Thermomolecular Pressure in Surface Melting: Motivation for Frost Heave
Author(s): J. G. Dash

Source: Science, New Series, Vol. 246, No. 4937, (Dec. 22, 1989), pp. 1591-1593
Published by: American Association for the Advancement of Science

Stable URL: http://www.jstor.org/stable/1704667

Accessed: 06/06/2008 12:53

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajourna or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher ?publisherCode=aaas.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit organization founded in 1995 to build trusted digital archivesfor scholarship. We enable the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

http://www.jstor.org


http://www.jstor.org/stable/1704667?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=aaas

increases the mass input, and melting has
little effect. Below the equilibrium line, in-
creases in precipitation reduce the net sum-
mer ablation and partially offset increases in
melting. Although the altitude of the equi-
librium line increases with increased tem-
perature, it decreases with increased precipi-
tation and with increased cloudiness (27).
Therefore, changes in position of the equi-
librium line might be small as temperature
and precipitation increase together. Because
nearly 100% of the Antarctic ice sheet and
85% of the Greenland ice sheet are above
the present equilibrium line, the dominant
short-term effect is likely to be ice-sheet
growth. An increase in precipitation and
temperature should cause an immediate pos-
itive change in the mass balance and a
gradual steepening of an ice sheet, which
would continue for many years as the ice
flow responded to the driving stresses.

In conclusion, Greenland ice-sheet
growth is consistent with the generally
warmer temperatures (28) experienced in
this century. If climate continues to warm,
enhanced precipitation in polar regions may
offset increases in melting. Although the
Antarctic ice sheet is a likely source of water
for current sea-level rise, its mass balance is
uncertain. Over much of Antarctica, which
contains 91% of the earth’s ice, the annual
mass input is only 10% of the Greenland
values, so that significant elevation changes
may be ten times as small. Laser altimetry
measurements (29) are needed there, be-
cause of its better range precision and ability
to cover the critical ablation zones where
radar altimeters do not adequately follow
the more irregular ice surfaces.
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Thermomolecular Pressure in Surface Melting:

Motivation for Frost Heave

J. G. DasH

A thermomolecular pressure is associated with surface melting, and it can drive mass
flow along an interface under a lateral temperature gradient. The pressure is a universal
thermodynamic function in the limit of thick films. It may be responsible for frost

heave in frozen ground.

URFACE MELTING CONTINUES TO AT-
tract considerable experimental and
theoretical interest, as it involves fun-
damental questions in surface science and
condensed matter physics and practical ap-
plications in materials processing (1-5). Al-
though the phenomenon has been explored
in a limited number of materials, it is be-
lieved to be a general characteristic of most

Department of Physics, FM-15, University of Washing-
ton, Seattle, WA 98195.

classes of solid materials. The motivating
force for the effect is the lowering of the
interfacial free energy of a solid surface by a
layer of the melted material, which occurs
for all solid interfaces that are wetted by the
melt liquid. Such a reduction of the free
energy allows a macroscopically thick film of
the liquid to be stabilized at a temperature
below the normal melting point. The surface
free energy of the film varies with its thick-
ness and asymptotically approaches the val-
ue for semi-infinite liquid. This variation
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with thickness introduces an effective inter-
action between the interfaces, equivalent to
a negative thermomolecular pressure. In this
report I show that this negative pressure is
readily derived from the thermodynamics of
surface melting and that it has a simple and
universal expression in thick films. Although
the pressure is not readily detected in the
usual arrangements of surface melting ex-
periments, it can be seen under certain dy-
namic and steady-state conditions. The pres-
sures that can be generated in ice by quite
modest temperature differences may be large
enough to have important practical conse-
quences. The effect may be responsible for
frost heave in frozen ground.

Consider a solid in equilibrium with va-
por or a wall at temperature T and pressure
P. If the interface is wetted by a macroscopic
layer of the melt (m) liquid the free energy
of the layer is composed of bulk and surface
terms

Gu(T,P,d) = [pw(T,P)Jd + Ayfid) + s
(1

where d is the thickness, p, and p, are the
density and chemical potential of the bulk
liquid (1), +ys is the interfacial coefficient of
the unwetted solid (s), Ay is the difference
between the coeflicients of the dry and
wetted interface, and f(d) is the thickness
dependence of the coefficients. In general,
fid) is a positive monotonic function tend-
ing to unity at infinite thickness. For exam-
ple, in simple van der Waals materials with
unretarded potentials, fld) = (1 — o%/d?),
where o is a constant on the order of a
molecular diameter.

