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Exploration of a Rigid Ice Model of Frost Heave 
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A numerical model is explored which simulates frost heave in saturated, granular, air-free, solute-free 
soil. It is based on equations developed from fundamental thermomechanical considerations and pre- 
vious laboratory investigations. Although adequate data are lacking for strict experimental verification of 
the model, we note that simulations produce an overall course of events together with significant specific 
features which are familiar from laboratory experience. Simulated heave histories show proper sensiti- 
vities in the shapes and orders of magnitude of output responses and in the relations between crucial 
factors such as heave rate, freezing rate, and overburden. 

INTRODUCTION 

The phenomenon of frost heave includes processes whereby 

soil freezing induces a moisture flow, beyond that caused by 

the mere expansion of water on freezing. In our common ex- 

perience, heave is identified with the upward displacement of 

the soil surface, forced by transport processes below the sur- 
face as freezine occurs. The amount of heave is eoual to the 

amount of that displacement. This phenomenon may occur 

cyclically due to environmental influences, may proceed 

monotonically for periods on the order of the lifespan of a 

structure, or may even progress indefinitely. Every year, frost 

heave damages or destroys public and private property worth 

billions of dollars, even as additional billions are being inves- 

ted in measures intended to prevent or mitigate future 

damage. To be cost effective, such measures must be based on 

realistic estimates of the heaving behavior of the soil, known 

to be strongly dependent on soil characteristics as well as 

environmental variables. Coarse sands and gravels are not 

susceptible to heave. Silts can produce spectacular heave, but 

only if the load to be heaved is small and the water table is 

high. Clays never produce spectacular heave, but can still 

merit serious consideration due to their ability to heave very 

large loads indeed. Clearly, a system for evaluating the tend- 

ency to heave must take into account the causal physics, 

which is reflected in this varied picture of conditions and 

consequences. 

One mode of heave, called primary heave, consists of a layer 

of ice growing on top of some unfrozen soil, through which 
liquid water is drawn to join the ice. This system may or may 
not be overlain by frozen soil. In either case, essentially no ice 

penetrates the remaining unfrozen soil, and all freezing con- 
tributes directly to the surface heave. Alternatively, in what 

has been called the secondary mode of heave, ice penetrates 

the soil; at the same time, the liquid flow towards the ice feeds 

an accumulation of ice within the frozen soil. Lenses of pure, 

segregated ice grow within forced discontinuities in the frozen 

soil fabric. This in turn forces movement, sometimes quite 

powerful movement, of the soil surface. At the opposite ex- 

treme from primary heave, soil freezing may result in no heave 
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at all when all ice formed penetrates the soil. Between these 

two limiting possibilities lies the secondary mode. Depending 

upon the properties of a soil and boundary conditions of the 

narrow zone in which freezing is actually taking place, any of 

these three possibilities may result when soil freezes or, over 

time, all three may be traversed. It is the secondary mode in 

which greatest loads are lifted, which is of greatest engineering 

Relevant boundary conditions include the magnitude of the 

load to be heaved, and this includes the weight of soil that is 

already fully frozen. They include the rate at which heat is 

being extracted through the cold boundary of the frozen zone 

as well as the rate at which heat is being absorbed from as yet 

unfrozen soil. Another important boundary condition is the 

water pressure at the warm boundary which, in turn, is influ- 

enced by hydrologic conditions at greater depths. If no heave 

is taking place, water will be expelled from a descending zone 

of freezing into unfrozen soil due to the expansion of water on 

freezing. During primary heave, by contrast, water is absorbed 
from the unfrozen zone to the freezing site at the same (mass) 

rate that segregated ice forms. In secondary heave, flow may 
be in either direction and the direction may reverse with time. 

All of these processes interact in ways too devious to l•rmit 

intuition or simplistic idealizations to tell us what to expect 

over periods of time ranging from as little as a few hours to as 

long as tens of years. 

For engineering purposes, a large number of lab tests, pre- 

scriptions, rules of thumb, and methods for characterizing 

soils and situations has been developed over the years in an 

attempt to provide practical guidance on the likelihood of 

heave and its magnitude [Chamberlain, 1981]. The sheer 

number and variety of these approaches and procedures is 

forceful testimony to the difficulty of the problem, to the ab- 

sence of any common understanding of it, and to the inad- 

equacy of any established approach for general application. In 

response, researchers have developed increasingly sophisticat- 

ed mathematical models, attempting to reduce uncertainty by 
including superior representations of relevant physics and 

thermodynamics. The overall offerings in this domain and 

many of the underlying concepts are reviewed by O'Neill 

[1983]. For further discussion of some of the basic concepts 

and equations adduced below, the reader is referred to this 

review and to the textbook treatment by Miller [1980]. 

Among responses to the challenge is what has been called 
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the rigid ice model of frost heave. This model is comprised of a 

set of macroscopic equations which result from an analysis of 

the microscopic features of the formation of ice from water 

within the pores of a soil [Miller, 1978]. At present, the physi- 

cal formulation is limited to solute-free, air-free soils of negli- 
gible compressibility. A simplified set of equations applicable 

only to very simple quasi steady states has been solved by 

Miller and Koslow [1980]. A strategy for obtaining numerical 

solutions of the full set of equations for simple boundary con- 
ditions has also been developed [O'Neill and Miller, 1982]. In 

this paper we expand on the physical basis of that formulation 

and its mathematical expression and implementation. Im- 

proved tactics have produced a more flexible model so that its 

behavior can be better explored. We report examples of the 

results of such explorations below. 

PHASE EQUILIBRIA 

Concepts of phase equilibrium applicable at a microscopic 
level are most familiar in the context of water and air in 

(ice-free) porous media. It is useful to paraphrase these to 

establish a rationale for the treatment of ice-water equlibria in 

air-free soil. The adjective microscopic, as used in this paper, 

refers to scales that are large relative to the dimensions of a 

single molecule or the length of chemical bonds but small 

compared to the scale of observation. Relevant scales are 

those comparable to the dimension of grains, interstices be- 

tween them, and even "long-range" surface adsorption force 

fields. A well-known example of the last is the virtual force 

field that arises if there is a diffuse electrical double layer at a 

grain surface. In this discussion, no particular model of surface 

adsorption will be invoked. Instead, we merely use a more 

general proposition that for whatever reasons, liquid water 

very close to a grain surface is attracted toward that surface 

and that the attractive force is greater for liquid than for air or 

ice, other things being equal. The strength of this attraction 

decays with distance from the surface. 

This implies that a grain immersed in water will be sur- 

rounded by a microscopic "hydrostatic" pressure field. We 

then perceive that to the extent that some other less strongly 

attracted substance displaces water from this field, that sub- 

stance will appear to be repelled by the grain by a disjoining 

force. This force is an analogue of what we call the buoyant 

force on a body that displaces water from within a hydrostatic 

field induced by gravitation. 

If a bubble of air approaches an immersed grain, it will 

experience a disjoining force which can be balanced by in- 

creasing the air pressure in that part of the bubble which is 

outside the force field and where both water and air pressures 

can ostensibly be controlled or measured. Disregarding sur- 

face tension effects, the degree to which air can displace water 
from what we would now call an adsorbed film of mobile 

water depends upon the difference, qbwa, between water and air 

pressure outside the effective range of the adsorption force. 
That same measured difference determines the mean curvature 

of the water-air interface outside the force field and hence the 

degree to which air replaces water in capillary space. There- 

fore within a rigid pore system the degree to which air dis- 

places water from adsorbed films on the one hand and from 

capillary space on the other hand is a function of the quantity 

•b,•a defined as u• - Ua. The symbols u,• and u a represent gauge 

pressures in liquid water and air, respectively, with respect to 

a standard atmosphere. Thus in a unit macroscopic volume of 
unfrozen soil the volumes W of unfrozen water and F of air 

and G of grains are complementary functions of 

W(Cka) + r(Cka) + = 

In this equation and in what follows we proceed in terms of 
macroscopic variables, i.e., in quantities measurable at the 
scale of actual observations, equal to mean or average values 

of their microscopic counterparts. 

If, at temperatures not too far below 0øC the specific surface 
energies of crystal-melt interfaces of ice are independent of 
crystallographic orientation, exactly the same mechanical con- 
cepts enter into the displacement by ice of water from adsorp- 
tion space on the one hand and capillary space on the other 
hand, and we write for air-free soil 

+ + a = (2) 

where 

&i,• = ui- u,• (3) 

and where u• is ice pressure relative to standard atmospheric 
pressure, again as measured in capillary space, and I is volu- 

metric ice content. Because u,• has been defined as gauge pres- 

sures with respect to standard atmospheric pressure, we find 

that integration of an appropriate form of the Clausius- 

Clapeyron equation yields 

Uw -- (p•/pi)u, = (p•L/273)T (4) 

where T is the equilibrium temperature in degrees Celsius, p is 
the density of the indicated phase, and L is the latent heat of 

fusion of water per unit mass. If the ratio (Pi/Pw) is defined as 

7•, the specific gravity of ice, and if (pw L) is denoted as H, the 
heat of fusion of a unit volume of liquid water, then 

Uw - u,/7, = (H/273)T (5) 

Elimination of u• between (3) and (5) yields 

C)•w = (7,- 1)Uw - (7iH/273) T (6) 

Thus in a rigid porous medium, in the absence of air, unfrozen 

water content and ice content are complementary (hysteretic) 

functions of •b•w only, and we conclude that •b•,• is a function of 
temperature and water pressure. We note further that at least 

within a certain range, ice content is a continuous (hysteretic) 
function of those variables. All soil water does not freeze at 

any given temperature, a fact underscored in various experi- 

mental studies [e.g., Koopmans and Miller, 1966; Tice et al., 

1978; Hori•7uchi and Miller, 1983]. 

