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Planetary surfaces are better described by nonstationary frac-
tal statistics than those more commonly assumed in current radar
scattering models. Therefore, we have developed a radar scatter-
ing model applicable to self-affine fractal surfaces when observed
near-nadir. The model predicts a family of angular scattering func-
tions that smoothly transition between forms similar to the com-
monly utilized Hagfors, Gaussian, and exponential surface models.
The model predicts that the near-nadir scattering behavior is deter-
mined by the wavelength-scaled roughness, i.e., the roughness that
would be measured by a field worker using a ruler one wavelength
in size, and the surface scaling behavior described by the fractal di-
mension or Hurst exponent. Additionally, this model predicts that
the scattering behavior should scale with wavelength in a self-affine
manner, i.e., the scattering behavior at long wavelengths should look
“smoother” than that at short wavelengths. The scattering behavior
predicted by the model is consistent with that observed for Venus
by the Magellan altimeter experiment.  © 1999 Academic Press
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I. INTRODUCTION

only a minor role in surface scattering properties at microwave
frequencies.

One of the primary difficulties experienced by those using
microwave data is the physical interpretation of roughness pa
rameters extracted from scattering observations. For exampls
one model used extensively by the planetary community is the
Hagfors (1964) model for quasi-specular scattering. Its popu
larity stems from its ability to consistently fit many near-nadir
(backscattering anglé,< ~20°) backscatter observations. The
roughness parameter extracted from this modé€l,igand it is
generally agreed (Tylegt al. 1992) thatC'/? is a measure of
the root-mean-square (RMS) surface slope at scales that a
large compared with the wavelength. It is not uncommon to see
Hagfors parameters & = 100 reported in the literature, corre-
sponding to RMS slopes of about énterpretingthis value in a
quantitative fashion is the difficulty. What surfaces on the Earth
have RMS slopes of°@ If the profile of a terrestrial analog sur-
face were supplied, how would this value be measured? Whe
does this value imply about the surface geology?

The shape of the angular scattering function and the type o
surface statistics inferred from its behavior are also of interes
for their geologic implications. For example, studies done by

The topography of natural surfaces at scales of a few met&ispson and Tyler (1982) and Tylet al. (1992) suggest that

or less is often referred to as roughness and is of fundaméme meter-scale surface statistics of the Moon and Venus ar
tal importance to the interpretation of geologic emplacemesignificantly different. On the Moon, the majority of near-nadir

mechanisms and modification processes. Because there aredbservations are best fit by a Hagfors (1964) model, while or
instances ofn situ measurements on the terrestrial planets, théenus the most common best-fit model has an exponential forr
planetary community relies extensively upon remote observiyleretal.(1992) hypothesize that this reflects differences in the
tions to determine surface roughness and to infer geologic strpeecesses of erosion and deposition on the two planets. Beyor
ture, processes, and history. While surface roughness is impbis, little is understood about why these scattering difference:
tant at all wavelengths, its effect on scattering behavior in tle&ist and how they can be exploited to provide new geologic
microwave (radar) spectrum is of particular interest. The scalesights. Several workers have noted a wavelength dependen
of roughness contributing to microwave scattering are in tlethe RMS slope inferred from near-nadir echoes (Hagfors ant
centimeter to tens of meters range—the same scales at whiskans 1968, Muhleman 1964, Simpson and Tyler 1982). It ha:
many important geologic properties are manifest. Furthermoteng been recognized that surfaces appear smoother at long
compositional variations generally (although not always) playavelengths than at shorter wavelengths, but there has been litt
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RADAR SCATTERING FROM A FRACTAL SURFACE 157

progress in quantifying this behavior or interpreting it in termsf scattering mechanism. We do not make the tangent plane
of surface geology. sumption in our model and therefore will refer to all scatterir
In this paper, we derive aradar scattering model which is capaedels at this geometry as “near-nadir.”
ble of quantitatively addressing each of the above problems. OuiThe most intuitive of the near-nadir models utilizes a ge
derivation involves two new assumptions that fundamentally difaetric optics approach. The surface is treated as a collectio
fer from previous work. First, we assume that the surface topdgeets, large with respect to the wavelength and oriented w
raphy is represented by a random, isotropic, self-affine frackame statistical distribution, typically of a Gaussian or expone
surface. Fractal surfaces are, by definition, nonstationary, aral form (Hagfors and Evans 1968, Simpson and Tyler 19¢
utilize a scale-dependent roughness parameter. Previous modigler et al. 1992). Each facet is assumed to be smooth at
have assumed the surface roughness to be stationary and Isaede of the wavelength and therefore to coherently (i.e., sf
lacked any explicit scale-dependent measures. We discuss aladlly) reflect incident power according to the Fresnel pow
justify this assumption below at some length. reflection equations for smooth surfaces. The near-nadir e
Our second major departure from earlier work is the assurip-the incoherent sum (sum of powers, not of electromagne
tion that the surface is rough at all scales. Previous wofields) of reflections from those facets oriented in such a w
(Beckmann and Spizzichino 1963, Hagfors 1964, etc.) assunadto specularly reflect back to the receiver. Interference effe
that the surface is smooth or gently undulating at the scalefodm adjacent facets are assumed to be negligible. In this mo
the wavelength. This allowed traditional ray or physical oghe angular scattering function is proportional to the probal
tics methods and equations to be utilized, including the welty distribution of surface slopes that are large and smooth w
known Fresnel reflection equations for smooth surfaces. Whitkespect to the wavelength. Muhlemann (1964) utilized a simi
the assumption of a smooth surface at the wavelength scalagproach, but modeled the facets as the combination of bo
mathematically convenient, it is probably not realistic for mosandom height and a horizontal scattering length variable. |
planetary surfaces. In order to make our assumption matimeean surface slope is defined as the ratio of the standard ¢
matically tractable, we treat the scattering process as oneatibns of these two variables. This latter model has been |
diffraction rather than reflection. This is essentially a physficularly successful in reproducing the scattering behavior
cal optics approach in which each point of the surface is modenus at large scattering angles4(°), although the best-fit
eled as an independent source of Huygens spherical wavelptsameters are strictly empirical (Tyleral. 1992).
i.e., isotropic electric-field wavelets. The trade-off is that this The second approach to modeling near-nadir scattering
methodology, while mathematically convenient, is only an afizes principles of physical optics. Here, the near-nadir echc
proximation since it does not allow for a rigorous treatment ehodeled as the sum of the incident and reflected electromagr
the electromagnetic field at the boundary. However, it does lefields from a gently undulating surface. Again, itis generally &
to new insights into the scattering process and explains manysained that the surface is smooth at the wavelenth scale sc
the problems discussed previously. Fresnel equations can be used to model the power reflectior
In the next section we review previous efforts to model radafficient. The surface topography is assumed to have a statiol
scattering in the near-nadir regime. Following that, we providerandom distribution of heights about some mean, commonl
review of and justification for self-affine topography models. W&aussian distribution. In addition, an assumption is made reg:
then derive the scattering model and follow with a discussion iofg the correlation between adjacent points; common forms
the following topics: the physical meaning of the inferred surfadhis “autocorrelation” function include the Gaussian and exf
roughness parameter, the variety in angular scattering “shapeghtial. Hagfors (1964) derived a model of this type, but assun
and the wavelength dependence of the near-nadir echo. In ghinear autocorrelation function near the origin. This latter
final section of this paper, we illustrate the inverse problem usisgmption and subsequent model have been strongly critici
near-nadir observations of Venus. Throughout, we will illustraten mathematical and physical grounds (Barrick 1970); howe\
concepts using both synthetic and real topographic profiles. the Hagfors model is still widely utilized because it appears
accurately fit observed near-nadir scattering behavior (Simp

and Tyler 1982, Tyleet al. 1992).
II. PREVIOUS MODELS

Microwave scattering models developed for near-natlie (
~20) planetary applications have generally taken two different
approaches, namely geometric and physical optics (cf. Barri&k
and Peake 1967, or Tylat al. 1992, for a historical review). "~
All of the models currently in use make a tangent plane assump-All of the radar scattering models discussed above assun
tion, i.e., a smooth surface at the scale of the wavelength, astdtionary surface, i.e., a surface with statistical properties t
are collectively referred to as “quasi-specular’” models. Unfoare invariant with respect to scale and position. Stationarity
tunately, this term has become synonymous with scatteringrmirost commonly invoked by the assumption that the RMS hei
the near-nadir direction, even though it implies a particular kiraf a surface is a constant, and throughout the remainder of