In thermodynamic equilibrium, the chem-
ical potential of the melted layer is equal to
that of the solid. Differentiating Eq. 1

1 (oG
T.pd) = — [—*
Mem( ) N ( ad )T,P

A
f) I o ey @

= w(T,P) +
wm(T,P) (l Py

The interfacial energy term in py intro-
duces an effective pressure 8Py, acting on the
melted layer. This can be seen from the
general thermodynamic effect on the chemi-
cal potential of a system by a change in its
external environment (6). If the unper-
turbed chemical potential of a system is
w(T,P) and the field energy per molecule is
u, the chemical potential is changed to

W (T,Pu) = W(T,P) + u
= W(T,P) + 8Plp (3)
Hence the interfacial energy term introduces
an added pressure
dPy = Ay(dfiad) = pi[us(T,P) — w(T,P)]
(4)

1592
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Fig. 1. Diagram of the thermomolecular pressure
and flow in surface melting of a simple uncon-
fined interface. (A) Initial conditions at a plane
interface; (B) the profile, as modified by flow,
after an interval. Temperature and pressure in-
crease to the right.

At the bulk transition temperature Ty, ps =
w1 hence 3Py, vanishes at Ty. However, the
chemical potentials differ at T < To,. Ex-
panding Ap. = (ps — pu) to first order in the
temperature difference

A
AW(T) = [%ﬂ” (T - To)
_ dm _
= (1 -1y (5)

where gy, is the latent heat of melting per
molecule. Combining Egs. 2 and 5 yields a
functional relation for the temperature de-
pendence of d that depends on the nature of
the intermolecular forces. For example, in
the case of van der Waals forces, with substi-
tution of the specific form of f(d) given
carlier, the result is a power law in the
difference between T and Ty

13
d= <_202 Al) 3 (6)
Pi9m
where t = (Ty — T)/Ty is the reduced
temperature. In the case of short range
forces, where 9f/ad « exp(—cd), where ¢ is a
constant, the result is a logarithmic tempera-
ture dependence, d « (Intl. Other types of
interactions, such as dipolar forces, can pro-
duce other, similarly specific temperature

dependences.

In contrast to the specificity of d(T), the
thermomolecular pressure is a universal ther-
modynamic function. From Egs. 3 and 5

Bpm = —PYmt (7)

The negative sign indicates that the inter-
facial free energy is lowered by surface melt-
ing, so that Ay < 0. It may appear that the
interfaces are mechanically unstable under
the influence of a negative pressure acting
on the liquid and tending to pull the inter-
faces apart. However, such thickening of the
liquid layer would require the conversion of

a quantity of solid to liquid, which would
raise the free energy of the system above its
equilibrium value. Conversely, the stability
of a liquid layer at temperatures below the
normal melting point necessitates a negative
thermomolecular pressure, that is, a suction.

The presence of a thermomolecular pres-
sure can be detected if a temperature gradi-
ent is imposed along the surface. The result-
ing pressure gradient will cause mass trans-
port in the liquid layer, toward lower tem-
peratures (Fig. 1). Thus, mass transport and
heat transport are coupled in the film, analo-
gous to the simultaneous flow of current
and heat in a thermocouple. If the tempera-
ture difference is maintained, the mass flow
can be halted only by application of a hydro-
static pressure, equal and opposite to the
thermomolecular pressure. If the interface is
a single, low area surface this transport may
be slow and difficult to detect, but it could
be much more readily observed in a porous
medium with large interfacial area.

An important practical manifestation of
the effect may be the phenomenon of frost
heave, which occurs in water-saturated soils
below 0°C. Field observations (7) and labo-
ratory studies (8) have shown the persis-
tence of unfrozen water in porous media
when cooled to temperatures as low as
—30°C. This fluid tends to migrate along
temperature gradients, toward lower tem-
perature, where it deposits in segregated
bulk ice “lenses.” The process continues as
long as the temperature difference is main-
tained, or until sufficient pressure is applied.
Experiments have shown that the pressure is
proportional to the temperature difference
and can amount to greater than 11 atm/°C
(8). The observed pressures are described by
an empirical relation that is identical with
Eq. 7. A description of frost heave and its
serious consequences are given in a report
by The National Research Council (9)

Nearly everyone living in the northern and south-
ern temperate zones has experienced the effects of
ice segregation and frost heaving through the
destruction of roads and highways, the displace-
ment of foundations, the jamming of doors, the
misalignment of gates, and the cracking of mason-
ry. Many people often have simply and mistakenly
assumed that these effects result solely from the
expansion of pore water on freezing. When con-
fined, water can rupture pipes, break bottles, and
crack rocks as it freezes. However, most of the
destructive effects of frost heaving are caused by
“ice segregation,” a complex process that results
from the peculiar behavior of water and other
liquids as they freeze within porous materials. In
particular, water is drawn to the freezing site from
clsewhere by the freezing process itself. When this
water accumulates as ice, it forces the soil apart,
producing expansion of the external soil bound-
aries, as well as internal consolidation. The dy-
namic process of ice segregation and the expan-
sion resulting from freezing of the in situ pore
water, together, cause frost heaving.
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Frost heave has been suggested as the driv-
ing mechanism for the development of pat-
terned ground in permafrost terrains and
alpine areas, where the seasonal motion of
pore water and ice produce sorting and
profiling of the ground surface in regular
geometric patterns (10).

