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a b s t r a c t

Titan’s north polar hydrocarbon lakes offer a unique opportunity to indirectly characterize the statistical
properties of Titan’s landscape. The complexity of a shoreline can be related to the complexity of the
landscape it is embedded in through fractal theory. We mapped the shorelines of 290 of the north polar
titanian lakes in the Cassini synthetic aperture radar dataset. Out of these, we used a subset of 190 lake
shorelines for our analysis. The fractal dimensions of the shorelines were calculated via two methods: the
divider/ruler method and the box-counting method, at length scales of (1–10) km and found to average
1.27 and 1.32, respectively. The inferred power-spectral exponent of Titan’s topography (b) from theoret-
ical and empirical relations is found to be 62, which is lower than the values obtained from the global
topography of the Earth or Venus. Some of the shorelines exhibit multi-fractal behavior (different fractal
dimensions at different scales), which we interpret to signify a transition from one set of dominant sur-
face processes to another. We did not observe any spatial variation in the fractal dimension with latitude;
however we do report significant spatial variation of the fractal dimension with longitude. A systematic
difference between the dimensions of orthogonal sections of lake shorelines is also noted, which signifies
possible anisotropy in Titan’s topography. The topographic information thus gleaned can be used to con-
strain landscape evolution modeling to infer the dominant surface processes that sculpt the landscape of
Titan.

! 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Cassini–Huygens mission has provided conclusive evidence
for the modification of Titan’s landscape by a variety of different
surface processes including fluvial and aeolian action, tectonics,
impact cratering, lacustrine processes and mantling (fallout of so-
lid material from the atmosphere which blankets the surface).
Images sent back by the Huygens probe showed long dendritic
channels and rounded cobbles at the landing site, indicating fluvial
activity (Soderblom et al., 2007; Tomasko et al., 2005). Subsequent
images taken by the Cassini RADAR depicted the manifestation of
aeolian processes at work, in the form of extensive dune fields in
Titan’s equatorial regions (Lorenz et al., 2006; Radebaugh et al.,
2008; Elachi et al., 2006). Mountain ranges and ridges imaged by
both the RADAR and the Visual and Infrared Mapping Spectrometer
(VIMS) on Cassini (Brown et al., 2004) signify the presence of active
tectonics on Titan (Barnes et al., 2007; Radebaugh et al., 2007).
Putative cryovolcanic features point to the link between the inte-
rior and the atmosphere of Titan (Lopes et al., 2007). The signatures
of the action of such a diverse set of surface processes and the scar-
city of impact craters (Lorenz et al., 2007) indicate Titan to be very
active geomorphologically.

RADAR images of Titan’s North Pole show the landscape to be
dotted with numerous small and large, radar-dark (all references
to dark and bright lakes here relate to radar-dark and radar-bright)
features (Stofan et al., 2007). A number of lines of evidence, includ-
ing the noise-floor level backscatter inside the features, the higher
brightness temperatures over the features compared to the sur-
rounding region and the presence of channels going in and coming
out of these features; all point to them being liquid filled. Conclu-
sive evidence for the presence of liquid in these features was pro-
vided recently in the form of ethane detection by the VIMS
instrument onboard Cassini (Brown et al., 2008). More recently,
transient dark features that appear in the Imaging and Science Sub-
system (ISS) observations of the South Pole have been interpreted
as potential lakes (Turtle et al., 2009).

On Titan, as on Earth, different surface processes can compete
to influence the overall topographic properties of the landscape.
Precipitation events may reduce surface roughness by triggering
processes such as slumping, soil creep and the washing of debris
into channels, whereas channel incision will roughen the land-
scape. Modeling of terrestrial fluvial processes by Chase (1992)
shows that landscapes may vary in roughness as a function of
scale as a result of these different processes having different effi-
ciencies over different length scales. Although the geomorphic
features on Earth and Titan are very similar, the surface materials
are very different, with the bedrock being made of water ice on
Titan compared to silicates on Earth, and liquid methane–ethane
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playing the role of surface fluids, in contrast to liquid water on
Earth (Collins, 2005; Lunine and Atreya, 2008). Although ‘bedrock’
erosion can produce loose surficial debris on both bodies, Titan
has an additional source of such material. Photochemical reac-
tions beginning with the destruction of methane in the atmo-
sphere produce ethane as the primary product as well as
aerosols which settle out of the atmosphere and blanket the sur-
face (Khare et al., 1984).

Despite the gross similarity of dominant surface processes on
Earth and Titan, it is difficult to constrain terrestrial landscape evo-
lution models on Titan without topographic data. As a result, the
dominance of some processes over others over different length
scales on Titan, and the way the titanian landscape might have
evolved over time, as a response to these processes is not very well
understood.

This paper implements a novel technique to deduce surface
roughness on Titan. We take advantage of the fact that Titan has
standing bodies of liquid on its surface, the shorelines of which
represent topographic contour lines. Fractal theory allows one to
characterize the complexity of these shorelines and relate it to
the roughness of the landscape in which they are embedded. Frac-
tal analysis alone, as is being reported in this paper, can only be
used to provide a measure of relative relief, i.e., topography at
shorter wavelengths (smaller spatial scales) versus that over longer
wavelengths (larger spatial scales). Methods which can be used to
extract a measure of absolute relief at any given length scale will
be the subject of future work.

2. Statistical landscape characterization

In this section we will describe how shoreline complexity may
be quantified through fractal descriptors and the assumptions
inherent in this comparison. We will show how statistical descrip-
tions of the complexity of the shoreline can be related to parame-
ters which describe the ruggedness of the landscape.

Fractals (a term coined in the 1970s, Mandelbrot, 1982) are geo-
metric constructs which appear invariant under magnification, a
property termed self-similarity. Mathematically they are produced
by recursive operators (e.g. Fig. 1) which create detail down to
arbitrarily small scale. Fractal (as opposed to Euclidean) shapes
have no intrinsic scale and cannot be represented analytically.
Many natural shapes, including shorelines, share this property of
self-similarity in a statistical sense, i.e. displaying the same level
of detail at increased magnification, even while differing in exact
appearance.

