
ICARUS 134, 279–291 (1998)
ARTICLE NO. IS985958

Shadows on a Planetary Surface and Implications
for Photometric Roughness

Michael K. Shepard

Department of Geography and Earth Science, 400 East Second Street, Bloomsburg University, Bloomsburg, Pennsylvania 17815
E-mail: mshepard@planetx.bloomu.edu

and

Bruce A. Campbell

Center for Earth and Planetary Studies, MRC 315, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560

Received August 25, 1997; revised February 9, 1998

variations in the idealized behavior of the surface, e.g.,
chemical inhomogeneities and/or surface roughness. InWe advocate the use of fractal surface statistics as a simple,
planetary applications, these models are combined into aquantitative, and general model for planetary surface

roughness. We determine the shadowing behavior of a wide general surface scattering model; common examples in-
range of fractal surfaces using computer simulations, and pre- clude the Hagfors quasi-specular model for radar (Hagfors
sent an empirical function that reproduces their observed be- 1964) and the Hapke (1981, 1984) model for photometry.
havior within statistical uncertainties. We compare the shadow- In order for geologic inferences based on a general scatter-
ing behavior of fractal surfaces to four analytic shadowing ing model to be sound, each model component must be
models for random surfaces and find that three of these, includ- realistic, i.e., based upon physical principles and/or empiri-
ing the Hapke (1984, Icarus 59, 41–59) model, are well approxi-

cally observed behavior, and general enough to encompassmated by specific cases of a general fractal surface model. In
the widest range of surface types one is likely to encounter.addition, we demonstrate that a fractal surface model provides
Although the interactions between electromagnetic wavesa way of quantitatively verifying and extending previous inter-
and idealized surfaces have been reasonably well charac-pretations of the Hapke (1984) roughness parameter. We hy-
terized for over a century, we suggest that significant im-pothesize that the scale which dominates surface shadowing,
provements can still be made in the characterization ofand by extension photometric roughness, is the smallest surface

scale for which shadows exist and that this scale is a function geologic surface roughness. In this paper, we advocate the
of intrinsic physical parameters such as the single scattering use of fractals as a simple, quantitative, and general model
albedo and particle phase function. If correct, a major implica- for surface roughness. The major advantage of fractals
tion of this hypothesis is that photometric roughness may have over all surface models currently in use is that they explic-
different physical meanings on different surfaces.  1998 Aca- itly account for changes in surface roughness with scale.
demic Press Our purpose in this paper is to:

Key Words: photometry; surfaces; planets; computer tech-
(1) demonstrate that fractals are capable of quantifyingniques.

observed surface roughness;
(2) generate a shadowing function for fractal sur-

faces—a first step in the use of fractal surfaces for generalI. INTRODUCTION AND RATIONALE
scattering models;

An important goal of planetary remote sensing is to (3) demonstrate that fractal surfaces are more general
quantitatively ‘‘link’’ scattering parameters extracted from descriptors of surface roughness than models currently em-
remote observations to physical parameters that can be ployed by comparing their shadowing behaviors;
measured in situ. This link requires the utilization of at (4) examine the interpretation of scale in generalized
least two types of models: (1) a model that describes the scattering models that utilize shadowing functions, most
interaction between electromagnetic radiation and ideal- notably the Hapke (1984) photometric model; and
ized surfaces, often chemically homogeneous and smooth (5) present a new hypothesis for the physical interpreta-

tion of photometric roughness. Although our ultimate goalat wavelength scales; and (2) a model that describes specific
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is to analytically incorporate fractal surface behavior into ways) quantified by measuring surface heights at regular
intervals, i.e., by measuring a profile (e.g., Farr 1992, Camp-general scattering models, that is not a goal of this paper.

Rather, we wish to demonstrate that the level of work bell and Garvin 1993, etc.). For this reason, facet models
are often better suited for quantitative or statistical com-necessary to incorporate fractal behavior into these models

is justified by potential benefits and take some initial steps parisons to real surfaces.
One difficulty with the random models listed above istoward its realization.

the lack of an intrinsic or explicit scale dependence. SeveralIn what follows, we briefly describe fractal surfaces and
(e.g., Beckmann 1965, Smith 1967a, Wagner 1967) explic-illustrate their utility in representing natural surfaces. Fol-
itly assume that there is no scale dependence in parameterslowing that, we begin the process of integrating a fractal
such as the root-mean-square (RMS) height, s, an assump-surface model into a general scattering model by numeri-
tion commonly referred to as stationarity. However, it iscally determining the shadowing function for fractal sur-
now recognized that real surfaces are not stationary andfaces observed at nadir. To demonstrate that a fractal sur-
that the RMS height (among other parameters) is a func-face model is more general in scope than surface models
tion of the scale at which it is measured (cf., Sayles andpreviously utilized, we compare its shadowing behavior to
Thomas 1978). Figure 1 illustrates how commonly mea-that of four published surface roughness models, including
sured topographic parameters vary with scale on a basaltthe well known Hapke (1984) model. Finally, we address
flow in the Lunar Crater Volcanic Field, Nevada (Arvidsonthe question of scale in the Hapke (1981, 1984, 1986) photo-
et al. 1991, Shepard et al. 1995). Other models (e.g., Lummemetric model using the results of the shadowing computa-
and Bowell 1981, Hapke 1984) assume that the roughnesstion, illustrate how a fractal model may quantitatively ver-
varies with scale or extends to all scales. While this is moreify previous interpretations of the physical meaning of the
realistic than those models listed above, it is still restrictiveHapke roughness parameter, and conclude with some fur-
in the sense that the scale dependence cannot be varied.ther speculations on this topic.
Furthermore, the scale dependence is not made explicit,
making it difficult to evaluate its applicability to naturalII. FRACTAL SURFACE ROUGHNESS MODELS
surfaces.