III. SELF-AFFINE TOPOGRAPHY

The Need for a New Surface Roughness Paradigm
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paper we shall use the term “stationary” to refer to this specific A
assumption. ) T T T T T ]
Recent work by Sayles and Thomas (1978), Mandelbrot 14 - Black Rock a'a flow 1
(1982), and many others has conclusively demonstrated that ]
contrary to the above assumptions, natural surfaces are not st¢
tionary and are more appropriately described by fractal (power-
law) statistics. Figure 1 illustrates how commonly measured
guantities such as RMS height, slope, and autocorrelation lengtt
vary with scale for a typical young basalt flow measured during
the Geologic Remote Sensing Field Experiment (Arvidstoal.
1991, Shepardt al. 1995). Both the autocorrelation length and
the RMS heightincrease as the profile sample length is increasec
while RMS slope decreases with increasing scale or step size (wi
shall discuss exactly how these curves were generated below) S —
Similar behavior is observed for many other geologic surfaces. L 12 1'4_ 1.6 1.8 2.0
If we desire to extract meaningful geological information Log (profile length) (cm)
from microwave observations, we must incorporate a more re- B. 1.0
alistic model for surface roughness/topography in our scattering '
models. We suggest that many of the difficulties experienced in
guantitatively interpreting near-nadir observations are due to un-
realistic surface models—models that neither explicitly account
for the scale-dependent roughness of the surface nor recogniz
its intrinsic power-law (fractal) behavior. We therefore adopt a
self-affine surface roughness model in this work and derive a
near-nadir scattering model based on that premise. Below, we
briefly outline the mathematical properties of self-affine surfaces
and further justify our adoption of this model.
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B. Description of Self-Affine Fractal Topography
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In fractal statistics, there are defined two basic types of scal- 05 00 05 10 15 20 25 3.0
ing behavior—self-similar and self-affine. Self-similar fractals Log(Ax) (cm)
were introduced by Mandelbrot (1967) in his classic study of the C
length of the British coastline. One of the major points of that ~* 1.0 NS R
study was that the coastline was statistically indistinguishable : _ Black Rock a'a flow
atany scale, i.e., without a labeled scale in the image, one coulc 08l ]
not tell whether one was looking at kilometer- or centimeter- _ Profile 1000 cm
scale versions of the coast. A self-affine fractal is one which
scales differently in orthogonal dimensions and therefore has ar
intrinsic scale dependence. In general, a self-affine surface (o
profile of that surface) does not roughen in the vertical direction
as quickly as the horizontal scale increases, and therein lies th I
major difference between self-similarity and self-affinity. 02 |-
As an example, consider an island uniformly covered by a
grass lawn. From a few hundred meters altitude, the surface ap I
. . H PRI S SR [ SN S TR S SRS AN S S RN SN TN SUNT S N S S S
pears extremely smooth and the |sland_ perimeter, or coastline 0-00 50 100 150 200 550
appears ragged. If we take the perspective of an ant on the coas Lag (cm)
line, however, the grass surface now appears incredibly rough
vertically, but the (horizontal) perimeter has the same raggedgiG. 1. () Log-log plot of relationship between RMS height and profile
appearance. In other words, zooming in does not change kigth for the Black Rock lava flow, Lunar Crater Volcanic Field, Nevada. Each
appearance of the island perimeter (self-similarity), but haspeint is the average RMS height for all possible profile samples of lemgth,
substantial effect on the surface topography or roughness (S@}_Log—log plot of relationship between RMS slope and step length for the

affinit ) Surface topography falls exclusively within the real Black Rock lava flow, Lunar Crater Volcanic Field, Nevada. As in (A), each
Y): pography y oint is the average RMS slope for all possible slopes measured at lamgth

of random Self'aﬁine_ _fraCtalsa and itis _this type of fractal megc) autocorrelation function for two different profile lengths, Black Rock lava
sure that we shall utilize throughout this paper. flow, Lunar Crater Volcanic Field, Nevada.
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For a surface, we defineandy to be the (orthogonal) hori- a function of the step interval between two points on any giv
zontal coordinates of a point, amdio be the vertical coordinate, profile.
or height, at that point. For a profile sample of lendth,we The RMS deviation is frequently measured as an intermedi
usex as the horizontal coordinate, and agaimas the verti- to the RMS slopes,
cal coordinate. There are several surface parameters commonly
measured by field workers (typically along profiles or transects), S(AX) = ”(AX). (1c)
and we now examine each of these and their behavior on a self- AX

affine surface. For each surface, we assume the mean he'g%}ﬂough » is a constant on a stationary surfasds not and

be constant, and for convenience will often assume it to be ze{ézhs off as 1/ Ax. For a self-affine surface, RMS slope also fal
Throughout this discussion, we will frequently refer to a surfaceﬁ with increasi.ng step size, but at a raté depend(fnt tbon

or a profile of that surface interchangeably; the concepts are the
same for each, but profiles are more commonly measured. x \H-1 Ax \H-1

The most commonly measured surface parameter (other than S(AX) = s(Axo)(—> = so<—) . (2c)
the mean) is the RMS height, or standard deviation, AXo AXo

212 INEQgs. (2)£(Lo) = &o, v(AXg) = vo, ands(AXp) = S are com-
£(L) =[{(z—= D)7~ (18)  monroughness parameters anchored ata specific reference
o ) ‘and H is a parameter that describes how these values cha
Here, the angle brackets indicate the expectation value, orweiglith scale, 0< H < 1. There are severafl parameters in the
ed average, over all possible valuegatithin a sample profile |iterature which have similar or analogous meanings and
of length,L. (Note We use the symbdf instead of the more fa- often confused with one another, among them the Hurst ex
miliar o and reserve for radar backscatter cross-section.) Fokent, Hausdorff measure, and Holden exponent (Falconer 1
a stationary surface, such as white noksis,independent of the Hastings and Sugihara 1993, Shepatdl. 1995, Mandelbrot
length of the profile over which it is measured. For a self-affinghq Wwallis 1995, Turcotte 1997). In order to maintain cons
_pr_ofile or surfaces is.a function of t.he sample length overwhicl”tency with previous work (Hastings and Sugihara 1993, Shep
itis measured (Hastings and Sugihara 1993, Shegiad1995, et al.1995, Campbell and Shepard 1996), we will refeHtas

H H To illustrate the role of the Hurst exponent, Fig. 2 shows thr
E(L) = £(Lo) L — L (2a) synthetic self-affine profiles, each of which have the same va
0 Lo 0 Lo/ of 5o (in this case the RMS slope at the smallest facet scale)

_ _ differ in their Hurst exponents. If one were to zoom in to ea
Lo is a standardized reference length dtds a constant, the of these profiles, they would be difficult to tell apart because