The physical basis for the persistence of
unfrozen water below the normal melting
point has been attributed to various mecha-
nisms, including dipolar forces, density vari-
ations, and the pressure melting of ice (17).
However, the National Research Council
reports that there has been no consensus on
the fundamental causes

The limitations of all current models may be
characterized collectively by simply stating that at
present no model enjoys universal or general
acceptance. . . . It is not certain that a determinis-
tic formulation adequate for either the scientific
or the engineering needs can be developed.

The present theory explains the ice phe-
nomena as consequences of surface melting,
and it predicts that similar effects should
occur in other materials. However, although
Eq. 7 is completely independent of the
nature of the interactions, its universality
rests on the assumption that the melt liquid
is identical with the bulk. This is an approxi-
mation because a liquid is modified in the
proximity of its boundaries, where it is more
ordered (12). The range of the ordering
depends on the nature of the liquid and the
wall. Therefore the equation is strictly valid
only in the limit T'— T, where d diverges.
As T decreases, the layer thins and the
proximity effect becomes more important;
as a result, the pressure falls below the
asymptotic relation in a nonuniversal man-
ner.
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Air Ventilation by Recoil Aspiration in

Polypterid Fishes

EvrLizABETH L. BRAINERD, KAREL F. L1EM, CRISTIAN T. SAMPER

High-speed x-ray cine films synchronized with intra-pleuroperitoneal pressure mea-
surements show that polypterid fishes aspiration breathe by the deformation and recoil
of their bony-scaled integument. Paleozoic amphibians arose from ancient air-
breathing fishes and retained piscine bony scales in V-shaped rows along the belly.
These scales resemble those of modern polypterid fishes and may have contributed to
inhalation by elastic recoil. The discovery that polypterid fishes breathe by recoil
aspiration is the first evidence for aspiration breathing in any lower vertebrate. The use
of recoil aspiration by polypterids shows that elastic storage in a stiff body wall can
contribute to inhalation in animals with limited capacity for active aspiration.

OST AIR-BREATHING FISHES, LACK-

ing the diaphragm or movable

ribs thought necessary for aspira-
tion breathing, use a buccal pulse pump to
fill their respiratory gas bladders (7). Aspira-
tion has never been demonstrated in air-
breathing fishes or amphibians, although its
use has been suggested (2) and refuted (3)
for the Amazonian fish Arapaima, and esti-
vating lungfish may ventilate tiny amounts
(<0.3 ml) of air by aspiration (4). We show
that polypterid fishes ventilate their lungs by
aspiration and that this is accomplished by
the deformation and recoil of their bony-
scaled integument. We call this novel venti-
latory mechanism “recoil aspiration.” The
discovery that polypterid fishes breathe by
recoil aspiration may affect our understand-
ing both of early tetrapod breathing me-
chanics and of the role of elastic storage in
ventilation.

The fundamental difference between pulse
pump and aspiration ventilation is that in
pulse pump systems air forces the lung to
expand, whereas in aspiration systems air is
sucked into the already expanding lung (5).
In fishes using a buccal pulse pump, such as
the bowfin, Amia calva, the mouth cavity
expands to fill with air and compresses to
pump air into the lung. The lung begins to
fill only after the mouth is closed, and buccal

Museum of Comparative Zoology, Harvard University,
Cambridge, MA 01238.

cavity diameter decreases as lung diameter
increases (Fig. 1).

The use of aspiration to fill the lungs in
polypterid fishes is demonstrated by the
pattern of buccal and lung diameter change
shown in Fig. 1. Unlike Amia lung diameter,
Polypterus lung diameter increases rapidly
while the mouth is still open, and the buccal
and lung diameters increase simultaneously.
This pattern indicates that air is sucked into
the lungs through the open mouth, rather
than being forced in by a buccal pump. A
mouthful of air is usually pumped onto the
lungs at the end of inhalation, but this
buccal air contributes less to the total venti-
lated volume than does the aspirated air (6)
(Fig. 1, Polypterus, lung diameter increase
after mouth is closed). Sometimes, however,
the buccal air is simply expelled from the
opercular openings at the end of the air-
breath. X-ray cine films also show that po-
lypterid fishes exhale through the opercular
openings and inhale through the mouth:
they do not, as others have suggested,
breathe through the spiracles (7).

Aspiration breathing requires the genera-
tion of negative pressure in the body cavity
surrounding the lungs. We have measured
considerable negative pressures in the pleur-
operitoneal cavities of two polypterid spe-
cies, Polypterus senegalus and Erpetoichthys ca-
labaricus. X-ray cine films synchronized with
pressure measurements show that the most
negative pleuroperitoneal pressure occurs at
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