The measured behavior of real surfaces (Fig. 1) suggestsA wide variety of surface models have been or are cur-
rently utilized in planetary remote sensing. In the broadest that a single parameter surface roughness model, such as

those above, is insufficient to quantitatively or statisticallypossible terms, these can be broken into three major cate-
gories. Models in the first category we call ‘‘deterministic’’ describe their form. Rather, there must be some knowledge

of the distribution of surface heights or slopes at a singlesince they are composed of one or more well defined ele-
ments in a predetermined arrangement. Periodic surfaces, scale and a function that expresses the change in surface

properties with scale. Theoretically, there is no restrictione.g., sinusoidal, sawtooth, or rectangular corrugated sur-
faces (cf. Beckmann and Spizzichinno 1963), are common on the form of this function. However, empirical analysis of

numerous natural surfaces has revealed a relatively simpleforms of this surface type. In the second category, the
surface is also composed of well-defined elements, but functional form which has been termed self-affinity or,

more commonly, ‘‘fractal’’ (Mandelbrot 1982). Over athere may be random quantities of elements, they may
have random sizes and/or aspect ratios, and they may be range of scales, spanning from micrometers to kilometers,

relationships observed to hold for many natural surfaces in-randomly arranged; examples used by the planetary com-
munity include the crater roughness model of Veverka and clude
Wasserman (1972), the ‘‘hole’’ roughness model of Lumme
and Bowell (1981), and Helfenstein’s (1988) synthetically
cratered landscape. The third category of models are s(L) 5 s(L0) SL

L0
DH

(1)
strictly random and consist only of a specified distribution
of surface heights or slopes and (often) some statistical

s(Dx) 5 s(Dx0) SDx
Dx0

DH21

, (2)relationship between adjacent elements. Connecting three
points on such a surface (two on a profile) with straight
lines forms a ‘‘facet’’; therefore, these models are also
referred to as facet models. Examples of this last model where s(L) is the RMS height for a profile of some length,

L, L0 is the length of some reference profile (often chosentype include those used by Hagfors (1964), Beckmann
(1965), Smith (1967a), Wagner (1967), and Hapke (1984). to be 1 unit in length), s(Dx) is the RMS slope of a surface

between points a distance Dx apart, Dx0 is, again, a refer-Because nature is rarely deterministic when shaping plane-
tary surfaces, the randomized models of the second and ence distance of arbitrary length, and H is a parameter

variously referred to as the Hurst exponent or Hausdorffthird categories are often more applicable to the general
scattering problem. Real surfaces are usually (if not al- measure, 0 , H , 1 (Hastings and Sugihara 1993, Shepard
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The first expression in (3) is applicable to a profile, and
the second is applicable to a surface (Mark and Aronson
1984, Shepard et al. 1995, Turcotte, 1997). To avoid switch-
ing back and forth between fractal dimensions for profiles
and surfaces, we will primarily utilize the Hurst exponent,
H, in this paper.

Like any model, fractals have limitations. The most sig-
nificant of these is the implicit assumption that the surface
is ‘‘noise.’’ As a result, fractals cannot easily forward model
(or generate) surfaces like those of category two above,
i.e., a randomized landscape composed of discrete geologic
features (e.g., craters, river channels, etc.). Nevertheless,
fractals are a robust tool for reverse modeling homoge-
neous regions of random structure. In other words, given
specific examples of any homogeneous landscape from cat-
egory two or three (i.e., surfaces one might encounter in
the field), fractals provide a simple, yet powerful way of
quantifying their intrinsic scale-dependent surface
roughness. A less significant limitation of fractals is the
number of required parameters; current roughness models
utilize only one (or effectively one as we see below)
roughness parameter, while the simplest fractal model in-
corporates two.

It is not well understood why natural surfaces obey the
relationships (or derivatives of them) expressed by Eqs.
(1) and (2); the evidence that they do, however, is over-
whelming. Figure 1 illustrates this behavior for the basalt
flow; both the RMS height and RMS slope obey the scaling
relationships of Eqs. (1) and (2) with H p 0.6. Mark and
Aronson (1984) report values of H ranging from 0.1 to
0.96 for a variety of geologic provinces at scales ranging
from tens of meters to tens of kilometers. Brown and
Scholz (1985) report H values ranging from p0.4 to 1.0

FIG. 1. RMS heights and slopes of the Black Rock lava flow (Lunar
Crater Volcanic Field, Nevada) as a function of the measurement scale.

et al. 1995, Turcotte 1997). In Eqs. (1) and (2), s(L0) and
s(Dx0) are ‘‘anchoring’’ parameters and H is the parameter
that describes how these values change with scale. To illus-
trate the role of H, Fig. 2 shows three synthetic fractal
profiles which have the same RMS slope at the smallest
scale, but different values of H. Note that, consistent with
Eq. (1), the surfaces with higher H values retain their
roughness even at large scales while those with low H
do not. A commonly reported parameter is the fractal
dimension, D, which is related to H by