Hurst exponent, and is discussed at length below. As illustrateflighness at small scales is the same for each profile. Howe
in Fig. 1, RMS height increases with increasing sample length

on a fractal profile. For clarity, each point in that figure is the
average of the RMS heights measured over all possible profili 150.0
of length,L. For each possible profile, the mean heighiyhich I
is used to compute the RMS height [Eg. (1a)], is a local mear  100.0 |
i.e., the mean of each individual profile. i
A second parameter, less commonly measured, is the RV 50.0 [
deviation (alsoreferred to as structure function, variogram, Alla .
deviation),v,

Height

0.0 -

_ _ 2,11/2
v(Ax) = [((2(x) — 2(x + Ax)7)] 2. @) sh0f
In essence, this parameter is a measure of the difference in heiy i

between points separated by a distant®, For a stationary ~ ~100.0 |
surfacey is, again, a constant. For a self-affine surface i

4500 L e v b

Ax \M Ax \H 200 O 200 400 600 800 1000 1200
V(AX)=V(AX0)(H> :UO(A—) : (2b) Horizontal displacement
0 Xo

. . FIG. 2. Three self-affine profiles, each with the same RMS slope at t
analogous to the RMS height. The tenw is a reference step smallest scale (1 unit anaxis), but differing in their Hurst exponents. Althougk

size. Unlike the RMS height, the RMS deviation is independegich profile has the same small scale roughness, the large scale roughne
of the length of the profile over which it is measured—it is onlyreases with increasing .
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at larger scales, the profiles change dramatically. Note that #apirical evidence that that they do, however, is overwhelm:-
profile with the smallest value ¢ is relatively smooth at large ing. Figure 1 illustrates this behavior for a basalt flow; both the
scales; i.e., the RMS height does not increase rapidly with scaRMS height and the RMS slope obey the scaling relationships o
Conversely, the profile with the largest valuetdfis relatively Egs. (2) withH ~ 0.6. Mark and Aronson (1984) report values
rough at all scales because its RMS hedgpetsrapidly increase of H ranging from 0.1 to 0.96 for a variety of geologic provinces
with increasing horizontal scale. atscales ranging fromtens of meters to tens of kilometers. Brow
There are three “endmember” self-affine behaviors worth n@nd Scholz (1985) repoH values ranging from-0.4 to 1.0 for
ing: H=0.0, 0.5, and 1.0. In the caseldf= 0.0, Egs. (2) show rock surfaces measured at scales of micrometers to centimetel
that the RMS height and deviation are independent of the lengdur own work with numerous lava flows yieldétvalues from
of the profile from which they are measured, while the RM8.25to 0.75 at scales of centimeters to tens of meters (Campbe
slope decreases hyperbolically K} with scale. This case, then,and Shepard 1996). Farr (1992) fouHd~ 0.5 on a wide range
illustrates a form of stationary behavior, somewhat analogook geologic surfaces, also at scales of centimeters to tens ¢
to white noise [it is actually referred to as pink offlnoise meters. Recent work on the terrestrial planets has shown sim
in the engineering community (Schroeder 1991)]. The caselaf behavior. Haldemanet al. (1997, personal communication)
H = 0.5 is very commonly observed in nature and is often réeundH ~ 0.5 for the terrain around the Mars Pathfinder landing
ferred to as Brownian noise (Schroeder 1991, Turcotte 199%ite at scales of centimeters to tens of meters, while Helfenstei
On a Brownian profile, the RMS height and deviation scale asnd Shepard (1999) repdtt values of 0.5-0.7 for undisturbed
the square root of the horizontal scale. The casklef 1.0 is lunar regolith at scales of submillimeters to centimeters.
a form of self-similar behavior. Examination of Eq. (2¢) shows While the Hurst exponents of natural terrain tend to cluster
that the RMS slope is constant at all scales (thus the term “sedboutH = 0.5 (Brownian noise), the roughness of surfaces a
similar”) while the RMS height and deviation increase at thany standardized length scale spans an enormous range of valu
same rate as the horizontal axes. Basaltic lava flows measured in Hawaii display a range of RMS
Another interesting characteristic of these endmember cadesghts on 1-m profiles, from-8 cm for rough a’a flows to
relates to their “persistence” (Malamud and Turcotte 1998,1 cm for very smooth pahoehoe flows. RMS slopes at 1 m
Turcotte 1997). Surfaces or profiles with < 0.5 are said to scale for these same flows ranged from 0.23.%) to 0.04
be anti-persistent; i.e., if the general trend of the profile in t{e-2°). The smoothest site for which we have topographic date
past has been in one direction, there is a greater than averagine Lunar Lake playa, Nevada, with an RMS slope-df
chance that the profile will change direction in the immediate for less at the 1-m scale, while one of the roughest sites wi
ture. This gives rise to a very jagged appearance to these surfdwas investigated is the a’a flow in Fig. 1, also in the Lunar
at small scales; however, over the long term these trends te@rter Volcanic Field, which has an RMS slope-a25°® at the
to cancel and so the entire surface never deviates far from then scale (Arvidsoret al. 1991, Shepareét al. 1995). J. Plaut
mean (Fig. 2). Surfaces witH > 0.5 are said to be persistent;(1998, personal communication) has measured RMS slopes :
i.e., future trends will tend to be the same as past trends. At thigh as 40 at the 1-m scale on rhyolitic flows at Inyo Domes,
small scale, these surfaces appear to be fairly smooth, but o&atifornia. While this list of examples is far from exhaustive, it
the long term become quite rough and rolling in appearandees give a sense for the range of surface roughness values tt
(Fig. 2). Brownian surfacesH = 0.5) have no persistence—may reasonably be encountered.

future behavior is independent of past behavior (Fig. 2). In several instances, we have noted that a single Hurst expc
The Hurst exponent, is related to the commonly reportednent is insufficient to describe the scaling behavior of a surface
fractal dimensionD, by (Campbell and Shepard 1996). In these cases, we find that di
ferent Hurst exponents are valid at different ranges of scale, o

D=2-H (3) moregenerally, thatl has a piecewise functional dependence on

D=3-H. scale. This behavior is thought to be caused by different physice

i o i ) i processes operating at different scales; e.g., for lava flows, met
The first expression in Eq. (3) is applicable to a profile, and th@ ;e properties are controlled by magma characteristics and er

second is applicable to a surface (Hastings and Sugihara 1993:ement rates while centimeter scale properties are dominate
Sheparetal.1995, Turcotte 1997). In this paper, we will primary,y, \eathering rates and styles (cf. Campbell and Shepard 1996
lly utilize the Hurst exponent instead of the fractal dimensiofihe most realistic treatment of natural surfaces should includ
it minimizes the size of the derived equations and avoids th&s pehavior. While this is readily implemented in the model
confusion that sometimes arises when alternately discussing #a@ived below, we limit our discussion to cases in whititan

roughness of profiles and surfaces in terms of fractal dimensigR 55sumed constant over the range of scales which domina

the radar scattering process.
Finally, we note that a purely self-affine surface cannot exist
It is not well understood why natural surfaces obey the ré nature. A quick examination of Egs. (2) shows that the RMS
lationships (or derivatives of them) expressed by Egs. (2); thlope approaches infinity as the scale decreases to zero and t

C. Justification for Assumption of Self-Affine Behavior
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RMS height and deviation approach infinity as the length scatach point will have a scattered field which is partially dep
increases without bound. There obviously must be maximuarized by surface roughness and by internal scattering wit
and minimum scales beyond which a fractal model (with a sithe target material. The observed like-polarized (HH, VV, LI
gle Hurst exponent) breaks down. However, over the range@fRL) echo will thus be less than that predicted by the sim|
scales we are interested in, from one or more orders of magHidygens radiator case by some unknown amount. Howevel
tude smaller than a typical radar wavelength to an order of long as the polarization state of each point is a random funct
more magnitudes larger than a wavelength, most surfaces caobie surface height (e.g., discrete linear elements do not oc
realistically treated as self-affine and modeled with a constastlely at the tops of hills), then we may take the net effect