For a soil in which the volume of capillary space is very 

large relative to the volume of adsorption space, the functions 
I and W in air-free soil and W and F in ice-free soil are 

scarcely affected by the influence of •bi,• and •b,•a, respectively, 

on film thickness. However, these functions are strongly relat- 
ed to the influence of •b,•a and •b•w on the mean curvature of 

the interfaces in capillary space. In particular, when matching 
values of W are achieved by freezing of air-free soil on the one 

hand, or by drying of ice-free soil on the other hand 

(W(Ckwa) = W(•bi,•)), interfacial curvatures should match. In 

this condition the mean phase interface curvature (1/r,•a) in a 
volume of ice-free soil equals (1/r•,•) for air-free frozen soil or 

C• w a = ( CO ,• a / CO i ,• ) C/) i ,• (7) 

where co designates the surface tension. This proposition was 
tested [Koopmans and Miller, 1966], and a value 2.20 was 

indicated for the ratio co,•a(20øC)/co•,•. This value agrees rea- 

sonably well with evaluation by other means and hence sup- 
ports the application of capillary concepts in freezing of non- 
colloidal soils. 
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Ice Lens 

Fig. 1. Schematic diagram of the frozen fringe, with ice lens above. 

x=x b 

At the other extreme is the case in which the volume of 

capillary space is trivial or nonexistent relative to the volume 

of adsorption space, as in a paste of a highly colloidal clay 

mineral. If, when held at equal distances from grain surfaces 

by mobile films of adsorbed water, equal volumes of ice and 

would also experience the same disjoining force and •iw and 

•w. would be numerically equal. Thus W(•iw ) for air-free soil 

and W(•w. ) for ice-free soil should match. It seems likely that 

the adsorption forces for ice and water would be perceived as 

equal only if both were trivial or zero; both would be zero for 

the double layer model, for example. Koopmans and Miller 

[1966] used Na montmorillonite to test and confirm postu- 

lated equalities of W(ckiw) and W(ckwa) for numerically equal 
values of •biw and Ckwa in highly colloidal systems. 

We dwell on this matter because a number of papers in the 

last decade or so have been based on the explicit or implicit 

assumption that one can always use the functions W(ckwa) and 

F(•wa ) obtained above freezing for W(Ckiw) and ,/(•biw), respec- 
tively, applied below freezing. This would be valid in a highly 
colloidal soil but not in a soil low in colloids. The situation is 

even more complex when both ice and air are present. How- 

ever, in this paper attention is confined to air-free incompress- 

ible soils, i.e., soils in which colloids, if present, have negligible 

influence. Other common pitfalls in the relations used between 

phase pressures and phase composition are discussed by 

O'Neill [1983]. 

THERMALLY INDUCED REGELATION AND THE BASIC SCENARIO 

The rationale for the rigid ice model is based on a corollary 

of a deduction, confirmed by experiment, concerning the be- 

havior of isolated grains embedded in ice. It follows from the 

proposition that liquid water is attracted by grain surface 

more strongly than is rigid crystalline ice. If that is true, then 

at temperatures somewhat below 0øC the grain ought to be 

surrounded by a film of unfrozen liquid in equilibrium with 

the ice. If a temperature gradient is imposed, thermal equilibri- 
um of water and ice at the interface is inconsistent with me- 

chanical equilibrium in the hydrostatic field induced by sur- 

face adsorption forces. Whereas the thermal gradient induces 

asymmetry of film thickness, the action of adsorption forces is 

to center the grain within its liquid shell. Thus the temper- 

ature field constantly acts to diminish the film thickness on 
the cold side, while surface forces seek to retain that film 

thickness by removing ice from the warm side and trans- 

porting the resulting unfrozen water to the cold side, where it 

refreezes. The grain ought to migrate up the temperature 

ever warmer environment with a corresponding increase in 

average thickness of the film, expediting the flow of liquid by 

which the centering tendency is expressed. This deduction was 

apparently confirmed by a single pair of photographs 

[Hoekstra and Miller, 1965], leading to construction of special 

apparatus which allowed many individual grains to be tracked 

and their velocities measured [Rb'rnkens and Miller, 1973]. 

If individual grains migrate through stationary rigid ice, 

traveling up a temperature gradient, then rigid ice that largely 

fills interstices between stationary grains ought to migrate 

down a temperature gradient. If the ice is inherently rigid, this 

movement is not flow but continuous regelation. Crystalline 

ice, everywhere bounded by liquid in both adsorption and 

capillary space, is continuously melting and reforming in a 

manner consistent with the geometry imposed by the array of 

soil grains. As many experimentalists have learned from ex- 

perience, wet soil is easily supercooled by as much as several 

degrees in the absence of effective nucleation sites. It is cus- 

tomary to minimize this by seeding crystallization or inducing 

nucleation by mechanical or thermal shock. This means that 

once freezing begins, essentially all ice formed thereafter will 

grow sequentially through the pore system, forming on preex- 

isting ice. This generates one geometrically complex but never- 

theless solidly interconnected ice body. Thus as the ice mi- 

grates through the grains by regelation, it moves as a solid 

body at a spatially uniform velocity. This is diagrammed, 
albeit crudely, in Figure 1, which includes moving pore and 

lens ice. Temperature increases from the bottom of the figure, 
through the freezing front where soil ice first appears and into 

the lens above. The lens occupies a discontinuity in the soil 

fabric, while within the whole soil the pore ice content varies 

continuously according to conditions, as outlined above. On 

the warm side of the lens, xb designates the macroscopic posi- 

tion of the lens-frozen soil interface. This corresponds micro- 

scopically to a wiggley surface separating the lens ice from soil 

grains and pore ice below. The partially frozen zone between 
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the warm side of the lens and the freezing front is designated 

as the "frozen fringe." 
This vision of the mechanism of frost heave must be 

thought about with some care. For example, consider that the 

thermal field is stationary, and ice is moving as diagrammed 

in Figure 1, while the soil grains remain stationary. Then the 
water flux in the ice-free zone must be equivalent to the ice 

flux represented by movement of the ice lens, corrected for the 

lower density of ice. If the ice were immobile (not shown) but 

the thermal field descending, ice content would be increasing 

with time at every level, with a corresponding expulsion of 

water through the ice-free zone. If the ice is moving upward at 

the same time that the thermal field is descending, the velocity 

of water just below the ice lens will generally be upward. 

However, if the upward ice velocity is slow enough, relative to 

the rate of descent of the thermal field, water velocity may be 

zero at some level between the ice lens and the freezing front 
and will be downwards below that level. This is discussed 

further in the context of the simulations. 

In the ice lens, only ice is present to support what lies 

above, including any applied surcharge. Ice pressure in the 

lens is fixed by that total load, hereafter called the overburden 

P. In ice-free soil below the load supported by stressing of 

grain contacts includes not only {he overburden but the vir- 
tual load that will arise if the pressure of pore water in capil- 

lary spaces is less than atmospheric. In the frozen fringe zone 

the overburden must be balanced, augmented by any virtual 
load due to negative water pressure plus the effects of ice- 
water surface tension. However, this will be offset in some 

degree by the pore ice, if its pressure is greater than atmo- 

spheric pressure. While ice pressure will be somewhat less than 

film pressure at a convex film, its pressure will exceed that of 

water in capillary spaces by an amount given by the Clausius- 

Clapeyron equation. Thus if ice pressure and ice content are 

high enough at some point in the frozen fringe so that ice 

forces balance the combined overburden plus virtual pore 

water load, then nothing is left to stress grain contacts. Grains 

above that level can be carried along en masse by moving ice, 

which is always moving upward (down the thermal gradient), 

and we will perceive the initiation of new ice lens. It makes 

sense mechanically that as freezing progresses through the 
soil, new lenses should form somewhere within the frozen 

zone. It this were not so it would imply that the greatest load 

bearing by and ultimate concentration of ice would develop at 

the leading edge of the frozen zone (the freezing front), where 

ice concentration and ice pressure are least. Experiments have 

confirmed the appearance and ensuing growth of ice lenses 

behind the freezing front in both near-colloidal [e.g., tIoekstra, 

1969] and noncolloidal soil [e.g., Loch and Kay, 1978]. To 

know when this will happen we need to know where and when 

intergranular stresses reach zero. It turns out that this is 

always at a finite distance below the base of an existing ice 
lens. 