FIG. 2. Plots of three different fractal profiles, offset for clarity,D 5 2 2 H
(3) illustrating the effect of different Hurst exponents, H. Each profile has

the same RMS slope (u0 5 458) at the smallest horizontal scale, i.e., 1 unit.D 5 3 2 H.
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for rock surfaces measured at scales of micrometers to parameters such as surface RMS height and autocorrela-
tion length are taken as constants or contain implicit andcentimeters. Our own work with numerous lava flows

yielded H values from 0.25 to 0.75 at scales of centimeters unspecified scale dependencies in published models, while
in fractal models they are functions of scale; i.e., one mustto tens of meters (Campbell and Shepard, 1996). Farr

(1992) found H p 0.5 on a wide range of geologic surfaces, agree upon some scale at which these parameters are mea-
sured for comparison. We have therefore chosen a morealso at scales of centimeters to tens of meters. Recent

work on the terrestrial planets has shown similar behavior. indirect approach and compare the shadowing behavior of
these published surface models to the shadowing behaviorHaldemann et al. (1997, personal commun.) found H p

0.5 for the terrain around the Mars Pathfinder landing site of fractal surfaces. A benefit of this approach is that we
also determine one property of fractal surfaces that canat scales of centimeters to tens of meters, while Helfenstein

et al. (1998) report H values 0.5 to 0.7 for undisturbed be incorporated into general scattering models, i.e., their
shadowing behavior. In making this comparison, we as-lunar regolith at scales of micrometers to centimeters.

It has been noted that some surfaces obey different scal- sume that similar shadowing behavior implies similar sur-
face morphology; i.e., the surfaces are statistically similar.ing laws over different ranges of scale, i.e., H is itself a

function of scale. Mark and Aronson (1984) and Campbell It could be argued that any number of different surfaces
might be constructed that have similar shadowing behav-and Shepard (1996) (among others) have speculated that

these ‘‘breaks’’ in H represent the scales at which different ior. However, our assumption should be reasonable if the
surfaces being compared are all strictly random. We there-processes dominate the formation and evolution of the

surface. As an example, Campbell and Shepard (1996) fore restrict ourselves to a comparison with models from
category three, i.e., random faceted surfaces, and leave thenoted that, on pahoehoe lava flows, centimeter-scale to-

pography obeyed a different scaling law than the meter- comparison with models from category two for future
analysis.scale topography. Field observations revealed the centime-

ter scales to be dominated by glassy weathering rinds, while
meter scales were dominated by constructional flow fea-

Methodology
tures.

Rarely reported, but of some importance, is the value To our knowledge, there is currently no analytic solution
to the problem of shadowing on a fractal surface. However,of RMS height or slope at an anchoring scale. Campbell

and Shepard (1996) found RMS heights on a 1-m-long random fractal surfaces are relatively easy to synthesize
and ray trace. Therefore, we make our comparisons basedprofile to range from p8 cm on a very rough a’a flow to

p0.5 cm on a very smooth pahoehoe flow. RMS slopes on upon the shadowing behavior of synthetic random fractal
surfaces. We make several assumptions in our numericalthe same surfaces measured between points separated by

a distance of 1 m ranged from p138 to p28. Shepard et al. simulations which make them compatible with the analyti-
cal models to which they will be compared. First, the sur-(1995) reported the RMS slope of a particularly rough a’a

basalt flow to be .708 at a scale of 1 cm and p208 at a face is assumed to be a composite of smooth facets and
geometric optics applies, i.e., the facets are large with re-scale of 1 m (see Fig. 1). On undisturbed lunar regolith

Helfenstein et al. (1998) report RMS slopes ranging from spect to the wavelength. Second, the facets are distributed
uniformly in azimuth. Further, secondary reflections, i.e.,128 to 378 at the millimeter scale.

The above discussion leads us to conclude that fractal multiple scattering, from adjacent facets are ignored. Fi-
nally, the distribution of facet slopes about a mean hori-surface models are both realistic in their ability to quantify

the behavior of natural surfaces, and general enough to zontal plane is assumed to be Gaussian. This latter assump-
tion is consistent with observations on many real surfaces,quantify a wide range of geologic terrain. Their disadvan-

tages include an assumption that the surface is ‘‘noise’’ with fractal models (Hastings and Sugihara 1993), and with
the analytic surface models we examine.and a required minimum of two parameters. Their over-

whelming advantage is that many real surfaces are ob- Shadows created on a fractal surface by a collimated
source behave identically to shadows created on the seriesserved to obey fractal statistics.
of profiles that make up that surface, i.e., the three-dimen-
sional shadowing problem can be reduced to a two-dimen-

III. COMPARISON OF SHADOWING ON FRACTALS TO sional one. Because the creation of fractal surfaces is com-
putationally more expensive than profiles, we chose toOTHER SURFACE TYPES
work with fractal profiles for the numerical component of
this work. We emphasize, however, that the results ob-An inevitable question to address is ‘‘how do surface

models that have been used in planetary applications com- tained by examining fractal profiles are identical to those
that we would obtain from a fractal surface, and we willpare with fractal surfaces?’’ Straight analytical compari-

sons are difficult or impossible because of scale issues; therefore interchangeably refer to the shadowing behavior
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FIG. 3. Rendered image of a synthetic fractal surface, H 5 0.7, s0 5 tan(458), incidence angle 5 458. The rendering assumes the surface facets
obey a Lommel–Seeliger scattering law.