Hurst exponent. depolarization into the “effective reflectivity” of the surface.
(7) Multiple scattering between adjacent points is ignore
IV. MODEL DERIVATION This will be a reasonable assumption for most rocky surfac
where approximately 5-20% of the incident power is singly sc
A. Assumptions and Terminology tered. However, it will become an increasingly poor assumpti

The following assumptions are utilized in our model derivalcpr radar bright regions, such as the venusian highlands.

tion. Throughout the following discussion, we will treat the proce

(1) The surface can be described as an azimuthally isotro?fcscatte”ng from a surface of arbitrary shape to be equival

self-affine surface described by a single Hurst exporténgnd 0 the procte ss of (f:iltfrf]ractlon thrr?ugh 'arﬂ aperttrl: re O,[. rad'ﬁ:
vertical roughness parameter (RMS height, deviation, or slogtregm an antenna ot in€ same shape. 1he matnematics o

at a known horizontal scale. The height distribution at all scalBEocesses are virtually |dent!cal. The s_urface_area unde_:r cor
is Gaussian. eration is assumed to be azimuthally isotropic so that it can

eated as a circular aperture or antenna with radial symme

(2) The surface is rough at horizontal scales ranging froﬁl\ der th motions. terms lika in the previ tion
several orders of magnitude smaller to several orders of m%%j erinese assumptions, terms lixe € previous sectio

nitude larger than the wavelength, i.e., not necessarily gen n be replaced byr

undulating. (Note that this implies that the surface area dimer?,{;(;gr(;nvinqugeih\gecg?gg?!{ﬁ: thae ;2‘;“‘:;‘2%%”9%2 r;etshse
sions are much larger than the incident wavelength.) 4 s, £) s waveleng !

o . : . to be the “wavelength-scaled” or “scaled” roughness parame
3) The incident wave is of wavelengthand is planar, im- .
pI)fin)g a distant radar source. 9 P e.g.,scaled RMS slopgzs(x);scaled RMS heighg; =£());
(4) The receiver is in the far-field or Fraunhofer zone. and scaled RMS deviation, = v(3). From Eq. (1c) we can also

(5) Each point of the surface independently reradiates, ypite the scaled-RMS slope as
singly scatters, the incident energy as a spherical wave, or v0)  w
Huygens wavelet, with magnitude proportional to the bulk prop- S = T (4)
erties (i.e., dielectric constant) of the surface. All points are fur-
ther assumed to have identical electric-field amplitudes in th@&rmalizing in this fashion has no effect on our assumptio
chosen polarization state and a phase determined only by #t@ut the roughness of the surface; it is, however, a very cor
relative height of the surface. This representation will not lead igent natural scale length for our derivation. The physical int
arigorously correct analysis of the scattered electric field aboygetation of the scaled RMS slope will also be very importa
the surface, asitignores point-to-point coupling and preferentiater. In essence, it is the RMS slope that would be measure
polarization of the reflected wave due to local surface tilt or digrfield worker using a ruler of length
crete structures (cracks, edges, vesicles, etc.). In previous physrhroughout the following, we will often discuss the phe
ical optics models, this assumption was validated by stipulatir@menon of wave interference. To clarify our terminology, co
the surface to be gently undulating or well behaved inthe vicinigjider the interference of two fields of the same wavelength,
of the scattering point. Here, we make no such stipulation—regid amplitude E; and E, (we retain separate subscripts onl
surfaces do not behave in this fashion. Instead, we will argugdistinguish between the two waves). If the two fields are ¢
below that the use of a scale-dependent roughness paramgtgly in phase (e.g., they originate from the same source
allows us to plausibly invoke a smoothing behavior in the rergollow similar path lengths), they constructively interfere ar
diated field at smaller horizontal (and vertical) scales, similar their time-averaged combined field is
that first propounded by Hagfors (1964). It is also a necessary
approximation to make the solution mathematically tractable. Etota = E1 + E2 > O; (5a)
(6) Because our derivation utilizes Huygens wavelets, we im-
plicitly assume the electromagnetic field to be scalar and ignare., the sum of the fields is always greater than 0. The po
depolarization effects; i.e., if the incident field is horizontallfrom the combined fields is
polarized, we assume the reradiated field is also horizontally
polarized. Again, this is a convenient approximation. In reality, P = (E1+ Ep)? = E? 4+ EZ + 2E,E, (5b)
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and the cross-term B, E,) represents the increase in field striransform, andA is a function describing the shape and trans-
ength due to mutual constructive interference. If, however, thgission (or scattering) properties of the aperture (aperture func
phases between the two fields are randomized (e.qg., they ort@n). The cosine term in parentheses is called the obliquity fac
nate from independent and uncorrelated sources), then the time and for near-nadir observatiorts<€ 20°), it can be ignored
averaged field is with insignificant error. In essence, Eg. (6) represents a com
plex Huygens wavelet (first two terms) modified by the Fourier—
Etota = 0 (5¢) Bessel transform of the aperture or antenna shape. The quanti
measured by a receiver is the radiated “power density” (%)/m
because the randomized phases tend to cancel one another. Hjwen by
ever, the power from the combined fields is not zero but given
by P=—|EEY, )
2n
P = (E1+ Ez)? = E? + E3. (5d) _ _
wheren is the impedance of free space (Uladtyal. 1981).
Only the cross-term @1E) is zero. We will loosely use the [N the following sectit_)ns, we develo.p the near-nadir cqherem
term “coherent” to refer to echoes composed of constructivé’l’fi‘cks‘?atter cross-section of asel_f—afflne fractal surface in step
interfering fields (in any significant measure) and the term “if2€ginning with a smooth conducting surface. We will hereafter

coherent” to refer to echoes composed of randomly interferiﬁ‘?fer to the process as one of scattering, i.e., absorption of
fields. plane wave by individual points and reemission as a wavelet, an

note modifications to the above mathematical treatment wher
B. The Huygens Wavelet Methodology required to maintain consistency with the scattering geometry.

The use of Huygens wavelets to solve problems in diffractiqft Scattering from a Smooth, Conducting Surface
and antennatheory is well established and is the underlying basis

of Fresnel—Kirchhoff integral solutions (cf. Ulalet al. 1981, ~ Foracircular surface (or plate), Eq. (6) is written
Goodman 1968, Gaskill 1978). Conceptually, we may view a :
propagating electromagnetic wave as a source which, at each Ecic = é exp[= jkZ] EoHo(circ(ro)), (8a)

point in space, generates a new spherical wave. The interfer-

ence of these new wavelets gives rise to a new wave front, ‘Wﬂich is equivalent to

this continues ad infinitum. In diffraction problems, an incident

wave is blocked by an obstruction and only generates spherical j _ ,2J1(Kro Sinfe)
wavelets within the confines of an aperture or opening within Beic = -~ exp[—jkZ] B0 sng.
that obstruction. The associated diffraction pattern opposite the 0 ¢
aperture is the result of the interference between the wavelgisere circ is the “circular” function (cire: 1 for r <ry and

arising from the continuous, but finite, aperture area. Similarlyirc=0 forr > r), 6e is the emission or scattering angle (mea-
in antenna theory, each point on the antenna is viewed assifed from nadir, always positive), addindicates a first-order
independent source of spherical wavelets, and their mutual n=Bessel function. The associated power density of Eq. (8b) i
terference gives rise to the antenna beam pattern. called the Airy pattern (Gaskill 1978, Ulalet al. 1981).
Mathematically, the solution of diffraction or antenna prob- Equations (8) are based on the assumption that a plane wa
lems of this type involves integrating the amplitude and phaseigfhormally incident upon the surface. For an obliquely incident
all wavelets to determine the angular amplitude function of thgave, we must account for the phase change that occurs as
resultant electromagnetic field. Under the conditions assum@shinges upon the surface. It can be shown that the solution to

in this paper, most critically the far-field approximation, it camore general bistatic case (source and receiver in the princip:
be shown that the resultant electromagnetic field is proportionahne) is

to the Fourier transform (or, where circular symmetry is invoked
asitis here, the equivalent Fourier—Bessel or Hankel transform) _
of the aperture or antenna shape (Goodman 1968). Specifically, " —