In thinking about this we recognize that for a given thermal 

gradient, one might expect ice to move rapidly near the freez- 

ing front and more slowly near the ice lens. However, if it is 

rigid, its velocity (but not its flux) must be uniform. Ice flux is 

simply the product of this velocity and the ice content, which 

is unity in an ice lens. Thus the ice velocity is identical to "rate 
of heave." 

A number of frost heave models which contrast in general 

with the one presented here do, however, share the feature 

that segregated ice is assumed to form within the frozen soil. 

In some cases an attempt is also made to use some of the 

concepts advanced in the paragraphs above to characterize a 

frozen fringe and the transport through it. However, no other 

model considers the ice within the fringe to be mobile, except 

perhaps by indirect implication. More specifically, none as- 

sumes pore ice motion by regelation. The two models closest 

to ours are those by Hopke [1980] and Gilpin [1980], each of 

which entails transport through the fringe in some central 

way. Hopke's simulated results are qualitatively appealing, but 

he reports limitations on the tractability of the calculations. 

These might be due to use in three phase situations (ice, water, 

air) of W(C),•a) relations suitable only for two phase freezing 

(ice, water). Gilpin indicates that he set out to simplify for 

simulation purposes the system proposed by Miller [1978]. 

His idealization which probably constitutes the greatest physi- 

cal departure from our perspective is his assumption that all 

freezing takes place at the base of the warmest lens, or at the 

leading edge of the frozen fringe. Both of these models assume 

that all segregation freezing occurs at the base of a growing 

lens and neither allows heave (ice motion) within the fringe. 
While we find it difficult to construct a credible heave sce- 

nario without the assumption of rigid ice undergoing regel- 

ation, it must be acknowledged that no incontravertible exper- 

imental validation of the proposition exists, and therefore it 

must still be introduced as an assumption. It is instructive to 

consider the alternative assumptions one could bring to bear 

to explain away the difficulties posed by the obvious connec- 

tion between moving lens ice and ice in the fringe. Even in 

other heave models in which fringe ice is immobile, one or 

another alternative must be implied at least at the lens-fringe 

connection. One can assume either (1) that lens ice is, in fact, 

not solidly connected to pore ice in the fringe, that is, that 

microgcopic connections break as necessary sometime after 

the lens has formed; or (2) that the lens and pore ice remain 

continuous within themselves and are continuously connected, 

but the soil ice deforms dramatically to accommodate its 

movement or that of ice in the overlying lens. 
In the first alternative one would assume that the ice frac- 

tures continuously as stresses build up in some way which 

tends to lift the growing lens away from the pore ice, as water 
flows into the base of the lens and freezes. However, as will be 

detailed further below, we note that all ice should be in a state 

of compression, and would therefore not crack. This is true of 

ice in the lens itself, because it must bear any overburden 

directly, and in any case it is compressed at least at the level of 

atmospheric pressure. Within the soil, ice is surrounded every- 

where by water. Where it approaches soil mineral particles 

closely it will be in equilibrium with unfrozen films at elevated 

pressures. Where the ice-water interface occurs in unfrozen 

pores it is curved sufficiently so that a substantial pressure 

difference develops b'etween the phases, with the ice at elev- 
ated pressure. To the extent that pore and lens ice are continu- 

ous, stresses will be continuous, and pore ice contiguous to the 

lens will be compresed at least to the degree that the lens ice 

is. Within the frozen fringe new lenses can only form when ice 

pressure builds to the point where it overcomes both the over- 

burden and the cohesive effect of the unfrozen pore water. 

Whenever progressive freezing (increase in l) is occurring, the 

evolution of pressure in the fringe is in this direction. The 

formation of segregated ice is only evidence that pressures in 
one location have exceeded those confining the system, while 

pressures throughout the fringe have developed similarly, but 

to a lesser extent. These pressure relations are reflected in 

equations (3)-(7) above, which have been verified repeatedly. A 

more complete discussion of the unfrozen film-pore water-ice 
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equilibrium in relation to the elevated ice pressure may be 

obtained from the work by Miller [1980, chapt. 11]. 

In the second alternative to rigid ice regelation, one con- 

cedes continuity of the overall ice mass but must then assume 

large deformations on the part of pore ice as the growing lens 

heaves. This will be the case if one allows that the pore ice 

throughout the fringe will migrate, deforming or "flowing" 

around soil particles. It is also the case if one considers the 

pore ice in the fringe to be static on the whole but to deform 

continuously where ice forms near the base of a growing lens. 
Examination of relations between stress and strain rate for 

relatively warm ice illuminates this proposition. To estimate a 

microscopic ice strain rate we note that a reasonable ice veloc- 

ity is the macroscopically observed heave rate, V•, and we 

assume that a change in velocity on this order must take place 

over approximately the dimension of a soil particle, 6. This is, 

in fact, a generous assumption, because it is likely that such a 

change in ice velocity would have to occur sometimes over 

approximately a pore diameter, which is substantially smaller 

than 6. Thus a generous (small) order of magnitude estimate of 

the strain rate will be V•/6. If we consider silt size particles, 

then 6 will be on the order of 10 -6 m. A significant heave rate 
can be taken as at least one millimeter per day, or about 10-8 
m/s. These figures provide an estimate of 10-:/s for the order 
of magnitude of microscopic strain rate. It is unlikely that this 
number could be considered to be smaller for common situ- 

ation s of active heave and in_a grea t man y_ cases would prob- 

higher Vt values or smaller effective 6 values. The important 

point is that strain rates on this order are quite unrealistic, 

even for ice near the melting point. To be specific, we refer to 

the experimental stress-strain rate relations displayed by 
Mellor and Testa [-1969]. Their data show ice strain rates at 

0øC increasing with stress, from the order of 10-7/s at about 
0.1 atmosphere to the order of 10-6/s at about 10 atmo- 
spheres. Given continuity between pore and lens ice, we may 

use typical overburden pressures as the order of magnitude of 

the pore ice stress. It is doubtful that any overburden of in- 

terest would exceed 10 atmospheres, if only because such a 

pressure would suppress heave to a point below the level of 

practical interest. Thus ice strain rates required are unrealisti- 

cally high by many orders of magnitude, if one assumes that 

growth of segregated ice or ice movement is accommodated 

by microscopic ice deformation. 

RELATIONS BETWEEN VARIABLES 

Our goal is to develop, solve, and explore a mathematical 

formulation of the phenomenon described above. Our strategy 

will be to develop relations between key variables so that they 

and the subsequently developed transport equations and side 

conditions may all ultimately be cast in terms of temperature 

and liquid pressure. Except where designated otherwise, these 

relations and the macroscopic variables in them pertain only 

to portions of whole noncolloidal soil, with or without ice 

present. Thus the central equations are applied directly only 

to the frozen fringe and the unfrozen zone, with linkage to 

contiguous zones and to external forces provided by various 
side conditions. 

We assume that the processes involved are sufficiently slow 

and the contact between phases sufficiently pervasive so that 

local thermal equilibrium between the phases is achieved. As 

mentioned above, when hysteresis is not considered (which is 

reasonable when only freezing but no thawing is treated) there 
will be a unique relation between W or I and the phase pres- 

sure difference, in particular 

= (8) 

In general, as the ice content increases, the ice invades smaller 

pores and interstices, the radii of curvature of the microscopic 
phase interface decrease, and the pressure difference •bi,• in- 

creases. Substituting (6) in (8) yields 

I = l(Auw + BT) (9) 

where A and B are known constants, representing the coef- 

ficients which appear on the right-hand side of (6). (Note' A 

and B as used here differ from those used by O'Neill and 

Miller [1982] by a factor of o•,•). For calculational purposes, 

relations of the form (8) and (9) must be determined experi- 

mentally or must be estimated on the basis of related experi- 
mental observations. 

As noted above, utilizing a relation between phase contents 

and difference in phase pressures is the same kind of thinking 
which has been applied successfully to unfrozen, unsaturated 

granular soil. However, we emphasize that use of the analogy 
between freezing and drying of soil must be applied with care. 

For example, in the freezing case neither u,• or T alone may be 

related uniquely to W or I; nor can phase composition be 

related uniquely to either of u,• or u• alone. This contrasts with 

the situation in above freezing soil, where a drying curve may 

be used to relate W and u,• uniquely, assuming passive con- 

ditions in the soil air. To put it another way, in the saturated 

ilggLiiig L•13{• tli< iL;< ib ilLIt p•13131!• iii tll• b•iib•5 tll•t 1ii_•1i• 

spatially variable pressures may develop in it relative to the 
liquid. Here, one cannot specify u• a priori in the way that one 

may assume ambient or other uniform values for soil air pres- 

sure. Rather, u i will vary in space and time depending on 
transient conditions. This may even occur when there is negli- 

gible overburden or confining pressure. Tension in the un- 

frozen water provides a cohesive force, tending to hold the 
system together against the elevated pressures in the ice. Just 

as enormous pressure differences may easily develop between 

air and water in drying unfrozen soil, relative to atmospheric 

pressure, so here too very large differences between the phase 

pressures are likely to occur. Relations of the form (8) and (9) 

may be used to express the difference between u• and u• in 

terms of I (or W), but cannot alone locate that difference in 

terms of specific values of those individual pressures. Beyond 

this, none of the results discussed above pertains to freezing of 

unsaturated soil. These distinctions have not always been ob- 

served in frost heave modeling efforts. See Miller [1980] and 

O'Neill [1983] for further discussion. 