The complexity of a fractal shape (or natural object with self-
similar properties) can be characterized by its fractal dimension.
In general, a curve may be divided into N linear segments of length
R or a two-dimensional surface may be divided into N squares of
size R. In the simple case of a straight line, NaR!1 or for that of a
flat planar area, NaR!2. In general, we can say that NaR!D. Since

the perimeter (P) of such a shape will be given by N " R, we can
say that in the general case:

PaR1!D ð1Þ

where D is the fractal dimension.
For straight lines, D = 1. In the case of a fractal, D is not an inte-

ger, e.g. in the case of the von Koch curve shown in Fig. 1, the num-
ber of line segments increases by a factor of 4 upon each iteration
whereas the length of these segments decreases by a factor of 3.
Using Eq. (1) to ratio two such iterations gives:

D ¼ 1!
log P1

P2

! "

log R1
R2

! " ð2Þ

So, for the von Koch fractal, D = 1.26, i.e. it lies part-way be-
tween a straight line and a planar object. One may consider this
to reflect the fact that this complex curve fills some portion of
two-dimensional space. For flat planes, D = 2 and Area aR2!D (Voss,
1988). In an analogous way to the von Koch curve discussed above,
an irregular topographic surface can be thought of filling some por-
tion of three dimensional space (although it remains a surface) and
so has a fractal dimension between 2 and 3. The fractal dimension
is therefore a way to quantify the amount of detail in a curve or
surface. A higher value of D represents a more complex shape,
however, this does not change the topological dimension (E) of
these features. In the example of the von Koch curve above, this
shape (for all its complexity) remains a curve with E = 1.

Past studies (Richardson, 1961; Mandelbrot, 1967) have found
that terrestrial coastlines can be approximated by fractal shapes.
The standard approach to measuring lengths of curves like shore-
lines is to approximate the curve by straight line segments and
add up the lengths of the segments. Smaller measuring scales are
sensitive to smaller features of the shoreline, and thus yield higher
values for the overall lengths. Thus, the measured length of the
shorelines increases, as the measuring scale decreases. The mea-
sured perimeter (P) can be related to the measuring scale (R) by
the fractal dimension (D), which varies from one shoreline to an-
other (Eq. (1)).

In contrast to shorelines, topography is not self-similar. If one
were to magnify a portion of a topographic profile, it would not ap-
pear to have similar properties to the original view. Instead, topog-
raphy approximates a behavior known as self-affinity whereby the
variation in elevation (DZ) is related to the along-profile separation
(DX) as DZaðDXÞH , where H is the Hausdorff–Besicovitch dimen-
sion (which sometimes goes by different names in different fields)
and varies between 0 and 1, such behavior is also termed fractional
Brownian motion. Slopes (given by DZ/DX) are therefore propor-
tional to DXH!1 and so are higher over shorter baselines. All else
being equal, low values of H correspond to lower relief at all length
scales. Low values of H however correspond to rougher landscapes
in that small-scale relief is larger relative to large-scale relief than a

Fig. 1. Fractals are constructed with simple geometric operators, such as that shown in panel a, that rapidly produce complex shapes. In this operation, a straight line segment
is replaced with 4 segments of 1/3 the original length. The results of successive iterations of this operator on an initial shape (panel b) are shown in panels c–g. This example is
known as the von Koch snowflake and has a fractal dimension of log(4)/log(3) & 1.26 (see text for explanation).
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landscape in which H is higher. It can be shown that the fractal
dimension of a profile (D1) can be related to the Hausdorff–Besi-
covitch dimension as D1 = 2 ! H (Voss, 1988; Turcotte, 1997).

To relate the fractal dimension of the self-similar shoreline and
that of the self-affine topography in which the shoreline is embed-
ded, we make use of the concept of a zeroset (Voss, 1988; Turcotte,
1997). Like Euclidean shapes, fractals are reduced in their dimen-
sionality by one when intersected by a plane. A zeroset is produced
when you intersect an object with a plane and it has a dimension-
ality of one less than the original object (see Fig. 2). For example, a
three-dimensional sphere intersected by a plane produces a two-
dimensional circle, a two-dimensional circle intersected by a plane
produces a one-dimensional line segment and a one-dimensional
line segment intersected by a plane produces a zero-dimensional
point. Similarly, a self-affine topographic surface Z(x, y), with a
fractal dimension of D2, intersected by a horizontal plane produces
a set of disconnected contour lines (Fig. 2), with a fractal dimension
of D1 equal to (D2 ! 1). As the x and y coordinates of these curves
are equivalent these contours are self-similar. In contrast, the
intersection of this landscape with a vertical plane, producing a
topographic profile, has elevation versus distance (which scale dif-
ferently) and is therefore self-affine.

As the surfaces of Titan’s lakes are flat, their shorelines corre-
spond to topographic contour lines and so these curves represent
a zeroset of Titan’s topography. In an analogous way to the Euclid-
ean zeroset situation above, the fractal dimension of the original
landscape is given by D1 + 1, where D1 is the fractal dimension of
the set of contour lines.

Another method of characterizing the roughness of topographic
profiles is that of the Fourier power spectrum. Self-affine data
(such as topographic profiles) have linear power spectra (in log–
log space) with slopes !b (or !(b + 1) for the two-dimensional
power spectrum). The relation between b and H (see Malamud
and Turcotte (1999) for details) is given by:

b ¼ 2H þ 1 ð3Þ

Combining Eqs. (3) and (4) gives:

b ¼ 5! 2D1 ð4Þ

An important distinction arises in the case of Titan where indi-
vidual contour lines (lake shorelines) are available, but the full con-
tour set is not (i.e. every depression may not be flooded with

liquid). When a single contour line is available its fractal dimension
is not D1 (as a single contour is not a full zeroset), but rather D2/2
(Kondev and Henley, 1995; Kondev et al., 2000; Turcotte, 1997).
Thus the expected relationship is now:

b ¼ 7! 4 Dsingle-contour
# $

ð5Þ

We can calculate the fractal dimension of a single shoreline
using either the box-counting or ruler method (the mechanics of
which are described in detail in Sections 3.3.1 and 3.3.2). These
dimensions (DB and DR respectively) are equivalent to D2/2. Thus,
we can deduce the slope of the power spectrum of Titan’s topogra-
phy frommeasuring the fractal dimension of its shorelines. This al-
lows us to quantify mathematically what is intuitive qualitatively,
i.e. rugged landscapes produce complex shorelines.