., (8b)

I - > 241 (kro(sinfe — sing;))
Az exp-jkz] Borg kro(Sinde — sing;)

)

— J explei
E= 7 expf- ij](

1+ cosh
2

whereg; is the incidence angle (from nadir, positive when op-
posite the scattering angle, i.e., forward scattering direction
negative when on the same side as the scattering angle, i.e
where j is the root of—1, Z is the distance of the observa-backscattering direction). Equation (9) reduces to Eq. (8b) for
tion plane from the aperture or antenkas the wavenumber normal illumination ¢; =0). The effect of the modification to

(2 /1), 6 is the scattering anglekg is the amplitude of the Eq. (9) is to make a specular “lobe” in the forward scattering
incident field, Hg is a Fourier—Bessel or zeroth-order Hankdllirection when illuminated off-nadir and to reduce the scatterec

)EOHO(A), (6)
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field (and power) more rapidly than Egs. (8) in the backscatt€bb). For large, there is no constructive interference (only rai
ing direction. Note that the angular width of the scattered loltwmized phase relations), and the scattered field and powel
is a function of the surface size: a small surface has a veryincoherent and analogous to that given by Egs. (5¢) and (5d
wide, low amplitude lobe, while a large surface has a very nar-Barrick and Peake (1967) restrict the use and applicatior
row, high amplitude lobe. In the limit of an infinite half-plane Eq. (12) for surfaces that are “slightly rough,” in the same ser
the lobe becomes a delta function with no angular width, i.ehat we discussed in the previous paragraph. However, whe
purely specular. One may envision this latter case as an iffieking in their and subsequent analyses ishtbezontal scale
nite number of spherical wavelets constructively interfering @t which the surface roughness is measured or defined. We
produce a reflected plane wave. argue that the relevant horizontal scale is the wavelength of
incident energy. As noted earlier, a fractal surface can be r
D. Scattering from a Smooth, Circular Dielectric Surface  tively smooth at the wavelength scale (e.g., 12 cm for S-ba

In the case of scattering from a smoatlelectric plate of and become incredibly rough at larger scales, or not, depenc

radiusrg, the electric field in the principal plane far-zone idipon the Hurst exponent. This allows us to examine a continu
given by of surface roughnesstypes, from very smooth to very rough, v

the same model. We will also make an assumption, first invok
] . 2201 (Kro(sinfe — sing;)) by Hagfors (1964) and later by Barrick and Peake (1967), t

Ediel.circ = IVa exp[-JkZ]REorrg kro(sinde —sing) ~  small-scale roughness (below the Rayleigh criterion) does
(10) significantly affect the angular scattering function of the coh
ent echo. In his discussion of this assumption, Hagfors (19

where R, which we call the “effective reflectance amplitude,treated the incident wave as a type of smoothing filter. Althou
is a function giving the fraction of power reflected from thehis assumption precludes rigorous treatment of the scatte
surface, 0< R< 1. For a perfectly smooth dielectric surfacefield (i.e., it disregards the common physical optics assumpt
the functionR is given by the Fresnel reflection coefficient an@f a well-behaved or gently undulating surface), it is not witho
is a function of the incident and emission angle as well as teB@me empirical basis. Opticians frequently polish optical s
dielectric constant. For the case of normal incidence, faces to a geometric figure, accurate to within a fraction o
wavelength of incident light. The exact nature of the deviatio
S (11) atthis scale is unimportant to the final optical performance.
ez +1 Barrick and Peake (1967) state that, for surfaces obey

whereg is the dielectric constant, and we have assumed a m&g!: (12), our model parameter (EQ. 1R)= Reresnei For reasons
netic permeability~1 (Ulaby et al. 1981). We assume that'© be discussed below, we believe thatthe Fresnel reflection ¢

Reresnel FeMains approximately constant and equal to Eq. (ﬂ?ient is_an upper bognd_forthe effective reflectance e_amp_litw
for near-nadir scattering. and thatin generaR will differ from RegesnePy a depolarization

factor that is a function of wavelength and dielectric consta
E. Scattering from a Roughened (Stationary) Dielectric Surfad¥hile this additional factor will modify the magnitude of ou

) ) . model solutions, it will not affect their shape or width.
For the problem of near-nadir reflection from a stationary

randomly rough surface (of any given shape), the aperture fut-Scattering from a Roughened Self-Affine Dielectric Surfa
tion is modified by a random phase retardation. The solution dth bl f ina f
is essentially the same as those discussed above, except th e now extend the problem to one of scattering from a s

the amplitude of the scattered electric field is modified by tﬁ@ce which is roughened and self-affine, i.e., nonstationary,

Fourier transform of the phase density function (or Charact&gcountforthefunctional dependence of RMS height and dex

istic function in statistics literature). Forsaationarydielectric tion with scale in the following manner. For any and every poi

surface whose roughness (or phase retardation function) is gi\9(5f-hthe surface, we may define a series of concentric thin an

by a Gaussian distribution of heights with RMS heighg pfhe of increasing radiir 5. For convenience, we will discuss only on
coherent scattered field is given by such arbitrary point and associated annuli. As we move outw

from the center point, Egs. (2) indicate that the RMS deviatic
Eroughdiel = €Xp[—2k?62 co 0] Esmoothdiel- (12) v(ra), relative to the center will increase. By definition, all of th
points in any given annulus are Gaussian distributed with RI
The characteristic function in Eq. (12) (exponential term) igeighté proportional tov at that radius,
closely related to the well-known Rayleigh roughness crite-
rion and is discussed by Beckmann and Spizzichino (1963) and 1 ra\"
Barrick and Peake (1967). Note that the coherent scattered elec- §(ra) = ﬁv’\ <X> ’ (13)
tric field will only be significant for values @f which are small
relative toa, and therefore Eq. (12) only represents the comand we have chosen (for convenience) our reference lengt
structive interference cross-terms illustrated by Eqgs. (5a) abe one wavelength. The factor of2 is a required constant of

et2_1

RFresnel =
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proportionality that can be theoretically derived (cf. Shepard On a self-affine surface, the RMS height in Eq. (15) is also
et al. 1995 and references therein). Equation (13) allows us adfunction of scale, and we may calculate the coherent angule
think of a nonstationary surface in a new way—as an infinigeattering function from any point on a surface given its Hurst
number of points, each with an associated collection of concengonent (or fractal dimension from Eq. 3), scaled RMS devi-
tric annuli which individually have a constant RMS height (i.eation and/or slope, and scattering angle by combining Egs. (4)
are stationary), but collectively represent a surface with an RM83), and (15):
height that increases with distance from each point. N

From Egs. (6) and (12), the coherent scattered field from anyE = J_ exp-jkZ]2rRE,
roughened (stationary) annulus of radig&(r — ry)) is

x | exp[—4n2s2H cod 0]f Jo(4nf sing)df. (17)

%\g

Eroughannu|us= ﬁ eXp[— J kZ] eXp[—ZkZSZ C0§ 9]
.
x REH[5(r = ra)l, (142) | the event that a surface is better represented by two or mor

. . , Hlurst exponents at different ranges in scale, the constaint
whereé is the RMS height of the given annulus. For the genergl 4. (17) should be replaced by(P).