For subsequent use we note the following differential re- 

lationships based on the foregoing: 

dI= OI duw + •-• dT 
T Uw 

_- + 
= AI' du• + BI' dT (10) 

where I' represents dl/d&•. 

TRANSPORT EQUATIONS 

Balance of mass over each water phase in a representative 

elementary volume of soil is expressed by 

0-• (p •' W) + •xx (pv)•, - -- S (11 a) 
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0-• (p'I) + •x (pv), = S (11b) 

where v,, and vi denote volumetric liquid and ice fluxes, re- 

spectively, (m 3 H20/m 2 soil/s), and S is the rate of freezing (kg 
ice/m 3 soil/s). If there is no phase change, flow in each phase is 
governed by the familiar form flow equations given by (11) 
with the right-hand sides equal to zero. Phase change func- 

tions like a source-sink action, from the point of view of either 

phase alone. Given the rigid, saturated system, the rate of 

mass loss by one phase must be equal to the rate of gain by 
the other. 

Conservation of mass of both water phases together is ex- 

pressed by the sum of these equations' 

(•-• ['pwW + p,l] + • [(pv)• + (pv),] = 0 (12) 

Because both phases are considered together in (12), the rate 

of phase change does not appear explicitly but affects the 

values of individual components of the equation. 

To reduce the number of unknowns in (12) we bring to bear 

some additional relations. The similarities between partially 

frozen and partially dried soil suggest that we apply a Darcy 

type flow law for liquid flux 

where x is positive downwards, g is the acceleration of gravity, 

and k(W) (meters per second) is the hydraulic conductivity. In 

the unffozen zone, k is simply equal to the saturated hydraulic 

conductivity. 

In keeping with the rigid ice assumption 

vi = •I (14) 

where • (meters per second) is the ice velocity (rate of heave) 
and is constant in space but variable in time. Substitution of 

(2), (13), and (14) into (12) yields 

k - p,l :0 
Use of (10) eliminates derivatives of I' 

(apm') + (apar) ot - 

+p,•[AI' •u• •+BI'• =0 (16) 

where Ap denotes p•- p•. Thus we obtain a mass flow equa- 
tion with unknowns u•, T, and •. 

To obtain an applicable heat transfer equation we begin by 
writing 

•T •q 

(pcO). = ES 

where 0. is the volume fraction of the nth component includ- 
ing soil solids, q is the conduction heat flux (J/m2/s), and c. is 
the sensible heat capacity of the nth component J/kg/øK and 
all soil components are included in the summation. It is di•- 
cult to obtain a truly rigorous derivation of such an equation 

for multiphase porous media, although many attempts have 
been made (see discussion by O'Neill [1983]). Nevertheless, 

(17) certainly has some precedence in the literature [e.g., Fuchs 
et al., 1978]. Basically, the equation says only that changes in 

sensible heat content account for part of the divergence of q, 

the rest being balanced by the source-sink action of phase 

change. Because the rates of flow are slow, convection of sensi- 

ble heat is neglected. 

A Fourier heat conduction type law will be used to 

reexpress q 

•T 

q =--Kn •x (18) 

where Ka (J m- • s-•øK-•) is the thermal conductivity of the 
whole soil. Equations (11a) or (11b) may be used to reexpress 

S, there being no obvious reason to choose one over the other. 

We will use (11b), which together with (14), (17), and (18) yields 

• (pcO). c•--•-- • K• • -- p•L •+• =0 (19) 

Use of equation (10) to eliminate derivatives of I provides the 

governing heat equation sought' 

•T •u• 

(pcO). - p,LBI'] p,LAr Ot 

( =0 (20) 

C•LCUL•TION O• • 

The coupled heat and mass transfer equations have been 
reduced to two differential equations (16) and (20) in u• and T. 

In principle, the system can be solved, provided that • is 
accounted for and that appropriate initial-boundary con- 

ditions and physical parameters are specified. Linkage of • to 

the solution system is a different matter from the straightfor- 
ward specification of parameters and side conditions. This is 
because an independent balance must be drawn up to solve 

for • in terms of the variables in (16) and (20), while • 

appears simultaneously in those equations. 
We have investigated two methods of calculating •, each 

based on mass conservation. Simple expressions are obtained, 

and we avoid redundancy with the general mass balance equa- 

tion (16) because (1) balances are drawn up either only over 

the lens-fringe interface at xo, or over the entire frozen fringe 

and unfrozen zone to the warm boundary at x•(xo • x • x•); 

and (2) in either case, we take advantage of our knowledge 

that the warmest lens consists of pure ice, moving at a rate of 

To construct a mass balance at the plane through xo we 

note that mass flux on the lens side of xo is simply equal to 

p•. Immediately on the frozen fringe side of xo, unfrozen 
water flows into the lens (freezes) at a rate of (pv)•, while soil 

ice also moves into the lens with velocity • over a cross 

section I. The plane at x• cannot itself accumulate mass; thus 
the total mass flux on one side must equal that on the other' 

P• = Pd• + (pv)• x = xo (21) 

When this relation is rearranged using (13) we obtain an ex- 

pression for • 

• = k Ox - P•g p•g(1- l)) x = x• (22) 
The quantities on the right-hand side are evaluated at xo and 

are determined from u• and T as provided by concurrent 

solution of the transport equations. Values of • obtained 

from (22) apply wherever there is ice, however, because we 

have assumed that all ice is rigidly interconnected. It is in- 

teresting to note that (21) also provides a ratio of the flux of 
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ice to that of water into the base of the lens, namely, I/(1 - I). 

Thus if I is on the order of «, ice flux into the lens is respon- 
sible for about one half the mass flow into the base of the lens. 

A second means of calculating • derives from a mass bal- 

ance over the entire length of whole (lens free) soil. The total 

mass flux through the plane at xb is given by Psi, while the 

mass flux at the warm end of the column is given by (pv)w, as 

evaluated at xw using (13). The difference between these two 

fluxes must equal the rate of change of the aggregate mass 
content inbetween 

d f•,,w Ps•- p•v(x•)=• [p,•W + pfi] dx (23) 

This equation assumes that x increases in the direction of the 

warm end; otherwise, the terms on the left-hand side are re- 

versed. We keep the warm end position (x•) fixed over time 

with respect to the coordinate system. Although the point x• is 

recurrently shifted at the instant when new lenses form (see 

below), it does not change at all other times, for which we may 

rewrite (23) as 

=- Ap d ••I 1 v(x•) +- dx (24) 

The factor v(x•) may be evaluated from (13) on the basis of the 

current pressure solution. When u• and T solution values are 

used to evaluate the integral at two successive points in time, 
•1 .. I .. I ...... ß __ _•_ • 1 ..... ß __ _1_ • _.•_ 

difference expression. 6ur prc•]ously reporte• rcsultd [O'Neill 
and Miller, 1982] used (22) to obtain •. However, all our 

more recent simulations are based on (24), for computational 

reasons to be explained below. 

APPLICATION OF PHYSICAL CONDITIONS 

AND SPECIFICA•ON OF EARAME•RS 

Boundary Conditions 

Boundary conditions at the warm end of the column are 
determined from the physical situation there in a straightfor- 
ward manner: water pressure or flux provides information in 

u•, and temperature or heat flux provides information in T. 
Conditions at the cold end (i.e., at xb) draw into play the 

distinctive physical character of that interface. Two conditions 

are needed, and these are provided by heat balance at x• and 

by consideration of relations between mechanical forces there. 
Considering mechanical forces we note that the pore ice and 

lens ice are continuous across x•, and hence the ice pressure is 

as well. If we specify the overburden P, the weight per area 

which the x• plane must bear, then us in both the lens and soil 
equals P there. We obtain a relation between uw and T by 
substitution of P for us is the combination of (3) and (6): 

P = (1 + A)u• + BT x = x, (25) 

If one constructs a heat balance across xb in much the same 

manner that mass balance was used to obtain (22), then the 

remaining necessary coldside boundary condition is obtained. 
We assume that material on the cold side of the warmest lens 

is relatively inert, in the sense that heat is conducted through 

it but insignificant additional phase change occurs there. In 
addition, we assume that the freezing process is slow enough 

so that a quasi steady temperature profile exists there, 
changing only as phase composition, length, or boundary tem- 

peratures change. This assumption is a computational con- 
venience to expedite exploration of the central features of the 
model, and could be discarded without affecting any major 

points in the theory or practices we have employed. On the 

warm side of the lens, heat conduction through the soil is 

given by (18). Beyond this, latent heat is transported through 

the soil on the warm side into the base of the lens by the flow 

of unfrozen water. All this flow is intercepted by the lens. In 

other words, the liquid flux into the lens times the latent heat 

of fusion equals the rate of liberation of latent heat due to 

freezing at x,. Thus a heat balance at x, dictates 

- T•)= OT Kh,(T• I Kh•xxlx,-L(Pv),•lx, l= x,-- x" (26) 

where K•s is the thermal conductivity of the entire frozen zone 
on the cold side of x,, T• the temperature at xb, T• the temper- 

ature at the cold external surface at Xo and l(t) is the length of 

the frozen zone from the cold external soil surface to x,. This 

equation simply says that the jump in conduction heat fluxes 

across x, is proportional to the rate of freezing there. The last 

term in (26)may be reexpressed using (13). 