In order to test these relationships we generated artificial sur-
faces by frequency-domain filtering of white noise. After trans-
forming gaussian noise to the frequency domain with a fast
Fourier transform (FFT) we multiplied the complex coefficients
by frequency raised to the power !(b + 1)/2 before transforming
them back to the spatial domain leading to a surface whose 2D
power spectrum had a slope of !(b + 1). We investigated 20 values
of b between 1 and 3 and averaged the results discussed below of
50 randomly generated surfaces at each b value. We contoured
these surfaces and estimated fractal dimensions from the box-
counting analysis on the full contour set (DBS, expected to equal
D1) and both the ruler and box-counting analysis on the longest
contour (DR and DB, expected to equal D2/2 or (D1 + 1)/2).

Table 1 summarizes the various theoretical relations that we
expected to hold, along with what we found empirically from this
analysis. We expected that DR should equal DB, as these simply cor-
respond to two independent methods of estimating the same
quantity and this expectation was realized. We expected that the
fractal dimension of the contour set be related to the fractal dimen-
sion of a single contour and the results in Table 1 show this to be
close to correct, although the relation is not exact.

We also extracted the average slope of the power spectra from
FFTs of many one-dimensional transects of these surfaces. Fig. 3
shows b derived from contour fractal dimensions versus b derived
from these FFT results. When b is calculated from a full contour set,
the correspondence with b derived from an FFT is close when b is
less than 2.6 (i.e. this method did not work as well with the
smoothest surfaces). When deriving b from a single contour the
box-counting and ruler methods agree well, but not with the the-
oretical expectation except in the roughest cases (b close to 1). In-
stead, this analysis shows that b derived from contour analysis is
systematically underestimated and that this underestimation
grows with increasing b. In the extreme case, where b estimated
from the slope of a power spectrum is 3, contour line analysis
underestimates b by 10%. Fortunately, as we shall see in future sec-
tions the b values relevant to Titan are less than 2.0. Table 1 shows
the best-fit linear relations between the power spectra derived bs

Fig. 2. Zerosets in Euclidean geometry (top row) and fractal geometry (bottom
row). In both cases higher dimensional shapes are intersected by planes and their
dimensionality is reduced by one. Euclidean shapes progress from a sphere to a
circle to a line. Fractal shapes progress from a landscape to contour lines to a set of
points (which still have fractal clustering).

Table 1
Expected and best-fit empirically derived relations between fractal dimensions of
single contours DR and DB (for ruler and box-counting methods respectively), the
fractal dimension of the contour set DBS (using the box-counting method) and the
FFT-derived power spectral slope of the surface b.

Relation Theoretical Empirical

Box versus ruler for a single
contour

DB = 1.00DR + 0.00 DB = 0.96DR + 0.05

Single contour versus contour set DBS = 2.00DR ! 1.00 DBS = 2.15DR ! 1.25
Beta versus contour set

dimension (see Fig. 3)
b = 5.00 ! 2.00DBS b = 5.25 ! 2.16DBS

Beta versus single contour
dimension

b = 7.00 ! 4.00DR b = 7.99 ! 4.69DR

(see Fig. 3) b = 7.00 ! 4.00DB b = 8.21 ! 4.90DB
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and contour fractal dimensions. Throughout this paper we will be
analyzing single contours and in most sections we will be compar-
ing fractal dimensions to similarly derived fractal dimensions and
the departure from theory described above will not be an issue.

Fig. 3 and Table 1 show that the relationship between contour
fractal dimension and b is very close to linear. Indeed, using our
empirical linear relationship recovers the b of synthetic surfaces
with high accuracy; however, the cause of this departure from the-
ory is unknown at this time. This departure can also be noted in the
work of other researchers e.g. Fig. 7.12 on page 156 of Turcotte
(1997). They investigated the validity of Eq. (3) using one-dimen-
sional time series. Although they describe the agreement with
the theoretical relation as ‘good’ there is clearly a mis-match that
corresponds to the one we see in Fig. 3, at high values of b and
H. Later, in Section 3.3.3, we will verify the accuracy of our fractal
dimension estimation codes and find both the box-counting and
the ruler code to be very accurate. For now, we will use both the
theoretical and our derived empirical relationship (Table 1) when
converting contour fractal dimensions to power-spectral slopes la-
ter in Section 3.3.4.

An important assumption is made while characterizing topog-
raphy from shoreline information. Our analysis relies on the lake
edge representing a topographic contour line (i.e. being liquid
filled). Titan’s lakes fall into three basic types (Hayes et al., 2008),
see Fig. 4a. Dark and granular lakes are interpreted to contain li-
quid of different depths and a smooth gradation of backscatter
intensity exists between the two. Bright lakes are interpreted to
be currently dry and form a distinct group when classified by back-
scatter intensity (Hayes et al., 2008; Pailou et al., 2008). We have
avoided the bright ‘lake’ features many of which appear not only
to be dry, but also to have the appearance of topographic sink holes
(Mitchell et al., 2007) and so their boundaries may be set by mass
wasting processes that have little connection with the topography
of the surrounding landscape. In other words, contour lines drawn
around the dark units are assumed to be typical of contour lines on
the surrounding landscape, while in the case of the bright empty
basins, their edges will not be representative of topographic con-
tours on the surrounding landscape. Keeping this in mind, we
mapped 290 dark liquid filled features. This sample dataset was
further reduced with the size constraint described in the next
two paragraphs.