case of bistatic scattering in the principal plane, Eg. (14a) ca Equation (17) represents the enhancement in scattering, re

be written ative to an isotropic Huygens wavelet, that takes place from

i _ - every point on the surface due to constructive interference by it

Eroughannulus = %2 exp[— jk Z] exp[—2k*£? cos’ O] nearest neighbors. On a nonstationary surface, constructive ir

: . terference (coherence) is only significant between wavelets thz

x REokrado(kra(Sinfe — sinéi)) dra,  (14b) originate from points close together. Points separated by a gre:

distance are statistically independent, because the RMS height

scale-dependent, and randomly interfere. This differs in a subtl
but significant way from the more traditional view that points

or for the specific case of backscattering,

Eroughannulus = ﬁ exp[— jk Z] exp[—2k?£2 cog 6] separated by a distance greater than the autocorrelation leng
' will randomly interfere. Recall that models invoking this mecha-
x REgkraJo(2krasing;) dra, (14¢)  nism assume stationary surface behavior and thus every annul

on such surfaces will have the same RMS height. As we will
whereJ, is a zeroth-orded—Bessel function. From this pointon,ejycidate in more detail below, the model proposed here leadst
we shall Only consider baCkscattering solutions since that is QHe Concept of a coherent patch or “effective aperture” for eact
principal interest and drop the subscripté@for succinctness. point on the surface. Because the region surrounding variou
Babinet's Principle states that the diffracted E-field of an arbiints on the surface is statistically identical, the backscatte
trary aperture can be found by summing the diffracted E-fieldgoss-section of the entire surface is enhanced, relative to a
of many smaller apertures that, all together, are equivalentigptropically scattering surface, by the same factor as its indi
area and shape to the larger aperture (Klein 1970). Therefajgjual scattering elements are to a Huygens wavelet.
to find the coherent E-field scattered from the entire illuminated Equation (17) canbe evaluatedin aclosed formforthree case!
roughened area about any given point, we sum the E-fields frgq_ 0.0(D =3.0), i.e., a stationary surfacet = 0.5(D = 2.5),

all the annuli around any single point on the surface: i.e., a Brownian surface; drH = 1.0 © = 2.0), a self-similar
. surface. In the first case, the exponential function becomes ir
E — % exp[—jkZ]2r RE dependent of and comes out of the integral. The remaining

integral is easily evaluated and gives an Airy pattern solution

oo identical to Egs. (10) as modified for roughness by Eq. (12).

X / exp[—8r2(&/1)? cog 6]F Jo(4nf sing) df. (15) As previously noted, integrating over a surface of infinite extent
results in a delta function of infinite magnitude and zero width.

If such a surface is uniformly illuminated over an infinite area,
Note in Eg. (15) that we have explicitly written out the wavenunthe constructively interfering component of the scattered field
ber,k, inside the integral and introduced a new variable of intavill equal zero for any nonzero backscattering angle (althougt

f=0

gration given by the randomly interfering, or incoherent, component of the field
fa will remain nonzero).
F= " (16) For the case of a Brownian surfad¢ = 0.5, Eq. (17) is eval-

uated to give
which, again, normalizes all measurements to wavelength units.

i 2
Further, we have assumed the illuminated area to be infinite in g _ 1* expl=jkZ]RE, s; cos'0
extent { — 00). z 8(n2s} cost 0 + sir’ o

)3 5 (18a)
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and a power density of 200.0 y r . . 7
22 4 codto i ~2\ ]
P =" pE} > ;. (18b) 1500 |-H = 0.8 = ]
2nZ 64(72s} cos' 6 + sir’ ) [ ]
wherep = R? and is equivalent to the Fresnel power reflectio 5 1900 F'H = 0.5 ~3\ ]
coefficient in the limit as the surface becomes perfectly smoo = I SN TN e T ]
For the case of a self-similar surfad¢ = 1.0, Eq. (17) leads % 500 L ]
to T i 18, ]
H=0.2 -
ir . —tarf e 00 L TV ]
E = — exp[-jkZ]R ex 19a |
ek IkZIRE { z | s
-50.0 I PSR Lo b v e b e ]
and 1700 1750 1800 1850 1900 1950 2000 2050
A2 1 —2tarf g x (cm)
P= E2 ex . (19b
2022”1672 cod ¢ p[ 2 } (190)

FIG.3. Three profiles of surfaces with = 0.8 (top), 0.5 (middle), and 0.2
. (bottom). The scaled RMS slopes of each profile are identical and equal to
G. The Effective Aperture (11°) atthe 12-cm scale (S-band). The wavelength is shown for scale in the u

. . corner. The lines above each profile represent the size of the effective ape
For surfaces with Hurst exponents otherthanzero, i.e., nonéc?ahose particular profiles. The roughest surface at meter sddles(8) has

tionary, the_SO|Ut|0n_ to Eq_- (17) is finite in amplitude and widthy,e smallest effective aperture24 cm or two wavelengths) and would display
even when integrating to infinite surface scales, because the sufraweak coherent near-nadir echo. The smoothest of the three at meter s

face roughness at some annular radius eventually increases (td-a0.2) has a large effective aperture {8 wavelengths) and would display

value where there is no further significant constructive interfetsignificant near-nadir coherent echo.

ence [see Egs. (12) and (13)]. The area around each point on the

surface covered by all the annuli up to and including this radigsirface illuminated by an L-band (24 cm) wave, the scaled R

we call the effective aperture since it defines the approximat®pe differs significantly from that at S-band scales. For t

limits of the region contributing to the coherent near-nadir echeame surfaces as abowé £ 0.2, 0.5, and 0.8), the values fey

We define this radius to be the distance at which the annuéae 0.11 (6), 0.14 (8), and 0.17 (10), respectively (see Eq. 2c).

constructive interference becomes less thah wheren is a Noteineach casethatthe scaled RMS slopeislessatL-band

constant. Combining and rewriting Egs. (12) and (13) yields at S-band. The effective apertures at L-band for these three ¢
are~296A (71 m), 6.5: (1.6 m), and 2.5. (0.6 m), respectively.

1
feff = [#] - , (20) H. Backscatter Cross-Section of a Self-Affine Dielectric Surf
47252 co2 0

The backscatter cross-section of a surface is defined as
wherefer is in units of wavelength. We prefer to set=5, ratio of power density scattered from that surface to the pov
the point at which the constructive addition has dropped @ensity scattered from a perfect isotropic scatterer of the sg
~1%. This corresponds to the annular radius at which the RM®ea, at the same distance, and under the same illumination
height becomes approximately one-quarter wavelength—abuigwing conditions (Elachi 1987, Ulalst al. 1981). The power

the Rayleigh criterion. density of such a scatterer is

To illustrate Eq. (20), consider a surface with scaled RMS _—
slope,s, = 0.2 (~11°) (Fig. 3). This value is typical of smooth Peo = )‘—EO. (21)
pahoehoe lava flows measured at S-band (12 cm) scales (cf., (2n)4r 22

Campbell and Shepard 1996). For this surface with Hurst

ponents of 0.2, 0.5, and 0.8, the effective apertures-dr@x

(2.1 m),~3 A (0.36 m), and~2 A (0.24 m), respectively (note

that only theH = 0.2 surface resembles a pahoehoe). It is appar- oS} cost o

ent that the Hurst exponent plays a major role in determining the oo(H = 0.5) = " . 3
. : - . 16(n%s; cost 6 + sir? )

size of the effective aperture, which in turn affects the magnitude

and width of the resulting scattered field. and

It should also be noted that the effective aperture is wave-
length-dependent because the surface roughness paraspeter, oo(H = 1.0) = p exp[— 2tarf 9] 23)
is measured at the wavelength scale. If we consider the above 4z s} cost o s |