Equations (25) and (26) contain relations and nonlinearities 

in both u• and T and are included simultaneously with the 

governing transport equations in solution procedures. Initial 

conditions in u• and T depend on the case considered and are 

described below for various specific simulations. 

Lens Initiation and the Z Parameter 

In what has nreceded. eauations have been discussed which 

apply to processes in the whole soil, that is, in the zone from 

the warm end of the column (xw) to the warm side of the 

warmest lens (x,) within the frozen fringe. As freezing pro- 

gresses and ice pressure builds, conditions somewhere within 
the fringe may dictate that a new lens will form. Beginning as 
a mere sliver, this new lens becomes the warmest lens, growing 

larger as it intercepts and freezes the flow of liquid which 
formerly terminated at the old warmest lens. With continued 
freezing, the process may be repeated. The inception of new 
lenses occasions a recurrent relocation of the reference point 

x• and is a fundamental feature of the physical processes to be 
simulated. 

To determine when and where a new lens will be initiated 

we must monitor the pressure situation as (16) and (20) are 

solved through time. An ice lens will bear the full load being 

lifted by heave, but to initiate a new ice lens from pore ice in 
the fringe, pore ice pressure must exceed ice pressure in the 
lens. That is, the ice stress must offset the fact that the effective 

load is augmented by the cohesive action of surface tension 

and by residues of capillary water at a pressure less than that 
of the ice, perhaps very much less. Clearly, if particles are to 

move apart as a new lens is initiated, at that location no stress 
is transmitted through intergranular contacts in the soil skel- 

eton, and the overburden P must be balanced by the pore 
contents alone. The net stress over a cross section of soil 

provided by the pore contents will be some weighted average 

of the higher stress in the ice and the lower stress in the water. 

The moment ice enters a gap left by a broken intergranular 

contact, the required ice pressure is diminished; the low- 

pressure water will have been replaced by ice. Hence the cru- 
cial location for lens initiation ought to be at the boundary of 

a large ice-filled pore. The analogue of this is the replacement 
of low-pressure water by air when moist soil cracks, a problem 
that can be translated into one of tensile failure of a flawed 

medium in which the average effective stress is known 

[Snyder, 1980; Snyder and Miller, 1985]. Snyder and Miller 
found that this approach, using Aitchison's [1961] formula for 
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estimating average effective stress, provided a reasonable fit to 

data in tensile strength of moist soils. 

Although the above mentioned work was done in terms of 

unfrozen unsaturated soil, we may translate it to the ice-water 

case. As we have noted in connection with the results of Koop- 
roans and Miller [1966], there are certain similarities between 

freezing and drying. In particular, at a given value of W for a 

given granular soil one will find the same microscopic configu- 
ration of pore phases in desaturating, unfrozen soil on the one 

hand, and freezing saturated soil on the other hand. This 

.implies the same relative apportioning of stress between the 

two pore phases in either case. Thus we express the total pore 

stress, or "neutral" stress O' n as 

O' n = •U w 'Jr (1 -- Z)Ui (27) 

where z(W) is a weighting factor evaluated in accordance with 

the results of Snyder and Miller. They concluded that the 
appropriate formula for Z would be obtained, when the ef- 

fective (intergranular) stress goes to zero, if a summation for- 

mula proposed by Aitchison [1961] is multiplied by 0.5. They 
also provided a theoretical basis for this adjustment. When the 

summation formula is converted to an integral in terms of 

unfrozen water content W, then Z is given by 

= n qb,,•(W) qb,,•(co) dco (28) 

where n is the porosity, and co is a dummy variable of integra- 

tion corresponding to W. Given a relation between •bi,• and 

W, this may be evaluated by quadrature. Alternatively, one 

may use the function l'(qbiw) required elsewhere (i.e., in equa- 

tions (16) and (20)) to transform the integral to 

•([/V) -- 0'5 [[/V - 0'3 rn ] (29) 

As work on this simulation system has progressed since the 

reporting of preliminary results I-O'Neill and Miller, 1982], the 

overall theory has remained unchanged, but the particular 

computational strategies and parameter representations have 

evolved in the direction of greater realism, relevance, ef- 

ficiency, and accuracy. The computed results to be presented 

below span a time period over which this evolution took 

place. Rather than belabor the details of parameter identity 

and calculation for each computed case, we will describe the 

most recently used and presumably best formulations, with 

occasional indications of the course of development. Alter- 

ations in computational strategy and parameter values 

changed computed results to some degree but have no real 

bearing on the qualitative nature of our findings. It is the 

general character of the computed results, not the specific nu- 

merical values which we wish to stress in this paper. 

In the case of the Z representation, our preliminary results 
were based on the formula 

(30) 

which reflects a very approximate attempt to portray Snyder's 

early measurements. Subsequently, this representation was up- 

graded to the equivalent of (29) with the integral neglected. In 

the most recent runs the full equation (29) was used and was 

evaluated analytically. 

Physical Parameters in the Transport Equations 

Ideally, for testing purposes, one would like to obtain 

W(qbi• ) (and hence I') as well as Kh(W) and k(W) from the 
same sample of soil under controlled conditions identical to 

those in the physical heave experiment to be simulated. Unfor- 

tunately, this is an extremely challenging proposition. Results 
obtained for some of these quantities with a number of soils 

have been published, together with a discussion of uncer- 

tainties that have yet to be eliminated [Horiouchi and Miller, 
1980, 1983]. 

For the present we use a curve for W obtained from a 

semilog regression on lab data for a silty soil used in physical 
tests in which heave was induced and recorded. This W curve 

(Figure 2) was obtained by desaturating unfrozen samples of 
the soil. By virtue of the findings of Koopmans and Miller 
[1966] mentioned above, it has been scaled in accordance 

with (7) and is taken to be representative of one which would 

be obtained in a freezing sequence. The solid line in the figure 
represents the regression curve fit in the form 

5 

W = y', A•,(ln ")k " = •p,,•,/co,,•, (31) 
k=O 

where the Ak are constants determined by the regression. This 

series can be differentiated analytically to produce I', which 

may be used in turn in the governing equations (16) and (20) 
as well as in (29), where the integral may now be evaluated 
analytically. 

The hydraulic conductivity k has been specified throughout 
this work as 

k(W) = k(n) •- (32) 

where n is the porosity, and 7 is a negotiable constant. Noting 
again the similarity of liquid phase configurations during un- 
frozen drying and saturated freezing, we originally assigned 7 
a value of 7 on the basis of previous work by Bresler et al. 

[1978] on unsaturated flow. In more recent runs, 7 was 
changed to 9, reflecting admittedly sparse measurements made 

directly on samples of frozen silt. Work on the measurement 

of this crucial parameter continues in the laboratory of the 
second author. 
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Fig. 2. Unfrozen water content (W) versus temperature if u w is held 
at zero, or alternatively, versus ui-u •. 
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Thermal conductivity is also a function of phase content. 

Once heave is underway the frozen zone (x" > x > x•) consists 
of segments of pure ice interlayered with segments of frozen 

soil. Thus Khs was evaluated using a "composite wall" type 
formula for equivalent (effective) conductivity' 

l 

Khs- ;xb d_•x c K• 

l (33) 
h l-h 

K•i K•s 

where h(t) (m) is the cumulative heave (sum of the thicknesses 

of all ice lenses), K•i is the thermal conductivity of pure ice 
(2.32 W m øK), and Khs is a representative value of the thermal 

conductivity of frozen silt (2.93 W m øK). In the frozen fringe 

the geometric mean formula was used (see, for example, O. 
Johansen, [1977]) 

i w G 

K• = K•i K•,• K•,, (34) 

where Khw is the thermal conductivity of pure water (0.58 W/ 
m/øK), and K•,• the thermal conductivity of a solid sample of 
the soil minerals. In the limited number of cases where its 

investigation is documented in the literature, the formula (34) 
has been found reasonably adequate. When applied to data 

formula performs quite well. 

The overall soil sensible heat capacity was calculated as the 

simple volumetrically weighted sum of the component values, 

those being estimated from typical published values. Ice and 

liquid water values are well known, and, on a volumetric 

basis, values for soil minerals vary little for different mineral 

contents [deVries, 1963]. In any event, in the cases investi- 

gated sensible heat effects were usually not very significant. 

NUMERICAL METHOD 

The governing equations (16) and (20) were solved by the 
Galerkin finite element method. Full details of the rather in- 

volved solution procedures will not be given here. While stan- 

dard texts [e.g., Pinder and Gray, 1977] provide a basic expla- 

nation of the method used, space does not permit exposure 

here of full details of the rather involved solution procedures 
necessitated by the complexity of the calculations with all 
their contingencies. Hence only an outline of our method is 

presented below, with indications of some particulars so that 
one gains some notion of how the nonlinearities were dealt 
with. 