An important limitation of this analysis is the limited range of
spatial scales over which it can be used. The retrieved fractal
dimension is only valid over a certain range of wavelengths
bounded by the minimum and maximum scales we used to ana-
lyze the shorelines. The minimum scale is close to 1 km and is
set by the resolution of the dataset. The smallest features that
we can resolve correspond to twice the dataset resolution (Nyquist
scale), i.e. 1 km, which provides the lower wavelength cutoff for
our analysis. The maximum scale is set by the finite size of the lake
shoreline being measured and varies from lake to lake.

For our fractal analysis to cover a useful range of spatial scales,
the total perimeter of the lakes must be at least a few orders of
magnitude larger than the resolution of the data, i.e., there must
be many 1–10 km segments in the perimeter of a lake for our anal-
ysis to be applicable. We have therefore not considered lake fea-
tures having perimeter less than 70 km, i.e. features that are less
than approximately 22 km across in diameter. This further reduced
our dataset of useful lake shorelines from 290 to 190. All the results
presented in this paper are based on the analysis of those 190
radar-dark features, which have perimeter larger than 70 km.

Fig. 3. Power spectral slope of artificially generated landscapes retrieved from
contour analysis versus those retrieved from Fourier analysis. See Table 1 for
coefficients of best-fit linear relations.

Fig. 4. (a) The basic lake-types found in Titan’s north polar area. This is a false color
image, created by scaling radar reflectance data. The color scale is arbitrary (not
related to compositional differences), with blue corresponding to the smoothest
features (with lowest radar backscatter). See description of (b) for further
explanation. (b) Mosaic of north polar SAR data acquired up to May of 2007.
Projection is polar stereographic with both parallels and meridians spaced every
10". Dark blue features correspond to liquid-filled depressions. This product is
2700 km across (latitudes 60–90"N) with a resolution of 343 m/pixel (i.e. the full
resolution of the constituent data is preserved). (Planetary photojournal, product ID
PIA10008.). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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3. Instrument, dataset and measurements

3.1. Cassini RADAR

The Radio Detection and Ranging Instrument (RADAR) onboard
the Cassini spacecraft is a Ku-band (13.7 GHz, 2.17 cmwavelength),
linearly polarized device (Elachi et al., 2004). It can function in four
different operation modes: imaging (Synthetic Aperture Radar –
SAR), altimetry, scatterometry and radiometry, with the first three
being active modes, in which the instrument bounces pulses off Ti-
tan’s surface with the aims of creating images of the surface (imag-
ing), measuring topography (altimetry) and determining the
surface properties through studying the way the surface (and
sub-surface) scatters incident waves (scatterometry). The last
mode, radiometry, is a passive one, in which the instrument re-
cords the energy emanating from Titan’s surface.

3.2. RADAR dataset

We utilized Cassini SAR data in the form of Basic Image Data Re-
cord (BIDR) files (Stiles, 2005) as the base mapping dataset for this
analysis (Fig. 4b). Cassini has had multiple Titan encounters dedi-
cated to acquisition of SAR data and fortunately the north polar re-
gion is particularly well covered. Cassini SAR has covered 27% of
the surface of Titan, during the ‘prime’ (nominal) mission period
until June 2008 (Lorenz and Radebaugh, 2009). Almost 55% of the
region above 55"N has been covered (Hayes et al., 2008). The fea-
tures interpreted as lakes range in size from thousands of square
kilometers to as small as 1 km2. The resolution of the SAR swaths
over these lakes ranges from &300 m at best up to 1500 m and var-
ies mainly along the length of the images.

The first step undertaken was mapping all the north polar lakes
using the GIS software, ArcMAP, from ESRI (Sharma and Byrne,
2008a,b). We attempted to develop automated methods of outlin-
ing the shorelines, including contouring of backscattered intensity,
but those methods did not produce a good representation of the
actual lake shorelines, prompting us to outline the lakes manually.
To counter the subjectivity that the manual method might intro-
duce in our analysis, we applied a consistent set of rules for map-
ping all the shorelines. Some lakes were split between different
radar swaths and had straight boundaries in some sections, coin-
ciding with the edges of the swaths (e.g. Fig. 5a). We considered
such split-up lakes as two separate features with distinct shore-
lines and excluded the straight edges from our fractal analysis.
Some lakes seemed to be filled with liquid in only one section
(based on their much darker appearance in one section), whereas
surrounding regions were less distinct (Fig. 5b). In such cases, we
only outlined the darker liquid-filled section of the lake. Some
lakes were connected by thin channels (0.5–2 km wide), in which
case we considered the connected lakes as separate features, with-
out including the connecting channel (Fig. 5c). Some lakes had
complex dendritic networks surrounding them, which were in-
cluded as part of the lake outlines (Fig. 5d). We manually outlined
the lake shorelines at the full resolution of the dataset, a selection
of which is shown in Fig. 6. To test the uncertainty introduced in
the derived fractal dimension due to the subjective nature of man-
ually outlining shoreline boundaries, we remapped a subset of the
lakes in our dataset three independent times and calculated the
fractal dimensions via both the ruler and the box counting tech-
niques (described in detail in Sections 3.3.1 and 3.3.2). Table 2
shows the consistency in the derived dimensions via both the
methods. The values for the ruler fractal dimensions are within
±1.5% and the box-counting dimensions are within ±1% of each

Fig. 5. Examples of cases requiring manual intervention while mapping of shorelines.
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other for the multiple re-mappings. Thus, applying a uniform set of
rules while mapping minimized the effect of subjective selection of
boundaries.

Another source of discrepancy that affects mapping is system-
atic variations in the way different individuals would apply differ-
ent sets of rules while mapping the shorelines. Since different
individuals/groups working independently might subscribe to dif-
ferent conventions while mapping, it could lead to different results,
in spite of being consistent with their own set of rules. Other groups
(e.g. Hayes et al., 2008) have mapped Titan’s polar lakes for their
publications and there is no commonly accepted set of vectors/
shapefiles for these shorelines. Currently, every group researching
on Titan’s polar lakes needs to map out the shorelines manually.
It would thus be highly beneficial for the scientific community to
agree on a common set of vectors for these surface features.

