and Y). From the two log-log plots of  standard deviation 
(X and Y) vs. sample size (N) the respective slopes are determined (say V x and 
Vr). If V x and V r are equal or nearly so, that is a good indication that the curve 
is self-similar. For these curves the fractal dimension is computed as D = 1/ 
V x = 1 / V  r. If V x and V r are unequal--a good indication that the curve is self- 
affine since the coordinates scale differently--the two variances are related to 
each other via the Hurst scaling parameter (H) as H = V r / V  x. Matsushita and 
Ouchi (1989) tested their method using linear features of known fractal dimen- 
sions (both self-similar and self-attine) and found the results to be very reason- 
able. 

This method has yet to be tested extensively, but it would appear to have 
characteristics which could make it a useful tool in fractal analysis given that it 
works with both self-similar and self-affine features. Furthermore, Ouchi and 
Matsushita (1992) have extended this method to handle surfaces and reported 
good results. 

M I S C E L L A N E O U S  METH O D S 

There are several additional methods which require some discussion. The 
intersegment angles method introduced by Eastman (1985) is based on relating 
local measures of a curve's sinuosity to its fractal dimension. Eastman analyzed 
several well known natural curves (e.g.,  the west coast of Britain) and obtained 
results that matched those reported in the literature. The method was conceived 
by observing the relation between the characteristic generators of  systematic 
fractal curves, their fractal dimension, and their sinuosity. Extending the idea 
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of a generator to random fractals, Eastman (1985) developed the formula below. 
It directly related the sinuosity of a natural curve to its fractal dimension. 

log (2) 
D =  ,og(  

a, b = segment lengths about point j (i.e., a and b will span lengths from 
pt ( j )  to pt ( j  ___ k), where k = 1 to 5), and c = distance from pt ( j  - k) to 
pt ( j  + k). 

The variation method, recently developed by Dubuc et al. (1989a), is a 
variation of the Minkowski method. Instead of using fixed disks (or boxes) to 
cover the feature, they use an adaptive covering procedure--boxes with dimen- 
sions that are a function of the curve within a local neighborhood. The optimal 
size of  the local neighborhood is chosen by "observing the relation between the 
data point scatter and the neighborhood size. Details on how to implement the 
variation method are presented in Dubuc et al. (1989a). The method can also 
be applied to surfaces (Dubuc et at.,  1987, 1989b). 

Tests of  the method--using mathematically defined random fractal curves--  
produced dimensions almost identical to the curves' theoretical dimensions. 
However, other methods shown to produce accurate dimensions when working 
with well-behaved fractal curves have not always behaved as well when applied 
to "real  world" fractals. It remains to be seen how the variation method works 
when applied to natural datasets. Another variant of  the box counting method 
was presented in Rigaut (1991). It too requires further testing. 

In the study of diffusion-limited aggregation (DLA), the mass fractal di- 
mension is commonly determined. A comprehensive review of DLA and deter- 
mination of  the mass dimension was presented by Meakin (1991). The meth- 
odology is easily adapted to linear phenomenon: plot the (log of the) accumulated 
length L(R) of the feature as a function of the (log of the) distance (R) from a 
central point (D = the slope). It has been little used in areas other than DLA, 
but the method will probably play a much larger role in the future as fractal 
analyses in the geosciences become more sophisticated (e.g., Bartoli et al. ,  
1991). Batty and Longley (1987) and Benquiqui and Daoud (1991) provide 
atypical examples of the application of this method. 