of fractal surfaces or fractal profiles. To convey a sense of values of u0 5 tan21(s0) ranging from 108 to 508. The values
of the Hurst exponent were verified using the variogramthe realism of textures generated by fractal algorithms,

Fig. 3 shows an example of a random fractal surface we method (Shepard et al. 1995). The parameter s0(5tan u0) is
the RMS slope for these surfaces at the smallest horizontalgenerated, shaded using a ray-tracing algorithm, and ren-

dered assuming a Lommel–Seeliger scattering law. interval. Slopes of the profile at larger scales can be calcu-
lated from Eq. (2). It is necessary to specify a lower bound-Using the spectral method outlined by Voss (1988) and

Turcotte (1997), we generated fractal profiles with Hurst ary on the facet size of a fractal profile or surface because,
if allowed to decrease in scale indefinitely, the RMS slopeexponents (H) of 0.1, 0.3, 0.5, 0.7, and 0.9 and five different
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will go to infinity (Eq. (2)). We discuss the interpretation scale, as defined earlier. In practice, the summation needs
only to be carried to six terms or less to converge to withinof this in more detail below.

For each of the generated profiles, we assumed parallel 1% of the final value. Equation (4) is found to reproduce
the majority of the data in Table 1 to within 0.01, wellillumination at a range of incidence angles (angle from

nadir), i, from 108 to 808. The emission angle was set at within the expected uncertainties of our numerical proce-
dure. The reproduction is worse for high H, high u0 sur-08, i.e., nadir-viewing, and a ray-tracing algorithm run to

determine the fraction of the profile in shadow. Because faces, although still within the range of values quoted in
the table. Equation (4) also has interesting similarities toeach fractal profile generated is only a single realization

of a random process, each simulation was run under the the analytic formulations that we examine below.
same conditions 10 times (i.e., 10 different fractal profiles

Comparison to Analytic Modelswith the same statistical behavior) from which the mean
shadowing behavior was determined. All profiles were We chose to compare the numerical results found above
100,000 units long. Half of this profile was used only as a to four random surface models for which shadowing func-
border to ensure adequate shadowing behavior for points tions were derived. In all but one of these models (Hapke
on the edge of the surface. This relatively large border is 1984), the shadowing function is derived for the case of
required for low values of H (0.1–0.3) to ensure accurate nadir-viewing only. Hapke’s (1984) model is more general
shadowing statistics. Because shadowing is an anisotropic in that any combination of incidence, emission, and phase
operation, each profile was illuminated from both sides for angle is permitted and that it is intimately convolved into
comparative purposes and to obtain better averaging sta- a general scattering model. We will examine only the nadir-
tistics. viewing case here to maintain consistency with the other

models. In what follows, we briefly describe the surfaceFractal Shadowing Function Properties
model, present a summary of the shadowing function, and

Table I lists the fraction of the profile (or surface) not compare it with the shadowing behavior found on a fractal
shadowed, S, as a function of i, H, and u0 , along with the surface. We will refer to ‘‘surface model’’ and ‘‘shadowing
range of shadowing behavior observed for each profile. In model’’ synonymously since we are vicariously equating
general, the higher values of H (lower fractal dimensions) surface behavior to shadowing behavior.
exhibit wider variation in shadowing behavior across the A. Beckmann shadowing model. Beckmann (1965) de-
multiple realizations. Figure 2 illustrates why this is the rived his shadowing model for the study of microwave
case. Surfaces with higher H values have more extreme quasi-specular scattering. We include this model because
values of surface height; i.e., for a given profile length, the surface description is identical to that assumed by many
they tend to be more rugged. This gives rise to greater in the radar scattering community (e.g., Hagfors 1964). We
statistical variations in the amount of surface in shadow. note, however, that the shadowing formula derived in this
Conversely, surfaces with low H values have height distri- work has been the subject of some controversy because
butions which remain close to the mean value—large scale attempts to verify it using numerical simulations were not
topography is conspicuously absent. successful (Brockelmann and Hagfors 1966).

Figure 4 illustrates the effect of varying H for a constant Beckmann (1965) assumed that the surface in question
RMS slope, in this case 308. Note that surfaces which main- is stationary and characterized by a Gaussian height distri-
tain more of their initial roughness as scale increases, i.e., bution and an arbitrary autocorrelation function, B(x). Al-
those with higher H values, are shadowed to a greater though it was not included in this derivation, Beckmann
degree than those with low H values. Figure 5 illustrates (1965) foresaw the necessity of fractal models in his discus-
the shadowing function for surfaces with the same value sion on the relative importance of small and large scale
of H, in this case 0.5, but different s0 . Not unexpectedly, topography. Beckmann’s shadowing function is
for a given value of H, larger RMS slopes at the smallest
scales lead to increased shadowing. We have found the
following empirical relationship to provide excellent ap-

S(i) 5 expF2
1
4

tan(i)erfcS cot(i)