3.3. Shoreline analysis methods

There are two main methods that can be used for determining
the fractal dimension of a shoreline (or shoreline segment), the di-
vider or ruler method and the box-counting method.

3.3.1. Divider/ruler method
As described in Section 1, shorelines can be approximated as

fractal shapes, with perimeter and measuring scale related by Eq.
(1). Measuring the perimeter of the shoreline at many length scales
(values of R) allows one to estimate D (Fig. 7a–c). A linear fit to P
versus R in log–log space has a slope of 1 ! D (Eq. (1)). In general,
Titan’s shorelines are well described by the power law shown in
Eq. (1), and so they can be described as self-similar fractals. The
data in the example, shown in Fig. 7d, show a consistent value of
D over the range of spatial scales investigated (1–10 km). Such
behavior was typical of the other shorelines. The range of scale
lengths that we used was dependent on the size of each individual
lake. We used scales as small as 2 pixels to as large as &10% of the
lake’s perimeter.

An assessment of this method by Andrle (1992) shows it to be
quite accurate when some common pitfalls are avoided. The com-
mon sources of error include the effect of the last partial step
which invariably occurs at the end of a line being measured; the
effect of varying the starting point of a divider walk on the mea-
sured perimeter; and the effect of nonlinearity in the relationship
between log(perimeter) and log(measuring scale). Our code for
implementing the ruler method overcomes these sources of error
by (1) including the last partial step as a fractional step while cal-
culating the perimeter, (2) calculating the perimeters with a num-
ber of different starting points and taking their average, and (3)
ignoring outlier points for slope determination.

3.3.2. Box-counting method
In this method, the mapped shoreline is covered with boxes of

size R. For each value of R, there is a minimum number of boxes
(N) that are required to completely cover the shoreline. Our code
employs an easier-to-implement version (also employed by Apple-
by (1996), Tatsumi et al. (1989), and Longley and Batty (1989)) of
the box-counting method, in which the shoreline is covered with a
grid of square boxes of size R and the number of boxes in the grid
that fall on sections of the shorelines are counted (Fig. 8a–c).

For fractal shapes, there is a power-law relationship between
the number of boxes required and their size. In this case, a linear
fit to a plot of N versus R in log–log space has a slope of !D
(Turcotte, 1997), e.g. Fig. 8d. We found Titan’s shorelines to exhibit
this power law behavior, indicating their fractal nature.

The range of box sizes that we used was dependent on the size
of each individual lake. We changed the box size as a power of two
and used boxes as small as 2 pixels to as large as one-half of the
lake size. We did not use the two smallest and largest box sizes
for slope determination while fitting a power law to these data, fol-
lowing the example of Klinkenberg (1994).

We performed a simple exercise to test the sensitivity of our
box-counting code to orientation of the shorelines. We rotated all
the mapped shoreline shapefiles by different amounts to check if
this affected the calculated fractal dimension. As can be seen from
Fig. 9, rotating the lakes does not make any significant overall dif-
ference to the calculation of the fractal dimension by the box-
counting code (the mean fractal dimension only varied within
±0.72% for the different rotations), which is thus inferred to be
robust.

3.3.3. Generation of synthetic fractals
In order to test the accuracy of the ruler and box-counting

methods against a known standard, we generated synthetic fractals

Fig. 6. Examples of some of the mapped lake features.
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with known fractal dimensions and compared their actual dimen-
sions with dimensions calculated via the two methods. A total of
five such fractals, as shown in Fig. 10, were generated. The initiator
in each case was a pentagon, each straight edge of which was re-
placed with the generator shape shown in the lower right inset of
each fractal in Fig. 10. This replacement was repeated a number
of times to obtain the resultant synthetic fractals. Fractal dimen-
sions can be exactly calculated for these shapes using Eq. (2). The
scatter plot in Fig. 10 compares the accuracy of the ruler and box-
counting methods. The dimensions calculated via the ruler and
the box-counting methods are in very good agreement with the
theoretical dimensions, for fractals with dimensions in the range
of 1.0–1.5. In the scatter plot in Fig. 10, the dotted gray line indicates
1r range of dimensions for Titan’s shorelines (1.17–1.42), the
dashed gray line indicates the 2r range (1.07–1.52) and the solid
gray line indicates the 1.645r range (1.1055–1.485), which con-
tains 90% of the data for Titan’s shorelines. As is evident from the
scatter plot, the ruler method is more accurate than the box-count-
ing method over the range of fractal dimensions within the 1.645r
box. Although 10% of the lakes fall outside this 1.645r range, only
5% fall outside the range on the higher dimension side. Thus, we
can infer from Fig. 10 that the ruler method is more reliable than
the box-counting method over the range of fractal dimensions rel-
evant to Titan (1.1055–1.485).

3.3.4. Discussion of results for Titan’s shorelines
The calculated values of the mean fractal dimensions of Titan’s

shorelines via the box-counting (1.32 ± 0.1) and the ruler method
(1.27 ± 0.1) are comparable to the previously published estimates
of dimensions of terrestrial coastlines like the western coastline
of Britain (1.25) (Mandelbrot, 1967). The histograms in Fig. 11
compare the results of the ruler and the box-counting method. A
high value of the fractal dimension suggests the shoreline to be
intricate, which implies a rugged surrounding landscape; while a
low value suggests a simple shoreline, which implies a smooth sur-
rounding landscape (see Supplementary online material, Table S1,
for a list of mapped lakes, their locations and individual ruler and
box-counting fractal dimensions).

Using the mean of the ruler and box-counting dimensions
(1.295), we obtain a value for theoretical b as 1.82 while the aver-
age empirical relation for a single contour gives a b value of 1.89.
Using the more reliable of the two dimensions: the ruler dimension
of 1.27, we get the theoretical/empirical value of b as 1.92/2.03.
Comparing the b value for Titan to the average b value of 2.0 deter-
mined for Earth (Rapp, 1989) and Venus (Kucinskas and Turcotte,
1994), we find Titan’s landscape to be rougher at shorter wave-

lengths relative to longer wavelengths. There could be a number
of factors responsible for this, including the lower gravity on Titan
as compared to Earth and Venus, which could be responsible for
lesser efficiency of diffusive (i.e. smoothing) processes like mass
wasting on Titan.