In brief, the variables u,, and T were approximated by the 
series 

u .• Uk(t)f•k(x) T • T•(t)f•k(x) (35) 

k= l-•N 

where the set of T• and Uk are time-dependent coefficients to 

be sought. The f•n are preselected basis functions which inter- 

polate the solutions over space; N is a finite number, and the 

repeated subscripts indicate summation over the range of k. 

Piecewise linear interpolation functions f•n were used, which 

means that Un and T• correspond to dependent variable values 

at the node points. Using usual Galerkin finite element pro- 

cedures in each governing equation, one obtains 2N algebraic 

equations in the 2N unknown coefficients, T• and Un. Each 
(jth) algebraic equation is of the form 

dU n dT• 

C•k •--+ D•n •-+ E•nUn + F•nT• + R• = 0 (36) 

j=l, 2 ..... N k= l--•N 

We apply (36) at successive points in time, t', where t m < 
t' < tm+ •, and where the dependent variable values are known 

at t m and unknown at tm+ •. That is, we write 

U•(t') • •U• •+ • + (1 - •)U• m (37) 

and similarly for •(t'), where e is a numerical parameter dic- 

tating the degree of implicitness in the differential expressions. 
Use of (37) and approximation of the time derivatives in the 
manner of 

dU• U•+ x _ U• 
• • (38) 
dt t•+ • - t• 

allows us to rearrange (36) in the form 

[G]{y•+ x} = [H]{y•} _ {R} (39) 

Ux 

T, 

{Y} = 

U• 

wnere tne matnc<s •j anu •nj gOXltalil tIl< tlIIl< St<p SlZ<, •, 

•, and various physical coe•cients dependent on u• and T. 
The equations are quite stron•y nonlinear via I' and k(W), 

which are evaluated iteratively using an under relaxation 
scheme. That i s, the physical coe•cients are evaluated itera- 
tively from the solution Y* where, 

= + - (40) 

The numerical parameter • was kept less than •, and Y•+ x on 
the right-hand side signifies the new values obtained from the 

latest iteration. Numerical experiments suggested that an ac- 

ceptable balance of accuracy and stability was obtained With • 

and • equal to 0.75 and 0.5, respectively. Those values were 

used in all runs after the preliminary ones. 

• was evaluated iteratively using Y* for the pressure solu- 

tion to obtain •(x•) in (24). The integral in (24) was calculated 

at t• using Y• and at t•+ • using th e latest iteration for Y•+ •, 
with Simpson's rule applied over each element. Finite differ- 

encing in the manner of (38) was used to obtain the integral's 

time derivative. The boundary conditions (25) and (26) were 

included simultaneously in the algebraic system symbolized by 

(39), with (25) written at t•+x and (26) formulated at a time 
corresponding to Y*. Because solution values over the whole 

extent of the frozen fringe determine the integral in (29), the 

banded nature of the system (39) would have been destroyed if 

the equation for • had •en included simultaneously, instead 

of iteratively. 

COMPUTED RESULTS 

The Course of a Simulation 

In every case, the soil column was considered to be initially 

unfrozen over most or all of its length. In the preliminary runs 

the initial temperature in a 15.3 cm column was 1.0øC, with 

the warm end kept at that temperature throughout. The cold 

surface at x" was ramped gradually down to -0.5øC and then 

held there. Results from these runs are reported by O'Neill and 
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Fig. 3. Computed profiles in T, uw, ui, and •. across the frozen 
fringe at the moment when a, surpasses P. 

Miller [1982]. The gradual cooling sequence illustrates the 
role of the boundary condition (25) and the consequences of 

the physical ideas behind it. With the initial cooling, the ex- 

pansion of water on freezing drives the liquid pressure in the 

column up, with the ice pressure at a higher level yet. Liquid is 
forced out of the warm end of the column. The pressures may 

build up until heave results, which serves to limit or relieve the 

build up in total pore pressure at a level dictated by the values 
of P. The boundary condition (25) may be rewritten as 

P--BT 

Uw = x = x•, (41) 
I+A 

As freezing continues and T drops at xb, the value of P (equal 
to the ice pressure) remains fixed while the value of Uw is 
forced down, in accordance with (41). This depression of uw at 

the cold end of the fringe motivates the liquid flow through it 

and into the lens, furnishing the mass transport needed for 
heave to occtir. These heaving mechanisms serve to relieve O'n, 

ensuring that it cannot exceed the pressure P which confines 

the specimen. 

Figure 3 shows typical calculated dependent variable pro- 
files across the frozen fringe, at an instant when a new lens is 
about to form. The widening of the gap between ui and Uw is 
evident, as one looks toward the more frozen end of the fringe. 

In accordance with the processes discussed above, the value of 

Uw drops rather precipitously near the base of the lens, which 
lies at the top of the figure. At the moment depicted in Figure 

3, O' n at its maximum point has just surpassed P, and thus a 
new lens will form there. Computationally, this means that the 
numerical mesh will be shifted downward, relocating xb at the 

base of the new lens, with values at the new node points 

interpolated from the previous mesh. Boundary conditions are 
reapplied at the new x•, and the process repeats itself. 

One onus of our modeling system is its dependence on cal- 

culating the inception and growth of each lens. Especially 
under certain conditions including rapid freezing, the lenses 

formed can be veritably microscopic, with commensurately 

small segments of frozen soil between them. It is gratifying 
that the model predicts this under the kind of conditions 
where this phenomenon is observed in the laboratory. How- 
ever, this requires a great deal of computation. The problem 

might be alleviated by skipping the calculation of whole 

groups of consecutive fine lenses, assuming that the character 

of each group may be interpolated from a sampling of lens 

computations on each side of the group. The spacing of lenses 

depends upon the characteristics of the soil, as well as on 

applied conditions. During later runs than the one producing 

Figure 3, a more realistic W(ckiw)function was used (i.e., 

Figure 2), producing more generous lens spacings. 

Catching the moment when o' n surpasses P also poses a 

computational challenge. We have dealt with this by having 

the program determine time step sizes so that o' n should not 
surpass P greatly (on a percentage basis) during any one time 

step. When P is surpassed, the last time step is shortened and 

recalculated. Various interpolation and iteration schemes were 

then used to zero in on the moment when the surpassing 

occurred. The purpose of these procedures was to terminate 

simulation of the growth of a given lens when a new lens had 

formed, intercepting liquid flow to the old lens. In general, 

other things being equal, the slowdown of freezing brings 

greatly increased time lapses between successive lens forma- 

tions. After the inception of each new lens, the time step was 

reset as some fraction of the total elapsed time between incep- 

tion of the current lens and of the previous one. In this way 

the temporal resolution of the computational system could 

always be geared to the evolving time scale of events in the 

heaving system. 

Figure 4 shows the results of the simulation which produced 

the profiles in Figure 3. The shaded portions of the column 

represent ice lenses, which have formed in the kind of banded 

pattern observed in lab experiments. The larger lenses grow 

during the final stages of the freezing sequence, when ice pene- 

tration is nearing its limit and the contributing processes have 

slowed greatly. Under these conditions, it becomes increas- 

ingly easy for the suction generated in the frozen fringe to 
draw water through the soil at rates commensurate with the 

now reduced freezing requirements. In other words, it becomes 

easier to accomplish continued freezing by drawing unfrozen 
water into the fringe than it is for ice to penetrate new un- 
frozen interstices. Eventually, other things being equal, pene- 
tration will cease, and a terminal lens will form which will 

grow indefinitely as the system asymptotically approaches a 
quiescent state. The locus in time and space of this cessation 
of penetration depends in part on the freezing rate and load P 
which are imposed. In some cases with relatively low values of 

each it may occur very early, or there may be virtually no ice 

penetration at all. The terminal stage of heave has features 
which are qualitatively distinct from the other stages. 

Analysis of the results of numerous runs showed that our 
simulations tend to become unstable during the terminal stage 

of heave. Under relatively high overburdens, the model could 

often be run for extended periods of time after penetration had 

ceased for all practical purposes. However, the lower the value 

of P, the more likely were stability problems during the termi- 
nal stage. This may be the result of some purely numerical 

problems or may reflect inadequate physics for the pecu- 
liarities of this ultimate stage, or both. Examination of details 

in the calculations produces circumstantial evidence that the 
difficulty centers around calculation of • and the effect of its 
value. 

During the final stage • plays a much greater role in the 
calculations of heat balance in the frozen fringe than during 

earlier time. During initial relatively rapid freezing the phase 

change effects are dominated by the c2I/c2t term in (19). How- 
ever, when penetration becomes negligible, t)//t)t becomes very 
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Fig. 4. 

-- freezing front 

A portion of a freezing soil column showing computed ice 
lens locations (shaded) and their times of initiation. 

small. Essentially, all the phase change consists of conversion 

of all liquid inflow into ice outflow over a spatially steady 

frozen fringe. In terms of the equations, this means that the V• 

term in (19) (and hence terms in the second line of equation 

(20)) becomes predominant in the phase change heat balance. 