Ï2uB0(0)u
DG, (5)proximations to the shadowing function, S:

where S(i) is the fraction of surface not in shadow, i is theS(i, u0 , H) 5 1 2
1
2 O

y

n51

1
2.3n21 erfc S n12H

Ï2 tan(i) tan(u0)
D,

incidence angle (from nadir), erfc is the error function
(4) complement, and B0(0) is the second derivative of the

surface autocorrelation function analyzed at a lag of 0.
Explicit expressions for the argument of the error functionwhere erfc is the error function complement, i is the inci-

dence angle, and u0 is the RMS slope at the smallest facet complement are
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TABLE I
Average Shadowing Function (Fraction of Surface Not in Shadow) for 10 Fractal Surfaces with Hurst Exponent, H,

and RMS Slope at the Smallest Scale, s0
a

H i u0 5 108 u0 5 208 u0 5 308 u0 5 408 u0 5 508

0.1 108 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000
208 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 0.999 6 0.001 0.989 6 0.001
308 1.000 6 0.000 1.000 6 0.000 0.999 6 0.000 0.980 6 0.001 0.925 6 0.001
408 1.000 6 0.000 0.999 6 0.001 0.980 6 0.001 0.920 6 0.001 0.824 6 0.001
508 1.000 6 0.000 0.989 6 0.001 0.925 6 0.001 0.824 6 0.001 0.709 6 0.001
608 0.999 6 0.001 0.943 6 0.001 0.824 6 0.001 0.701 6 0.001 0.581 6 0.002
708 0.980 6 0.001 0.824 6 0.001 0.671 6 0.002 0.544 6 0.001 0.434 6 0.002
808 0.824 6 0.001 0.581 6 0.002 0.434 6 0.002 0.334 6 0.002 0.256 6 0.002

0.3 108 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000
208 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 0.999 6 0.001 0.989 6 0.001
308 1.000 6 0.000 1.000 6 0.000 0.999 6 0.001 0.980 6 0.001 0.923 6 0.002
408 1.000 6 0.000 0.999 6 0.001 0.980 6 0.001 0.918 6 0.002 0.818 6 0.002
508 1.000 6 0.000 0.989 6 0.001 0.923 6 0.002 0.818 6 0.002 0.695 6 0.001
608 0.999 6 0.001 0.942 6 0.001 0.818 6 0.002 0.686 6 0.001 0.558 6 0.002
708 0.980 6 0.001 0.818 6 0.002 0.654 6 0.001 0.520 6 0.002 0.407 6 0.002
808 0.818 6 0.002 0.558 6 0.002 0.407 6 0.002 0.306 6 0.002 0.229 6 0.002

0.5 108 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000
208 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 0.999 6 0.000 0.989 6 0.000
308 1.000 6 0.000 1.000 6 0.000 0.999 6 0.001 0.980 6 0.001 0.920 6 0.001
408 1.000 6 0.000 0.999 6 0.001 0.980 6 0.001 0.915 6 0.001 0.808 6 0.002
508 1.000 6 0.000 0.989 6 0.001 0.920 6 0.001 0.808 6 0.002 0.675 6 0.002
608 0.999 6 0.001 0.940 6 0.001 0.808 6 0.003 0.666 6 0.002 0.532 6 0.002
708 0.980 6 0.001 0.808 6 0.002 0.632 6 0.002 0.491 6 0.003 0.376 6 0.004
808 0.808 6 0.003 0.532 6 0.002 0.376 6 0.004 0.276 6 0.003 0.202 6 0.004

0.7 108 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000
208 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 0.999 6 0.001 0.988 6 0.002
308 1.000 6 0.000 1.000 6 0.000 0.999 6 0.001 0.978 6 0.003 0.910 6 0.011
408 1.000 6 0.000 0.999 6 0.001 0.978 6 0.003 0.903 6 0.011 0.777 6 0.021
508 1.000 6 0.000 0.988 6 0.002 0.910 6 0.011 0.777 6 0.021 0.626 6 0.030
608 0.999 6 0.001 0.932 6 0.007 0.777 6 0.021 0.616 6 0.031 0.472 6 0.039
708 0.978 6 0.003 0.777 6 0.021 0.579 6 0.033 0.431 6 0.041 0.318 6 0.047
808 0.777 6 0.021 0.472 6 0.039 0.318 6 0.047 0.225 6 0.051 0.161 6 0.053

0.9 108 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000
208 1.000 6 0.000 1.000 6 0.000 1.000 6 0.000 0.999 6 0.001 0.968 6 0.098
308 1.000 6 0.000 1.000 6 0.000 0.998 6 0.001 0.967 6 0.019 0.818 6 0.295
408 1.000 6 0.000 0.999 6 0.001 0.967 6 0.019 0.858 6 0.071 0.637 6 0.332
508 1.000 6 0.000 0.983 6 0.010 0.867 6 0.068 0.699 6 0.134 0.474 6 0.285
608 0.999 6 0.001 0.899 6 0.052 0.699 6 0.134 0.520 6 0.190 0.341 6 0.231
708 0.967 6 0.019 0.699 6 0.134 0.481 6 0.187 0.337 6 0.173 0.226 6 0.151
808 0.699 6 0.134 0.375 6 0.179 0.239 6 0.161 0.170 6 0.136 0.125 6 0.102

Note. See text for a discussion of how these numbers are generated.
a The error bars indicate the range of the data, i.e., the maximum deviation on either side of the mean. Note that the range in observed shadowing

behavior increases significantly for high values of H.

lation length. The ratio of RMS height to autocorrelation1
2

cot(i)
T
s

(6) length observed in Eqs. (6) and (7) is often used in radar
general scattering models and has been referred to as the
‘‘effective’’ slope (Campbell and Garvin 1993). Note thatfor Gaussian autocorrelation and
a change in the autocorrelation function changes the argu-
ment of Eq. (5) only by a constant and does not affect the
general shape of the shadowing function. In other words,1

Ï2
cot(i)

T
s

(7)
this model is really a function of a single surface pa-
rameter—the effective slope.