4. Additional investigations

In addition to deriving the fractal dimension of the mapped lake
shorelines, we undertook three other related investigations: (1)
searching for multi-fractal behavior, (2) checking for spatial varia-
tion of fractal dimension and (3) examining evidence for a signa-
ture of anisotropic topography. Sections 4.1–4.3 describe each of
these investigations in detail.

4.1. Multi-fractal analysis

Multi-fractal behavior implies change in the landscape from one
fractal dimension to another at a certain wavelength. Such changes
in topographic statistics between large and small scales signal that
different sets of processes are shaping the landscape at different
spatial scales (Mark and Aronson, 1984; Chase, 1992). Both the
box-counting and ruler methods characterize the shoreline over a
range of spatial scales. How this characterization changes with
spatial scale determines the fractal dimension so it is possible to
have different fractal dimensions appropriate for different sections
of the total range of spatial scales investigated.

Twenty-one lakes were found to exhibit multi-fractal behavior,
indicated by a change in slope of the log(perimeter) versus
log(baseline) plots obtained by applying the ruler method on the
shorelines (We found no change in the slope of the log(number
of boxes) versus log(box size) plots obtained with the box-counting
method). Fig. 12a–c shows three of these multi-fractal lakes.
Fig. 12a shows an example of a multifractal shoreline with increas-
ing slope from smaller to larger wavelengths (and thus decreasing
fractal dimension, since D = 1-slope). In contrast, Fig. 12b shows an
example of a multifractal shoreline with decreasing slope from
smaller to larger wavelengths (and thus increasing fractal dimen-
sion). Eight of the multi-fractal lake shorelines (e.g. Fig. 12c) also
exhibit multiple breaks in slope. The cross-over point from one
fractal dimension to another lies over a small range of (2–3.5)
km for the larger multi-fractal lakes (area >250 km2) and varies
over a much wider range (2.2–7 km) for the smaller multi-fractal
lakes (area <250 km2).

Interpreting these breaks in slopes requires an understanding
of the effect of various surface processes on the roughness and

Table 2
Ruler and box-counting fractal dimensions of 15 of Titan’s lake shorelines on multiple re-mappings.

Titan lake Center latitude ("N) Center longitude ("W) Ruler D Box counting D

1st mapping 2nd mapping 3rd mapping 1st mapping 2nd mapping 3rd mapping

1 83.54 49.80 1.24 1.23 1.24 1.18 1.18 1.19
2 84.58 31.08 1.24 1.23 1.27 1.14 1.11 1.11
3 82.10 48.64 1.25 1.24 1.25 1.18 1.16 1.16
4 84.93 !104.74 1.24 1.29 1.27 1.13 1.12 1.12
5 69.73 !114.78 1.25 1.31 1.29 1.15 1.16 1.16
6 78.22 20.66 1.25 1.25 1.25 1.14 1.14 1.13
7 78.92 122.60 1.24 1.26 1.25 1.11 1.11 1.11
8 80.35 130.48 1.24 1.23 1.22 1.11 1.11 1.11
9 77.02 129.62 1.25 1.22 1.23 1.11 1.17 1.15

10 74.17 126.04 1.26 1.27 1.26 1.10 1.10 1.10
11 80.49 120.75 1.13 1.12 1.12 1.07 1.08 1.08
12 79.61 26.10 1.21 1.22 1.21 1.10 1.09 1.10
13 70.80 !134.67 1.30 1.32 1.31 1.16 1.15 1.16
14 77.25 28.77 1.40 1.40 1.42 1.13 1.13 1.13
15 69.49 178.25 1.35 1.33 1.35 1.13 1.14 1.13
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Fig. 7. The perimeter of one of Titan’s lakes measured at multiple scales – 500 m,
3000 m and 8000 m (ruler method). (D) shows a plot of perimeter versus measuring
scale in log–log space. The slope (=1 ! D) of the linear fit though these data can be
used to determine the fractal dimension of the shoreline – which in this case is
1.285.

Fig. 8. The perimeter of one of Titan’s lakes measured using different sizes of square
boxes (box-counting method). (D) shows a plot of number of boxes versus
measuring scale in log–log space. The slope (=!D) of the linear fit though these
data can be used to determine the fractal dimension of the shoreline – which in this
case is 1.168. The labels ‘No. of boxes’ refer to the number of rows and columns in
the grid superimposed on the shoreline, e.g. ‘No. of boxes’ = 16 implies that a
16 " 16 grid was superimposed on the shoreline.
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thus, the fractal dimension of the landscape. Erosive processes
like fluvial incision and aeolian erosion tend to increase the
roughness of the landscape at smaller wavelengths, and thus
the fractal dimension of the landscape/shoreline also increases.
On the other hand, depositional processes like fluvial and aeolian
deposition tend to smooth the landscape or decrease the rough-
ness of the landscape at smaller wavelengths, thus decreasing
the fractal dimension of the landscape. Similarly, the rate at
which mass wasting (a diffusive process) occurs increases di-
rectly with slope of the landscape, which is highest over the
shortest spatial scales. Thus, mass wasting smoothes small-scale

roughness more efficiently than large-scale roughness and has an
overall negative effect on the fractal dimension of the landscape.
Mantling (fallout of solid tholin material from the atmosphere
that blankets the surface) has a similar effect by smoothing
the landscape and decreasing the fractal dimension. Tectonic
activity can have a positive or negative effect on the fractal
dimension of the landscape, depending on the scale of the sur-
face features involved. Table 3 shows the effect of different kinds
of surface processes on the fractal dimension of the landscape
(Chase, 1992; Lifton and Chase, 1992).

Thus, in terms of interpreting the change in slopes of the plots
for the multi-fractal shorelines, higher fractal dimensions would
indicate dominance of erosive processes, while lower fractal
dimensions can be associated with more widespread depositional
processes. Detailed landscape evolution modeling in the future will
help us to constrain which amongst a set of erosive/depositional
processes could be responsible for a certain degree of increase/de-
crease in the fractal dimension.