At the same time, the calculation of V• itself becomes more 

precarious at this stage. Because the ice content profile has 

become relatively steady, the time derivative of the integral in 

(24) is much reduced in significance. During earlier time, pene- 

tration proceeded with considerable momentum, which elev- 

ated the significance of the integral term. This in turn tended 

to buffer iterative or other fluctuations in the •(x,) term in 

(24). However, during the final stage, fluctuations or slight 

errors in the v(xw) term translate directly into errors in the V• 

calculation. This translates through (20) into errors in T and 

hence in the phase change rate. Through mass balance, this 
translates iteratively into further errors in the v(xw) calcula- 

tion. Use of (22) instead of (24) for determining V• resulted in 

similar difficulties, exacerbated by the fact that key quantities 

in (22) are greatly dependent on the value of T at the single 

point xb. The formulation based on (24) was related, by con- 
trast, to fluctuations of the entire heat and mass balance over 
the column and hence was more stable. 

Sensitivities and Qualitative 

Character of Results 

It has been observed physically that increasing the mag- 

nitude of P tends to reduce heave, other things being equal. A 

series of step freeze simulations was undertaken to evaluate 

the model's sensitivity to variation of P, under conditions 

slightly different from those in the preliminary runs. In step 

freeze tests, T• is lowered suddenly to a predetermined value 
and then held there while conditions at the warm end are held 

constant, as before. In this sequence of runs the initial temper- 
ature assumed over most of the column was IøC, with an 

initial thin frozen zone including frozen fringe assumed at the 

cold end. T• was set to -1 øC at time zero, and an initial value 

of T• was guessed either by solving (25) for T with u,• at zero 

(the initial condition in u,) or by drawing on experience. In 

either case, the system rapidly adjusted T• to a more consistent 

value, or, in a small number of cases, behaved erratically, in 

effect requesting a better first guess which was then provided. 

Figure 5 shows computed heave histories obtained under 

these conditions for a 10-cm long column. Cumulative heave, 

h, was calculated from the numerical equivalent of 

h(t) = • dt (42) 

The heave magnitudes and rates shown are believable in rela- 

tion to lab observations and the model evidently responds 
.,.k ..... ;.•--1., • ..... ;,.6,-..0 ;. D A..•r•r•l;a, rl e,,rr.h•r.a, •f ! q'• 

kPa supresses heave greatly, forcing a large degree of ice pene- 

tration into the soil. However, a load of 50 kPa hardly 

achieves ice penetration, with a large portion of the freezing 

associated with ice segregation. For the assumed soil charac- 

teristics, variations in P in the vicinity of 100 kPa produce the 
most visible alterations in the character of the heave histories. 

Thus for the particular soil and freezing sequence simulated 

we might regard the vicinity of 100 kPa as a critical zone for 
P. 

Subsequent figures explore activity in this critical zone in 

more detail. Lab step freeze tests have sometimes shown heave 

occurring even while water is being forced out of the warm 

end of the column. In particular, this may occur during early 

time when freezing is rapid and the lenses formed are too 
small to see. The flow may then reverse subsequently, as freez- 

ing slows down, with intake of water eventually contributing 

significantly to the heave and visible lenses forming. This ex- 

pulsion of water with flow reversal is more likely to occur 

under higher values of P (see, for example, Penner and Ueda 
[1977]). 
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Cumulative heave histories for various values of P. 
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Uw, Liquid Pressure 

0 

i •[• Frozen 
Unfrozen 

Fig. 6. Schematic depiction of water pressure profiles (uw) in the 
frozen fringe. at successive times before and after flow reversal with 
arrows showing the direction of liquid flow. 

The explanation for this phenomenon is provided by the 

model in terms of pressure profiles illustrated schematically in 

Figure 6. During early time the rapidity of freezing and the 

expansion of water with phase change tend to drive up the 

pressure in the pore contents. This pressure is relieved at both 
ends of the column. Liquid is driven away from the zone of 

most active freezing, causing expulsion at the warm end while 
also contributing to heave at the colder end. Later, when 

freezing has slowed, the system "relaxes," so to speak. Liquid 

pressure is relatively depressed at xb, and the reduced freezing 
rate means that the liquid pressure is more easily relieved 

throughout. Hence the uw profile is negative everywhere, fol- 

lowing the drop imposed at xb. At this stage we witness an 
influx of water from the warm end, which eventually com- 

pletely supplies the mass which accumulates as segregated ice. 

] I [ I '[ 

P= I00 kPa 

h 

(mm) 

2 

Xf •, 
(cm) 3 • 

5 
0 2. 4 GxlO 5 

t (s) 

Fig. 7. Cumulative heave (h), heave due to water intake (hw), and 

location of the freezing front (X s) over time for a step freeze simula- 
tion. 

Larger lenses form during this stage, because more freezing 

than before is associated with inflow than with expansion of 

water on freezing as ice penetrates. Each lens grows for a 

relatively long time, before increased freezing in the fringe can 

drive pressures there up enough to initiate a new lens. 

Figure 7 shows results for a step freeze under a P of about 

100 kPa, with hw denoting the heave due only to water intake, 

i.e., due to the v(x•) term in (24). X s denotes the location of 
the freezing front, arbitrarily taken as the point of 0.1 ice 

content, which might correspond to a visually identified front 

location. Initially, the h and h• curves are not parallel, indicat- 

ing that the expansion of water on freezing contributes quite 

significantly to the mass needed for heaving. On the right- 

hand side of the figure, near the limit of ice penetration, the 

two curves have become nearly parallel, reflecting the fact that 

the mass for nearly all additional heave is supplied by inflow 
from the warm end. 

Figure 8 shows results from an identical run, except that the 

surcharge has been increased to about 107 kPa. Here the 

balance of factors has changed distinctly. During most of the 

period of active ice penetration, heave is almost totally 

achieved from the excess volume provided by the expansion of 

water on freezing. Relative to the magnitude of h, expulsion of 
water is substantial. However, as observed in lab experiments, 

this flow eventually reverses when the freezing rate has de- 

clined, in this case when ice penetration has nearly ceased. The 

h and h• curves then become parallel, and most of the heave is 

associated with what is probably the terminal lens. We note 

that the model mimics lab observations in the pattern of ini- 

tial outflow and flow reversal with high P and in the forma- 

tion of veritably microscopic lenses during the initial stage of 
heave. 

Figure 9 shows another effect usually associated with a de- 
cline in the freezing rate, namely, an increase in the ice segre- 

gation ratio (ISR). An ISR is a strainlike quality, which may 

be defined as the ratio of the total thickness of segregated ice 

within a segment of frozen soil divided by the current length 

of that segment. We will designate an overall or global ISR as 

that which pertains to the whole frozen zone, that is, 

ISRG = h/l (43) 

The local ISR (ISRL) pertains to some particular subsection of 

the frozen zone, which, in the case of Figure 9, is the most 

recently frozen material. We may define the ISRL as 

ISRL = V•/(V.r + V•) (44) 

i 
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hw 
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Fig. 8. Results from a step freeze simulation identical to that in 
Figure 7, but at a higher overburden, showing the flow reversal over 
time. 
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Local ISR and freezing rate versus time for a step freeze 
simulation. 

where V/is the rate of progress of the freezing front X/. In 
other words, the ISRL is the ratio of the rate of heave to the 

rate of elongation of the frozen zone. Alternatively, consider- 
ing Figure 4, one can estimate the ISRL at any level in the 
column by taking the thickness of a lens and dividing it by the 
thickness of the lens plus the band of frozen soil immediately 
above it (and below the previous lens). The global ISR is 
appropriate for quantifying aggregate or cumulative effects, 

ments of soil or current events during a longer evolution. The 

trend shown in Figure 9 corresponds to that seen in the lab- 
oratory, and the magnitudes of the quantities are reasonable. 

To explore the model further, simulations were run on a 
much larger scale, more in line with field scale problems. A 
35-m vertical column of soil was considered, with an initially 

hydrostatic profile in u w. The sequence began with an assumed 
Tc on the upper surface of -5øC and a fixed temperature of 
3øC at the 35 m depth. Liquid pressure at the warm end was 
held at the initial hydrostatic value, and the initial temper- 
ature was assumed to be 3øC throughout. Initial overburden 

on the freezing zone was taken as 50 kPa. Fo•: convenience it 
was also assumed that about 10 cm of solidly frozen material 

was directly beneath the top surface. These conditions were 
only intended to bear some resemblance to conditions beneath 
a cold buried pipe and to provide a framework for exploration 
of a large scale simulation. 
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Results from the first 100 days of a large-scale step freeze 
simulation. 
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Fig. l l. Heave rate, cumulative heave, and heave due to water 
intake over the first 100 days of the large-scale simulation. 