While examples of the Beckmann function can be foundfor exponential autocorrelation, where T is the autocorre-



286 SHEPARD AND CAMPBELL

FIG. 4. The shadowing function for ray-traced fractal surfaces with FIG. 6. Comparison of the Smith (1967a) shadowing function and
same value of s0 , but different Hurst exponents, H. ray-traced fractal profile, H 5 0.7.

that are reasonably approximated by the shadowing behav- mann (1965) and Wagner (1967) (below). However, he
ior of a fractal surface (for example, the behavior for an includes a surface slope distribution (instead of an autocor-
effective slope of 478 and a fractal surface, H 5 0.5, u0 5 relation function) in addition to a height distribution and
308), no systematic relationship appears to exist between explicitly assumes that heights and slopes on the surface
the effective slope of the Beckmann function and the frac- are uncorrelated. His shadowing solution is
tal u0 for any value of H tested. Based on this and the
earlier work by Brockelmann and Hagfors (1966), we con-
clude that either the surface model assumed is an unrealis-
tic one or (more likely) that an error was made in the S(i) 5

F1 2
1
2

erfc(cot(i)/Ï2srms)G
1
2 FS2

fD1/2 s
cot(i)

e2cot2(i)/2s2
rms 2 erfc(cot(i)/Ï2srms)G1 1

,
shadowing derivation.

B. Smith shadowing model. Smith (1967a) derived a
(8)shadowing model which he later applied to thermal emis-

sion and optical shadowing studies of the Moon (Smith
where srms is the RMS surface slope. Note that this is also1967b). Smith’s analysis contains similarities to both Beck-
a single parameter roughness model. We found a close
correspondence between Eq. (8) and fractal surfaces with
H 5 0.7 (Fig. 6):

srms P s0 for H 5 0.7. (9)

This fit between the Smith model and fractal surface behav-
ior degrades significantly for lower and higher values of H.

C. Wagner shadowing model. Wagner (1967), starting
with essentially the same assumptions and using an analyti-
cal method similar to Smith (1967a), derives a shadowing
function of the form

S(i) 5
[1 1 erf(v)][1 2 e22X]

4X
(10)

where the roughness term, v, is the same argument found
in the Beckmann (1965) expression, (Eqs. (6) and (7)),FIG. 5. The shadowing function for ray-traced fractal surfaces with

same Hurst exponent, H, but different values of s0 . and X is given by
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scattering between adjacent facets is ignored so that facets
in cast shadows contribute no light to the return, even if
in the view of the sensor; and (4) the surface slopes obey
Gaussian tilt statistics and are isotropically distributed in
azimuth. The mean surface slope is defined as

tan u 5
2
f
Ef/2

0
a(u) tan(u) du, (13)

where a(u) is the distribution of surface slopes, and u is
the Hapke roughness parameter. The full Hapke (1984)
photometric roughness correction incorporates two effects:
(1) the change in the ‘‘effective’’ incidence and emission
angles caused by rough topography and illuminating and/
or viewing the surface from off-nadir directions and (2)
the removal of portions of the surface by cast shadows.

FIG. 7. Comparison of the Wagner (1967) shadowing function and
Both of these correction factors were derived assumingray-traced fractal profile, H 5 0.1.
the same surface model. In this paper, we are not ‘‘testing’’
the full roughness correction as done by Helfenstein
(1988). Rather, we are concerned only with the shadowing
portion of that correction as a means of comparing Hapke’sX 5

e2v2
2 Ïfv erfc v

4Ïfv
. (11)

assumed surface with fractal surfaces.
As noted earlier, the Hapke (1984) shadowing function is

significantly more complex than those previously discussedIf we assume that v is given by Eq. (6), i.e., a Gaussian
because it accounts for any general configuration of inci-autocorrelation function, then the shadowing observed on
dence, emission, and azimuth angles. The interested readera Wagner surface with effective slope, seff , appears to
is referred to that reference for the full set of equations.mimic that of a low H fractal surface if
However, under the conditions of this work, i.e., observing
the surface from directly overhead, the equation can beseff P 1.3s0 for H 5 0.1. (12)
greatly simplified and is given by

Figure 7 illustrates the shadowing of the Wagner model
and fractal surfaces with H 5 0.1. The ability of the fractal
shadowing function to mimic the Wagner model degrades S(i) 5 cos(i) 3cos(i)

(14)

as H increases. As with the Beckmann model, there is no
change in the shape of the shadowing curve for different
autocorrelation functions.

D. Hapke shadowing model. Because of the popularity
1 sin(i) tan(u)

exp S2
1
f

cot2(u) cot2(i)D
2 2 exp S2

2
f

cot(u) cot(i)D4
21

.and complexity of the Hapke (1981, 1984) model, we dis-
cuss its derivation in somewhat more detail than those
above. Hapke (1981) derived an approximation to the
problem of light scattering and absorption from a regolith