4.2. Spatial variation of fractal dimension

Titan is a heterogeneous world, implying that surface processes
which dominate in sculpting the landscape in one region need not
do so in all regions. Such a spatial variation in surface processes
could also show up as a distinct trend in the fractal dimension.
We examined spatial variation of the fractal dimension of Titan’s
shorelines over latitude and longitude, employing both the ruler
and the box-counting method.

In order to accomplish this, we calculated the fractal dimen-
sion of each lake via both the ruler and the box-counting method

Fig. 9. Effect of rotation of lakes on calculation of box-counting fractal dimension.

Fig. 10. Five synthetic fractals with known fractal dimensions were generated to test the accuracy of the ruler and box-counting methods. For each fractal, lower right inset
shows the generator used for creating the fractal and lower left inset shows the theoretical dimension for the fractal. The scatter plot shows comparison of fractal dimensions
of synthetic fractals calculated via ruler and box-counting method with the actual dimensions. The dotted gray line indicates 1r range of dimensions for Titan’s shorelines
(1.17–1.42), the dashed gray line indicates the 2r range (1.07–1.52) and the solid gray line indicates the 1.645r range (1.1055–1.485).
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and sorted them into 5" latitude and 30" longitude bins based on
their median latitude/longitude. Fig. 13a–d shows the results of
our spatial variation tests. In Fig. 13a–d, the labels show the num-
ber of lakes included in each band. In Fig. 13b and d, there is a
sudden increase in the box-counting and ruler fractal dimension
over the 60–90" longitude range, which is due to a single extre-
mely intricate shoreline, and not due to a group of features.
Although interesting, this single feature is not part of any larger
trend.

To assess the significance of the fractal dimension variation
with latitude and longitude we performed an analysis of
variance (ANOVA) statistical test, which is a way of splitting
the variance of the entire population into variance within sub-
groups versus variance between groups. Results of this test are
reported as an F-ratio, which can be converted into the probabil-
ity that variability between groups occurs only by chance. A high
value of the F-ratio indicates the different sub-groups are signif-
icantly different. A probability of occurrence by chance of 5% is
considered the usual cutoff for statistical significance. Using
the box-counting fractal dimensions in the 5" latitude bins, we
derive an F-ratio of 1.07, which would occur by chance 37.4%
of the time and with the 30" longitude bins, we derive an F-ratio
of 1.14, which would occur by chance 33.3% of the time. Using
the ruler fractal dimensions in the 5" latitude bins, we derive
an F-ratio of 0.94, which would occur by chance 45.6% of the
time and with the 30" longitude bins, we derive an F-ratio of
6.6, which would occur by chance <0.01% of the time. Thus there
is no significant variation of fractal dimension with latitude with
either method or longitude when using the box-counting meth-
od. The apparent variation of the ruler dimension with longitude
is mostly due to a single lake at a longitude of 82"E (lake 36 in
the Supplementary online material) with high fractal dimension
(1.9). This lake is clearly an anomaly as its box-counting dimen-
sion is much lower (1.44). Excluding this lake reduces the F-ratio
to 2.14, which one would still expect to occur by chance only
2.4% of the time. So the increased fractal dimensions of lakes
in the (0–90)"E zone (where the largest lakes are located) shown
in Fig. 13d could be considered statistically significant (although
not overwhelmingly so). Possible explanations for this variability
include variation in fluvial erosion due to regional variations in
methane precipitation, variable aeolian erosion due to fluctuat-
ing wind activity or inconsistent mantling related to deviations
in atmospheric structure/dynamics. Future work on detailed
modeling of the surface processes that modify Titan’s landscape
would help us to more clearly identify the preponderance of
certain processes over others in different regions.

4.3. Investigation for anisotropy

Certain surface processes like aeolian scour and tectonics can
create directional topography. Variation of the fractal dimension
of the landscape with direction can thus indicate the possibility
that one or more of such processes might have modified the land-
scape. To test for anisotropy, we first rotated the lakes so that
North was oriented upwards. Each lake was then split up into
orthogonal N–S and E–W sections, such that there were equal
number of vertices representing each direction (Fig. 14). We calcu-
lated fractal dimensions for the N–S (DN/S) and E–W (DE/W) sections
via the box-counting and the ruler method and searched for sys-
tematic differences between the fractal dimensions of the orthog-
onal sections of each lake. These differences were then divided up
into 2" latitude bands and 30" longitude bands.

Both the ruler and the box-counting method results imply a
possible anisotropy in Titan’s topography. Histograms of DN/

S ! DE/W are skewed to negative values, with the ruler method re-
sults centered at !4.24% and spread out over a range of (!35 to
22)% and the box-counting results centered at !0.34% with a range
of (!24 to 21)%. This indicates higher E–W section dimensions
than N–S section dimensions (Fig. 15).

To assess the significance of the shift of the histograms shown
in Fig. 15 away from the origin, we performed a two-tailed t-test.
This test returns the probability that the null hypothesis is true,
i.e. that the histograms in Fig. 15 are drawn from a population with
a mean of zero (topography is isotropic) and that the non-zero
mean we see has occurred only by chance. Results of this test are
reported as a t-value, which (along with the number of degrees
of freedom in the system) can be converted to this probability.
For the distribution corresponding to the ruler method results,
we calculated a t-value of !6.64, which would occur by chance
<0.01% of the time if the null hypothesis were true. For the distri-
bution corresponding to the box-counting method results, we cal-
culated a t-value of !1.044, which would occur by chance 30% of
the time if the null hypothesis were true. The box-counting results
are not conclusive, as the anisotropy deduced from this distribu-
tion could easily have occurred by chance. However, the results
from the t-test of the ruler distribution show that the chance that
Titan’s topography is isotropic is vanishingly small, thus the differ-
ence between the DNS and DEW is statistically significant. This re-
sult certainly warrants further investigation and will likely prove
to be useful in better understanding the results of landscape evolu-
tion modeling in the future.