%or the closed forms above [Egs. (18) and (19)], we can theref
write the backscatter cross-sectiog, as

(22)
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For the general case, we can write the backscatter cross-secsioccessfully fit observed data were retained; those that did nc

as were discarded. Therefore, similarities between this and previ
ous models are probably coincidences of functional form tha
oo(H) = 1673p have been selectively winnowed by comparisons with observe:
data.
2

oo
X f exp[—4n?sZ " cos 0] Jo(4nf sind) df | . (24) V. DISCUSSION
F=0
S _ Having derived the near-nadir scattering behavior of a self-
. Similarities to Current/Previous Models affine surface in the previous section, we now wish to briefly
ed_iscuss the model and its properties in a larger context and ac

Both Egs. (22) and (23) exhibit interesting similarities to pr
as. (22) (23) 9 P ress the questions posed in the Introduction.

vious work. Equation (23) is a Gaussian function, similar tg
f[hgeeg;]igfgvii :)f);;a%\flﬁ[]s ggg:gifisneehzli; tHggt?irbSu?ig?\ Ea\L/ r?slnterpretation of RMS Slope Inferred from Radar Backscatter
Gaussian autocorrelation function, and to the Gaussian disThe model derived above and given by Egs. (22)—(24) indi-
tributed facet model utilized by Simpson and Tyler (1982). Equaates that the near-nadir angular scattering function is strong|
tion (22) displays interesting similarities to the commonly usesbntrolled by constructively interfering wavelets from an area
Hagfors (1964) solution for a surface with Gaussian height distof the surface approximated by the effective aperture. Typica
bution and exponential autocorrelation function, approximateddii for this area range from a few to hundreds of wavelengths

as a linear function near the origin Interestingly, one of the two major surface roughness parametel
that determines the effective aperture is the wavelength-scale
00(0) = %(cos“ 0 + Csirt0)~%2, (25) surface RMS slopes, (or other appropriately scaled roughness

parameter). In previous work, we demonstrated that the off:
nadir diffuse return could also be directly correlated with the
wavelength-scaled surface roughness (Campbell and Shepa
£2 1996). Taken together, these works suggest that the surface sc
C Y2 =4r 0 (26) tering processis completely controlled by the wavelength-scale
surface roughness and its scaling behavior.
andl is the autocorrelation length of the surface. In our solution, One intriguing result of this model is that it predicts a sig-
ns? appears to be analogous@o /2 (although we do not care nificant quasi-specular ectomly for surfaces that are relatively
to attach a physical interpretation to this grouping of parametesshooth at the wavelength scale and does so without assumir
and our denominator is cubed where Hagfors’ is raised/® 3a well-behaved or gently undulating surface. A surface with a
power. Equation (22) also displays interesting similarities to ttsealed RMS slope of 2@ill have a scaled RMS height of about
Muhleman (1964) geometric optics model, specifically the cubome-quarter wavelength and an effective aperture on the orde
denominator of sine and cosine terms. And, as we will see belafone wavelength. At this roughness and higher, the model pre
numerical solutions to Eq. (24) using intermediate form#lof dicts essentially no coherent echo. Therefore, surfaces whic
(especiallyH < 0.5) are very close in shape to the commonlgxhibit significant near-nadir echoes are predicted either to b
used exponentially distributed facet model (Simpson and Tylerlatively smooth at the wavelength scale or to contain areas the
1982). The similarity of our model solutions to these equatiorse relatively smooth.
is not singular. In the next section, we demonstrate that ourAnother intriguing component of this model is the physical
model comprises tamily of functions that smoothly transition link between the radar-derived wavelength-scaled roughness ar
between Gaussian, Hagfors-like, and exponential-like scatterihg surface topography. In essence, the radar wave appears to
behaviors. acting as a “ruler” with which we measure surface roughness—
With these similarities noted, however, we do not wish tthe same roughness one measures in a topographic survey. C
leave the reader with the impression that the above models seevations at a single wavelength give us a snapshot of the su
endmembers, in any sense, to the model derived here. Whdee statistical properties at scales from below the wavelengt
specific examples of similar form can be found, there are np to (approximately) the effective aperture. Using observation:s
simple relationships between the roughness parameters usemiaule of the same area at different wavelengths, it may be po:
our model and those above. The basic physics of scatteringilsle to construct a statistical picture of the surface morphology
the same; however, the fractal surface model utilized herewich can be directly compared with the same scale-dependel
based on observed surface behavior and is fundamentally difatistics measured on terrestrial analogs.
ferent than any previously used. One possible explanation forBased on this and previous work, we suggest that the sca
the observed similarities is that the models discussed abdgeng process may be visualized in the following way. The
have all survived a type of selection process; those models thatr-nadir echo is dominated by constructive interference

where the roughness parameter,*/?, is defined as
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(coherent or quasi-specular echoes) because the paths travel@de magnitude of the angular scattering behavior is a ful
by waves on any given wavefront (or equivalently the phasen of the wavelength-scaled RMS slope and effective ap
changes in those waves) are modified primarily by variatiotisre, the latter of which is controlled by the combination
in surface height. In the event that the surface is rough at tHerrst exponent and scaled RMS roughness parameters thre
wavelength scales( > A/4), no significant coherent echo will Eq. (20). This can be easily understood if one views the a
occur. As the incidence angle increases, the paths traveleddef§ined by the effective aperture as analogous to a hole thro
waves on any given wavefront vary systematically with thewhich a virtual source is being diffracted or as the diameter c
lateral locationin addition to the random variations in sur- transmitting antenna. The larger the aperture and the smallel
face height. The returned echoes will be increasingly dominatedvelength-scaled roughness, the narrower the scattered
by random interference between wavelets separated in phasd the greater its magnitude (the magnitude will increase
(incoherent or “diffuse” echoes) as the incidence angle is iproximately ag2;.) The largest effective apertures occur wit
creased. Although many aspects of the scattering process,sarfaces that have low valuesléf(high fractal dimensions) and
cluding polarization states, must be worked out to quantify thisw scaled RMS slopes (see Fig. 3). The smallest effective aj
kind of model, we believe it is a simpler and more satisfyiniires occur with surfaces that have high valuetofFig. 3).
view than the more traditional one of two separate scatterifi@pis can be understood by recalling that fractal surfaces w
regimes. low values ofH will roughen at a slower rate than those wit
high H. Therefore, for a given value sf (or vy), a greater dis-
tance to the outer annulus is required of a ldvwsurface before
the constructive interference decreases below 1%.

The analytical solutions given by Egs. (22) and (23) and nu-t is interesting to compare the above shape and roughr
merical solutions to Eq. (24) suggest that the shape of the angulderpretations with historical accounts of the best-fit scatter
backscattering function is controlled primarily by the Hurst eunctions to various planetary surfaces. Tyéeal. (1992) note
ponent or fractal dimension and secondarily by the wavelengthat, on Venus, the best-fit angular scattering function for 1
scaled roughness. Figure 4A shows the range in angular scagjority of the planetary surface is exponential in form. The
tering behaviors observed for surfaces with the same valuefafther note that near-nadir echoes best fit by a Hagfors ma
s, but varyingH. Note the change in shape from Gaussian-likend to correlate with the smoothest areas, while echoes |
(concave down) for surfaces with large valuestbfto forms fit by a Gaussian model tend to correlate with the roughest
similar in shape to the Hagfors (concave up) and exponenté&ds. Similar trends and correlations were observed for the Mq
(linear) functions at lower values dfi. Figure 4B shows the by Simpson and Tyler (1982) with the exception that the mq
ability of our model to mimic the Hagfors (1964) angular scatommon best-fit angular scattering function was the Hagf
tering function. Our model never looks exactly like an exponemodel. Based on the previous discussion, we expect the rot
tial function at the origin, i.e., a sharp, discontinuous derivativest surfaces at wavelength and higher scales to have the hic
but instead always rolls over near the origin like the Hagfors ahturst exponents (see Fig. 2) and Gaussian-like angular sca
Gaussian functions. The tail, however, can take shapes simifgg functions. The smoothest surfaces at wavelength and hig
to the Gaussian, exponential, and Hagfors functions. scales will have the lowest Hurst exponents and have Hag