Figure 10 shows results from the first 100 days of this run. 
As in the small scale runs, we note that both ISR's increase 

with a declining V• (ISRG being in effect a spatial integral of 
ISRL). However, we note that this effect moderates as time 
proceeds, with the ISR curves flattening out relative to that in 
Figure 9. Figure 11 shows h, h,•, and V• versus time for this 
case, also during the first 100 days. During the early rapid 
freezing, V• is relatively high as all contributing processes 
happen at a faster pace initially. However, the ISR's are still 
relatively low initially because frost penetration is still quite 
ranid_ After the first 100 davs. the h and h... curves are still not 

tending toward parallel paths. 
The behavior of the h and h,, curves in Figure 11 and of the 

ISR curves in Figure 10 are illuminated further in Figure 12 
where the results from the first 1000 days of simulation are 
shown. Here the contrasts to the smaller scale, constant P 

runs persist, with evident cause: as the depth of freeze in- 
creases, the weight of overburden on the frozen fringe con- 
stantly increases. An interplay of rate dependent effects results, 
causing ongoing changes in relationships which stabilized in 
the smaller scale, constant surcharge cases. Also, the growth in 

P eventually suppresses heave so severely that despite declin- 
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Large-scale results over the first 1000 days showing a turn 
around in the ISRL curve with increasing P. 

Fig. 12. 



294 O'NEILL AND MILLER: FROST HEAVE MODEL 

Xf 
(m) 

OOOdays 

ISR (%) 

:.3 4 

i I I 

I 

I 
ISRG] 

I 

',/ 

TSRL 

I 

Fig. 13. Vertical profile of ISRL, with dashed line showing the 
ISRG at 1000 days for the large-scale simulation. 

ing V s, the ISRL peaks out such that the more sluggish ISRG 
curve ultimately turns around as well. This is illustrated spa- 

tially in Figure 13, where a vertical ISRL profile is shown. The 

ISRG is the global ISR one would detect on the soil surface at 

1000 days, measuring the cumulative heave and knowing the 

depth of freeze. Despite many differences between the large 

and small scale cases, the development in both of about one 

atmosphere of overburden pressure severely suppresses heave. 

This neighborhood of the P value appeared to be a critical 

range in the small scale tests, and one notes that the ISRL 

peaks out when P achieves this magnitude on the large scale. 

The last three figures contain results from additional small- 

scale runs, much like the previous ones except that here both 

column end temperatures decreased linearly with time ("ramp 

tests"). This was done to achieve steadier frost penetration and 

other rates. These runs were done for comparison to very 

preliminary lab data in a continuing series of such ramp tests 

undertaken to aid in design studies. All results shown are from 

the simulations, the curves being drawn from the points indi- 

cated. Some physical information was available to us, such as 

80j • I ' 

• RAM.___•P TES T•S _ 

(%) 40 

66.2 

0 20 4( 

Vf (mm/d) 

Fig. 14. Results from small-scale, •amp •cczc simulations 
ISEG and •cczing •atc •o• different overburdens. 

the curve in Figure 2 for a soil like that used in the lab. On the 

whole, however, we lacked definitive information on the soil 

characteristics such as would be needed for a strict test of the 

model. Also, the preliminary lab data were quite sketchy, pos- 
sibly distorted by such factors as friction on the sides of the 

column containers. ISRG values are averages over the sections 

of frozen soil where V• and Vs were most steady, typically over 
most of the ultimately frozen material. 

Despite the limitations the results are gratifying. Simulated 

heave and ISR magnitudes were generally larger-than those 

observed. However, the same trends appeared in each figure as 

in the lab data, with steeply rising ISRG at the left in Figures 

14 and 15, and greater rise of V• with V• (Figure 16) for lower 
surcharges. Also, perhaps most importantly, both the lab tests 

and the simulations produce the same relative rankings of 
cases, in terms of heave rate and ISR versus the other factors. 

SUMMARY AND DISCUSSION 

This paper has explored the nature of a mathematical de- 

scription of frost heave designed to simulate the coupled heat 

and moisture flow processes whereby segregated lenses of pure 

ice grow within the soil, thereby deforming the soil surface. 

The theory has been formulated for the case of incompressible 

soil, free of air, colloids, and solutes. Despite these constraints, 

the model has value as a first step towards a fundamental 

understanding of the underling mechanics of frost heave. 
In constructing this model we have relied to the maxi- 

mum extent on considerations of rational physics and thermo- 

dynamics of freezing soil, eschewing nonphysical correlations 

or any ignorance factors designed to swallow whole our lack 

of understanding for the convenience of the modeling exercise. 

The model rests primarily on (1) the central equations in tem- 

perature and liquid pressure, developed with reference to the 

basic conservation laws, and from fundamental thermodynam- 

ics (the Clapeyron equation); (2) experimentally supported 

concepts relating phase composition of the system, its state, 

and its capillarity; (3) rational criteria for pore stress partition- 

ing and for what amounts to mechanical failure of the soil, 

when each new lens of segregated ice forms. A central feature 

of the model, which allows closure of the equations and facili- 

tates their solution, is the rigid ice assumption. That is, we 
have relied heavily on the belief that soil ice tends to form on 

preexisting ice and thus grow through the pore system to form 

one solid body. This means that pore ice in the frozen fringe is 

solidly connected to lens ice, as both move toward the cold 
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Fig. 15. Computed results for the same cases as in Figure 14 
showing larger ISRG values at reduced overburden and reduced 
freezing rates. 
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Fig. 16. Computed results for the same cases as in Figure 14 
showing more rapid rise in heave rate versus freezing rate for lower 
overburdens. 

boundary during heave. While the total ice body may be very 

complex in its microscopic geometry, it should move as a rigid 

body, with spatially uniform velocity. As it migrates, the pore 

ice accommodates the immobile soil matrix by melting where 
........... n th• •rnrm ticlot c•f cnil orain• and re. free?in• on 

the cold sides. Thus in conjunction with the rigid ice assump- 

tion, regelation is assumed to be of fundamental importance in 
fitting together other contributing mechanisms. We find it dif- 
ficult to conceive of plausible explanations, without rigid ice 

and regelation, which permit the observed growth of ice lenses 
within the frozen soil. A brief investigation of alternative as- 

sumptions finds them implausible. Nevertheless, in the absence 

of strict proof it must be acknowledged that this feature of the 
model still remains an assumption, however physically well 
motivated. 

It is gratifying to see results emerge from the simulations 
which are reasonable with respect to laboratory experience. 

For example, in the lab scale step freeze cases simulated we 

see suppression of heave and increased ice penetration with 
greater overburden and also water expulsion with ultimate 
flow reversal in higher overburden cases. The model predicts 

the rhythmic formation of lenses in a recognized pattern: ver- 
itably microscopic, closely spaced lenses during early rapid 
freezing, with larger lenses and lens spacings during later, 
slower freezing. We also see an increase in the ice segregation 

ratio associated with a decline in freezing rate, other things 

being equal. In cases with ramped boundary temperatures, 

producing steadier freezing and heave rates, simulated results 
feature shapes, influences, and trends which also characterize 
lab results in comparable cases. Simulations over much longer 

times and larger spaces take into account the effects of varying 

overburden on the heaving zone, showing a peak in the ice 

segregation ratio achieved. This makes sense in terms of our 

experience on the lab scale. 

Alongside these positive points we note a number of 
challenges which remain. As it now stands, the model requires 

a great deal of computational effort under many circum- 

stances, because the inception and growth of each individual 
lens must be simulated. It may be possible to bypass much of 

this by judiciously computing only representative portions of 
each stratum. Also, it is possible that one might obtain results 

similar to those produced by this complex model using a sim- 

pler version containing its presumably essential features. 

Work along the latter lines is being currently pursued. 

A substantial challenge presented by the model is that of 

parameter identification. In the simulations reported here, we 

have used reasonable estimates and generalizations from quite 

limited data. Development of adequate data to characterize 

such sensitive parameters as unfrozen water content and hy- 

draulic conductivity of the frozen fringe is not only time con- 

suming and expensive; it also challenges the limits of our 

laboratory techniques. Eventually, it may be possible to use 
information from detailed validation of the model to reduce 

the number of independent quantities considered, to dismiss 

some as less important, and to employ a stochastic treatment 

of others. However, this can only follow strict verification of 

the basic structure of the model, which, in turn, requires exper- 

imental work of higher resolution than what has been done to 
date. 

Lastly, we note that the approach propounded here pro- 

vides a sufficient set of equations to obtain solutions for all 

obviously crucial quantities. However, this still allows the 

possibility that we have failed to quantify important ad- 

ditional interactions. In particular, our conceptualization of 

the rigid ice regelation system in the frozen fringe requires an 

active microscopic recirculation of water and heat around the 

soil grains. Yet no specific characterization of those processes 

appears explicitly in the macroscopic equations and parame- 
ter• ]]itirnatelv brought to bear. It mav become at)t)arent that 

additional mechanics and thermodynamics must be drawn 

upon to include adequately at the macroscopic level the roles 

and the limiting factors for the transport of adsorbed film 

water and the pore constituents. In any case, generalization of 

the theory to cover three (liquid water, ice, air) phases is neces- 

sary before the unsaturated case can be attacked. Important 

beginnings have already been made in this domain [e.g., 

Miller, 1973; Colbeck, 1982]. In addition, any application of 

our concepts to multidimensional situations will require sub- 

stantially more sophisticated soil mechanics than is included 
here. 

The forces of nature acting on engineering projects in north- 

ern regions increasingly motivate interest in the challenge of 

frost heave analysis. The results presented here motivate us to 

use this model as a starting point for addressing the substan- 

tial challenges which remain. 
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