The shape of the Hapke shadowing function is nearlyor particulate surface. Later, Hapke (1984) improved upon
indistinguishable from the observed shadowing on a fractalthis model by incorporating the effects of rough topogra-
surface with H 5 0.5 and obeyingphy. Unlike the previous models, the Hapke (1984) model

incorporates the roughness correction into the ‘‘ideal’’ sur-
tan u P 0.7s0 for H 5 0.5. (15)face scattering problem, i.e., scattering from a smooth rego-

lith. It can therefore be considered a general scattering
model as defined earlier. Figure 8 shows a comparison of the shadowing behavior

predicted by Eq. (14) and that observed from the syntheticIn his roughness correction, Hapke (1984) makes the
following assumptions: (1) all scattering objects are large fractal surfaces obeying Eq. (15). The goodness of fit ob-

served in Fig. 8 degrades significantly for higher and lowerwith respect to the wavelength, i.e., geometric optics ap-
plies; (2) the mean slope of the surface (defined below) is values of H. We note that fractal surfaces or profiles with

this specific value for H are often referred to asreasonably small, i.e., no overhangs or scarps; (3) multiple
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great practical interest is the scale of surface roughness that
is being detected by optical shadowing and photometric
models. All of the conclusions and speculations offered
below are based only on the observed shadowing behavior
of fractal surfaces. However, because shadowing is an im-
portant and integral component of any model that purports
to extract roughness information remotely, we suggest
that our discussion will have relevance to photometric
roughness models in general.

Confirmation and Extension of Previous Studies

In the Beckmann (1965), Smith (1967a), and Wagner
(1967) models, the scale of surface roughness was never
directly addressed. Hapke (1984), however, explicitly as-
sumed that surface roughness, and therefore shadowing,

FIG. 8. Comparison of the Hapke (1984) shadowing function and occurred at all scales. He suggested, though, that the sur-
ray-traced fractal profile, H 5 0.5.

face reflectance would be dominated by the largest surface
slopes, and that these would occur at the smallest scales

‘‘Brownian’’ and that Brownian surfaces are fairly common since this is the range at which surface material strength
on Earth (Farr 1992, Shepard et al. 1995, Campbell and and particle cohesiveness dominate over gravity. Helfen-
Shepard 1996). stein (1988) was the first to test these hypotheses using a

synthetically cratered and illuminated surface. He foundGenerality of Fractal Surface Models
that the photometrically derived value of Hapke’s u was

To briefly summarize the results of the previous section, equivalent to the value measured from the topographic
we have found that the Smith, Wagner, and Hapke shadow- model at the smallest faceted scales. He further reasoned
ing models can be approximated by the shadowing behav- that u was an integrated parameter describing the
ior of a fractal surface with specific values of H and a roughness of all scales below the resolution of the sensor
constant, linear relationship between their respective and above the size of the incident wavelength. Helfen-
roughness parameters and the fractal surface parameter stein’s results and interpretation were, however, based on
s0 . The Beckmann (1965) model could not be reproduced a single realization of a randomly cratered surface. We
in any systematic fashion. As noted, however, previous believe that our numerical experiment can extend these
numerical work by Brockelman and Hagfors (1966) has results to a much wider range of surfaces, and provide
cast doubt on the validity of its derivation and we therefore additional insight into the physical interpretation of u or
exclude it from further consideration. related parameters.

In our analysis, we have made the assumption that similar We first address the issue of the dominant surface scale
shadowing behavior implies similar surface statistical be- at which shadowing occurs. Our results suggest that the
havior. If valid, then we can reasonably conclude that each smallest faceted scale is the dominant scale for surface shad-
of the above surface models may be approximated by a spe- owing. This does not mean that the smallest scale is the
cific case of a general fractal surface model, i.e., a random only one to contribute to shadows on a surface, but only
surface with a power law scaling dependence obeying Eqs. that it contributes a much larger share than any other scale.
(1) and (2). While this could suggest that one or more are Take the example of a fractal Brownian surface (H 5 0.5)
special cases of a fractal model (with fixed H), we cannot with 1-cm facets and an RMS slope of 408 at this scale. If
demonstrate this with our current empirical results. Given illuminated at an incidence angle of 508, then approxi-
the range of fractal behavior observed on natural surfaces mately 20% of the surface would be in shadow (Table
and the ability of fractal surfaces to mimic the analytic mod- I). If we took the same surface and added an additional
els above, we suggest that incorporating a fractal surface ‘‘crenulation’’ to create facets As cm in size, the RMS slope
model into general scattering models would make them ap- at this scale would be 508 (using Eq. (2)). From Table I,
plicable to a wider range of planetary surfaces than possible approximately 33% of this surface would be in shadow,
utilizing these or any other single parameter models. meaning that the additional crenulation is responsible for

40% of the overall shadowing. The smallest scales becomeIV. THE SCALE OF SURFACE SHADOWING
of even greater importance for H , 0.5, and of less impor-
tance for H . 0.5. This result fits with our intuition ofAs we have noted throughout this work, surface

roughness changes with scale. Therefore, a question of natural surfaces and confirms that of Hapke (1984) and
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the findings of Helfenstein (1988). What is new in this work ever, under most geologic conditions, deviations of this
small magnitude are not realized until the horizontal scalesis that we can quantify this intuitive knowledge, and extend

it to a much greater range of surface types than pre- approach the order of a wavelength, again below the scales
at which geometric optics are valid.viously available.

Next, we address Helfenstein’s (1988) interpretation of Given the discussion above, we hypothesize that the
scale of roughness that dominates shadowing, and by ex-u as a measure of the integrated surface roughness. This

is entirely consistent with the concept of a fractal surface tension photometric roughness, is the smallest scale at
which shadows are still existent. In other words, we areand the previous discussion. In the above example, a full

40% of the total shadowing was due to the smallest facets. suggesting that one or more processes remove shadows
below some measurable scale, thereby rendering theseThe remaining 60% was due to all the facets at larger scales.