DISCUSSION AND CONCLUSIONS 

Some general observations can be made about the methods described above. 
While every method appears to have its special concerns--aspects of their par- 
ticular application which must be carefully considered before results are reliably 
produced--many share common concerns. Using least-squares analysis to de- 
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termine the slope of the log-log curve means that the selection (i.e., the range 
and spacing) of  the independent variable values can greatly influence the results. 
The autocorrelated nature of the data should also be considered, but rarely is 
(Reeve, 1992). Another aspect which hasn't been mentioned in the fractal lit- 
erature is the lack of  correspondence between parameters obtained from nonlin- 
ear regression and those obtained from linearized log-log regression. That the 
values produced by the two forms of regression can be very different has long 
been known (e.g., Zar, 1968). In island biogeography, another field which 
similarly uses log-log regression to determine meaningful parameters, it has 
been shown that differences in the interpretation of supposedly meaningful pa- 
rameters can be traced back to the linearization of  the underlying power relation 
(Klinkenberg, 1988). The effect of this on the interpretations of fractal dimen- 
sions requires exploration since the effects of linearization may not be constant 
from method to method. 

For most methods the choice of the smallest (and largest) sample elements 
requires careful consideration. Reducing the band width within which the par- 
ticular method is employed will necessarily reduce the likelihood that fractal 
elements be identified, if present, or that multifractal behavior be identified. 
Furthermore, imposing a dyadic sampling strategy for regression purposes can 
result in significant reductions of the sample size. 

There has been a range of contrasting opinions regarding the choice of one 
method over another. Huang and Turcotte (1989) prefer spectral methods over 
methods such as the variogram method because the intercept serves as a quan- 
titative measure of texture. However, this is not really a reason for using the 
method because the variogram intercept can be used in a similar fashion (Klin- 
kenberg and Goodchild, 1992). Several authors have commented that they feel 
that the variogram method is more robust/accurate than the power spectrum 
method, and is better able to detect the presence of  fractal elements (e.g., 
Malinverno, 1989; Klinkenberg and Clarke, 1992). However, variogram meth- 
ods, since they are based on second-order statistics, may not always be able to 
detect breakdowns in the scale invariance of  phenomenon--spectral methods 
may be better able to detect such breakdowns (Jones, Thomas, and Earwicker, 
1989). With appropriate data, Sakellariou et al. (1991) found the area-perimeter 
method the most preferable. 

Brown (1987) found that the spectral and divider methods yielded similar 
dimensions for self-affine profiles provided that the divider method was used 
properly (i.e., the crossover length was respected). On the other hand, Carr and 
Benzer (1991) feel that there is no prerequisite that the two methods yield similar 
fractal dimensions since the divider method is based on geometric relations, 
while the spectral method (as with most other methods) is based on stochastic 
relations. Furthermore, since spectral methods are applied to profiles, while 
dividers are most often applied to horizontal cuts, there are many reasons why 



42 Klinkenberg 

the two methods produce different dimensions. Much of the controversy in the 
fractal literature derives from the observation that different methods often yield 
different and sometimes ambiguous dimensions. It should be apparent that, in 
some cases, the differences may be the result of inappropriately applied methods. 
On the other hand, some differences should be expected, since the methods are 
not all measuring the same fractal quantity. 

No one method appears to be " the"  method with which to determine the 
fractal dimension of linear features. Some of the methods have only recently 
been introduced (e.g., the line scaling and the variation methods) and they need 
to be applied to a variety of natural features before any conclusion is reached 
about their overall reliability and consistency. Some methods can be applied to 
both self-similar and self-affine curves, while others should only be applied to 
one type or the other. The particular choice of a method should depend on a 
number of factors, some of which are outlined below. 

I. Whether the feature is self-similar or self-affine. 
2. The format in which the data will be provided, which can make certain 

methods much easier to implement than others. 
3. Whether features from a range of topological dimensions will be inves- 

tigated, in which case one of the extensible methods--such as box count- 
ing, variogram, or spectral methods--may be the preferred choice. 

4. Which method fits most comfortably within the current methodological 
framework of the researcher. 

5. Whether multidimensionality is known to exist, in which case the box 
counting method as extended by Lovejoy et al.  (1987) should be em- 
ployed. 

The main conclusion to be reached is that while there are many ways of deter- 
mining the fractal dimension of linear features, the application of every method 
requires careful consideration of a range of methodological concerns. Without 
adequate consideration of the potential problems the results from any analysis 
will not truly reflect the fractal nature of the feature. 
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