To test the effect of varying the orientation of the lakes on our
results, we varied the orientation of the shorelines and performed

Fig. 11. Comparison of results of the ruler and box-counting analysis for Titan’s north polar shorelines. The ruler method gives a mean fractal dimension of 1.27, while the
box-counting method gives a value of 1.32. Examples of a smooth shoreline, with a low fractal dimension and of a rough and intricate shoreline, with a high fractal dimension
are also shown.
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Fig. 12. Multifractal behavior exhibited by some of the lake shorelines, indicated by breaks in slopes of the powers spectra. Some shorelines, like the one in (C), exhibit
multiple breaks in slope.

Table 3
Effect of different surface processes on fractal dimension of landscape.
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a similar analysis for sections of shorelines oriented N–E versus S–
W, N–W versus S–E, etc. These alternate orientations also showed
evidence for anisotropy; however, anisotropy was most pro-

nounced in the case of the N–S versus E–W sections. These results
suggest a role for anisotropic surface processes in sculpting Titan’s
landscape.

Fig. 13. (A and B) Variation of box-counting fractal dimension of the shorelines with latitude and longitude. (C and D) Variation of ruler fractal dimension of the shorelines
with latitude and longitude. East longitudes are used. The labels show the number of lakes included in each band. The dashed lines denote the mean values of the fractal
dimension over all bands, while the dotted lines denote the standard deviation from the mean.

Fig. 14. One of Titan’s north polar lakes, Bolsena Lacus (about 100 km in diameter). Sections of shoreline orientated roughly East–West (highlighted in a) and North–South
(highlighted in b) can be independently analyzed and compared to investigate anisotropy in Titan’s topography.
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Fig. 16a–d shows variation in the percentage differences be-
tween dimensions of orthogonal sections over latitude and longi-
tude. Vertical bars in the plots indicate 1r of the range of values
within each bin. The red dashed lines in the plots indicate 0% dif-
ference. We could not find any trends outside the general scatter
of data in the plots. There is a sudden dip in the plots in Fig. 16b
and d over the 60–90" longitude range, which is due to a highly

anisotropic shoreline (corresponding to lake number 36 in the Sup-
plementary online material). Interestingly, this complex shoreline
centered at 77.21"N, 82.07"E and with an area of &6900 km2

(Fig. 17) also shows up as the sudden increase in the fractal dimen-
sion over the 60–90" longitude range in our spatial variation plots
(Fig. 13b and d).

5. Summary

We have carried out a fractal analysis of the shorelines of lakes
at Titan’s North Pole to extract information about Titan’s topogra-
phy. The statistical investigations undertaken until now provide us
information only about relative relief. This paper does not describe

Fig. 15. Histograms of box-counting fractal dimensions and ruler fractal dimen-
sions of North–South and East–West sections of shorelines at Titan’s North Pole.

Fig. 16. Comparison of box-counting fractal dimensions and ruler fractal dimensions of orthogonal sections of shorelines over latitude and longitude. Vertical bars in the plots
indicate 1r of the range of values within each bin. East longitudes are used. Red dashed lines indicate 0% difference. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 17. Highly anisotropic shoreline of lake centered at 77.21"N, 82.07"E and with
an area of &6900 km2.
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the methods to quantify absolute relief, which will be the focus of
future work.

The ruler method results were found to be more accurate and
reliable than the box-counting results through comparisons to
deterministic fractals. The ruler method results also bring to light
the multi-fractal behavior of the titanian shorelines and the longi-
tudinal variability of the fractal dimension as well as show a much
stronger signature of anisotropic topography than the box-count-
ing results, thus reinforcing our viewpoint that the ruler method
is more precise.

The significant results of this study are listed here:

[1] The shorelines imaged at the North Pole of Titan by the Cas-
sini RADAR can be described as self-similar fractals, similar
to terrestrial coastlines. Their mean fractal dimensions
(1.32 via box-counting and 1.27 via the ruler method) are
similar to the dimensions of intricate terrestrial coastlines
like the western coastline of Britain (1.25), which implies a
rugged titanian landscape.

[2] Mean value of the slope (b) of the power spectra has been
determined using both the theoretical relations as well as
the empirical relations that we derived from the fractal anal-
ysis of the contours of synthetically generated power law
surfaces. Using the mean of the ruler and box-counting
dimensions (1.295), we obtain a value for theoretical b as
1.82 while the average empirical relation for a single contour
gives a b value of 1.89. Using the more reliable of the two
dimensions: the ruler dimension of 1.27, we get the theoret-
ical/empirical value of b as 1.92/2.03. We thus conclude that
Titan’s b value could be lower than that of Earth and Venus
(2.0). This may be due to Titan’s lower gravity leading to les-
ser efficiency of diffusive (i.e. smoothing) processes, like
mass wasting, on Titan.

[3] Some of the lake shorelines are found to exhibit multi-fractal
behavior, with a few even displaying multiple breaks in
slopes of the power spectra. This implies dominance of dif-
ferent surface processes at different spatial scales, with the
transition scale between different fractal dimensions vary-
ing from (2–3.5) km for the larger lakes (area >250 km2)
and (2.2–7) km for the smaller lakes.

[4] We did not observe any spatial variation in the fractal
dimension with latitude; however we do report significant
spatial variation of the fractal dimension with longitude
(increased fractal dimension in the 0–90"E zone where the
largest lakes are located).

[5] There is a systematic difference between the ruler as well as
box-counting method-derived dimensions of orthogonal
sections of lake shorelines, which signifies possible anisot-
ropy in Titan’s topography. This asymmetry is the most pro-
nounced in the case of the N–S versus E–W sections. These
results seem to indicate modification of the landscape at
the North Pole of Titan by anisotropic surface processes like
aeolian scour or tectonism.

In the future, we intend to use the results of this fractal analysis
to constrain the spatial distribution of surface process types on
Titan and perform landscape evolution modeling to infer the dom-
inant surface processes that sculpt the landscape of Titan.
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