B. Interpreting the Shape and Width of the Near-Nadir Echo
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FIG. 4. (A) Normalized near-nadir angular scattering behavior for self-affine surfaces. Each surface has the same RMS slope measured at the s
wavelength (10), but different Hurst exponents. Note the transition from convex down, Gaussian-like behavior to behaviors reminiscent of exponential anc
behavior. (B) lllustration of our model’s ability to mimic a typical Hagfors modek 200).
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to exponential-like angular scattering functions. It is also rea- Fractal Brownian Profiles
sonable to expect the most common angular scattering shapeto M- 800 ————————————
be Hagfors or exponential because very rough surfaces will not [ s,=05 ]
have coherent near-nadir echoes. 60.0 & ]
40.0 -

C. The Wavelength Dependence of Radar Backscatter 5

The final problem we address is the question of how the in- é 200
ferred RMS slope varies with the wavelength of the incident > 0.0
radar. Figure 5 shows several views of two synthetic profiles Tl
which have the same Hurst exponeht £ 0.5) but which dif- 20,0 |
fer in roughness by a factor of 2. Both profiles are sampled at [
the 1-cm scale. The raw data in Fig. 5A illustrate a common 400 :
method of display for this type of data in which the vertical 0 500 1000 1500 2000
(or y) axis is exaggerated. We have added horizontal lines at x (cm)

the maximum and minimum for each profile to emphasize the  B.
roughness differences between them. The profile on the top is 0.0 b b
obviously smoother than the profile on the bottom. T s =05 ]
The second and third profiles down (Figs. 5B and 5C, respec- [ ]
tively) are portions of the same profiles, plotted with no vertical 10.0 1 ]
exaggeration; the second shows a 50-cm portion of the smoother ?
profile, and the third shows a 200-cm portion of the rougher pro- 0.0 W
file. If we use their aspect ratios (maxmin/profile length) as [
a measure of roughness, the two profiles (FB&% C) look -10.0
remarkably similar and, in fact, are statistically the same. If we
now take the position that the incident wave is acting as a kind of
ruler and is sensitive to roughness as characterized by the RMS L
height/wavelength ratio, it becomes apparent that an incident 500 510 520 530 540 550
50-cm wave would view the smoother site (Fig. 5B) in the same x (cm)
way that an incident 200-cm wave would view the rougher site C

y (cm)

-20.0 -

* 1000 ———————————— :

(Fig. 5C), and their respective near-nadir echoes would be the
same. Note, however, that while the rougher site is only twice
as rough as the smoother site, the wavelengths involved in this S, =1.0
example differ by a factor of 4. 50.0 |-
To state this relationship in a different way, when both a 50-
and a 200-cm wave are scattered from Haenesurface, the E 00l
50-cm wave perceives the surface to be > I
200\ " A -50.0
(%) -
timesrougherthan the 200-cm wave. For a Brownian surface 100'0500 550 600 650 200

(H =0.5), it looks twice as rough; for a stationary surface
(H =0), it appears four times as rough; and for a self-similar
surface (—| = 1), it looks identical to both waves. FIG. 5. (A) Brownian profiles H = 0.5) with a factor of 2 difference in

The scale-dependent scattering behavior described a_bovgl\{@slopeatsmallestscale(1 unitoaxis). The horizontal lines demarcate the

fth If-affi t f h file. B ran‘%e of extreme values and illustrate that the lower profile is twice as rough a
a consequence ot the seli-afline nature of each protie. ecaH‘?—: pper profile. Vertical exaggeration is the same for both profiles. (B) 50-cm

the near-nadir echo is a function of the roughness at the waygssection of the smoother profile, rescaled with no vertical exaggeration. Hori
length scale, i.e., by the roughness as perceived by the incideimtal bars again demarcate the range of extreme values. (C) 200-cm subsecti
wave, we expect the RMS roughness inferred from backscate&ihe rougher profile, rescaled with no vertical exaggeration. Note that the pro
observations to scale as the surface roughness, i.e., in a Sf'@hs_in (B) and (C) are statistically similar and have similar aspect ratios (or

ffi Thi diction i istent with ob ti ropighness) in their respective scales. This is a consequence of self-affinity ar
aiine manner. IS prediction s consistent with observa IOI’]SiR strates that a 200-cm wave would view the rough surface in the same way the

th? wavelength-dependence of scattering from the lunar surfag®.cm wave would view the smoother surface, i.e., they would have identica
(Simpson and Tyler 1982). angular scattering functions.

X (cm)
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angle available is latitude-dependent and ranges frofred the
poles to 10 for equatorial sites. Each “pixel” is approximatel
16 km in diameter. Error bars are one standard deviation
we note that, by far, the largest uncertainties are associated
the first two points (0.25 and 0.75 a result of fewer average
“looks,” off-nadir antenna pointing, and ranging uncertaintie
Further information on the development of this data set can
found in Tyleret al. (1992).

Two areas were chosen to illustrate observed scattering
havior on Venus. One of the most interesting sites obser
on the planet falls in an area between Kuanja and Juno Cl
mata (20S, 107E). Tyleret al. (1992) noted this area to be th
smoothest they observed with implied Hagfors RMS slopes
0.5-0.7. Our best-fit model to the data indicates a surface
very low H (0.20), with wavelength-scaled slopeso12° and
effective reflectance 6f0.12 (Fig. 6). Although the wavelength:-

scaled RMS slope appears high, it must be remembered that
FIG. 6. Best-fit model curve to Magellan SCVDR data (2G0Lat., IS the slope of the surface measured at 12 cm, and it is L
107.0 Long.). The area was identified by Tyletral. (1992) as extremely smooth mately the value oH that controls the meter scale rough C
based on a Hagfors model it to the data. The Hurst exponent is very similaid g oth appearance of a surface. For comparison, these pa
those measured from extremely smooth pahoehoe flows and playas on Eartgters are very similar to those measured from some areas o
Lunar Lake Playa, Nevada (discussed earlier), and extren
smooth Hawaiian pahoehoe flows (Fig. 7) (Arvidetal. 1991,
Campbell and Shepard 1996). In our preliminary search of
We now illustrate the model using scattering data derived lokata, we find lowH values &0.5) to be very common in the
Tyler et al. (1992) from the Magellan altimeter experiment anglains, consistent with surfaces smooth at meter and hig
published on the Magellan Surface Characteristics Vector Datzales.
Record (SCVDR) (Tyleet al.1994). This data set represents the Our second example is from an area in Vellamo Plani
best estimate of the raw angular scattering behavior of the vei(86.5N, 170E) and is typical of the average behavior observ
sian surface. The data have a®Oahgular resolution with the throughout the venusian plains (Fig. 8). Although this surface
firstdata pointat 0.25ncidence angle. The maximum incidenceslightly smoother at the wavelength scale(1 the higher value

VI. ILLUSTRATION/APPLICATION

<f (>,
S L TANT
- =Ny l“.

FIG. 7. Very smooth pahoehoe site with surface parametdrs;0.2, 512 cm=0.12 (7). Although this site is smoother at the wavelength scale than t
inferred from the data fit in Fig. 5, the Hurst exponent is the same and ultimately controls the large scale topographic roughness.
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