Therefore, we can consider the shadowing, and presumably scales effectively ‘‘invisible’’ to photometry and giving the
appearance of a ‘‘faceted’’ surface. In support of this hy-any inferred photometric roughness, to be a function of

all the scales of roughness ‘‘integrated’’ together. However, pothesis is the recent observation of Helfenstein et al.
(1998) that values of Hapke’s u measured from undisturbedwe note that the scale which quantitatively ‘‘controls’’ or

‘‘represents’’ the overall shadowing behavior of the surface lunar topography at submillimeter scales are systematically
larger than those estimated from photometry.is the smallest scale as defined above. Once that scale is

set and defined, the remaining surface behavior is defined Two physical mechanisms can cause shadows to be effec-
tively removed, both related to initial assumptions in mostby the Hurst exponent (or fractal dimension). As before,

what is new in this work is that we can now quantify this shadowing models. First, at scales approaching the wave-
length of incident light, the diffraction of light aroundeffect and extend it to a greater range of surface types.
grains becomes a significant effect and shadows no longer
exist. Under these conditions, one must assume that the

Speculations on the Physical Meaning of
shadowing behavior observed is dominated by the scale at

‘‘Smallest’’ Facet
which the assumptions of geometric optics become invalid,
i.e., somewhat greater than the wavelength of incidentIn all of the surface/shadow models considered here

there is an explicit assumption that the surface is composed light.
Multiple scattering is a second mechanism which canof smooth facets large compared with the wavelength of

incident light. As noted earlier, however, facets are a mod- effectively remove shadows. Higher order scattering events
between adjacent particles or facet-like structures may be-eler’s contrivance—essentially, they are an approximation

to the surface structure at scales smaller than those defined come significant as the surface roughens and/or single scat-
tering albedo increases. Under these conditions, contrastor measured. Interestingly, real surfaces continue to be

fractal, not faceted, even at the micron scale, i.e., well is reduced, and shadows become increasingly bright.
Buratti and Veverka (1985) experimentally demonstratedbelow the geometric optics limit (cf. Brown and Scholz

1985, Helfenstein et al. 1998). Under these conditions, we that multiple scattering on a high albedo rough surface
reduces shadow contrast and creates the appearance of arun into a ‘‘fractal paradox’’ in which every surface should

be completely, or at least largely, shadowed. Since this is smoother surface. We speculate that this effect may be of
importance, even on relatively dark surfaces, as the RMSnot observed, we wish to know the scale on a real surface

at which the roughness ‘‘stops’’ and therefore corresponds slopes increase dramatically at millimeter or smaller scales.
As adjacent areas of the surface increasingly expose moreto the ‘‘faceted’’ scale extracted from an analysis that in-

cludes shadowing behavior. surface area to one another, light from transmission
through adjacent particles and/or multiple surface reflec-We must first carefully define what is meant by

‘‘roughness.’’ Fractal surfaces obey two basic relationships tions may rival the incident light on surfaces tilted away
form the source and brighten the shadows, thereby reduc-(Eqs. (1) and (2)). First, the RMS height of a surface

decreases as the scale of measurement decreases. Second, ing or removing contrast on an otherwise rough microstruc-
ture. In addition to the critical role of the single scatteringRMS slope increases as scale decreases. Although the two

may seem incongruous, they are a result of self-affinity, albedo, other factors contributing to this effect may include
the single particle scattering phase function and particlei.e., the vertical scaling is ‘‘slower’’ than horizontal scaling.

A surface may be considered ‘‘smooth’’ or faceted once size distribution. The ‘‘facet’’ scale would therefore be
dependent upon intrinsic physical properties as well as thevertical deviations are approximately 1/10th the size of

the wavelength, i.e., the Rayleigh criterion for roughness. topographic expression of the surface. This interpretation
suggests a fundamentally different treatment of multipleSeveral geologic agents could create surfaces which meet

this requirement, including eolian abrasion by submicromi- scattering in shadowing and photometric roughness model-
ing. Rather than a property that invalidates traditionalcrometer dust, glacial or fault-induced polishing, and com-

positionally dependent jointing and/or weathering. How- photometric models, we suggest that multiple scattering
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may be a surface property that defines the scale to which tively removed and that this scale is a function of intrinsic
surface roughness and other surface parameters such asthese models are most sensitive.

The discussions above suggest that the interpretation of single scattering albedo and particle phase function. If this
hypothesis is correct, a surface roughness extracted photo-surface roughness based on photometric behavior, and the

use of a roughness parameter to compare different plane- metrically will have a different physical meaning for differ-
ent surfaces and for the same surface at wavelengths intary surfaces, may be more complex than previously as-

sumed. If our hypothesis is accurate, then it is almost cer- which these other parameters differ significantly. While
this interpretation precludes the direct comparison of to-tainly true that the scale at which shadows are ‘‘erased’’

will differ for different surfaces, and may differ for the pography from surface to surface, it may provide new in-
sights into the processes that operate on planetary surfacessame surface at different wavelengths. This hypothesis can

be tested both in the laboratory and/or on a planetary at the microscale. Future work should include testing this
hypothesis and deriving a full photometric correction forscale. One possible test would involve fitting the full Hapke

model to observations of a single surface observed in multi- fractal surface models.
ple wavelengths. For the test to be convincing, the surface
should have significantly different single scattering albedos ACKNOWLEDGMENTS
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