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Planetary surfaces are better described by nonstationary frac-
tal statistics than those more commonly assumed in current radar
scattering models. Therefore, we have developed a radar scatter-
ing model applicable to self-affine fractal surfaces when observed
near-nadir. The model predicts a family of angular scattering func-
tions that smoothly transition between forms similar to the com-
monly utilized Hagfors, Gaussian, and exponential surface models.
The model predicts that the near-nadir scattering behavior is deter-
mined by the wavelength-scaled roughness, i.e., the roughness that
would be measured by a field worker using a ruler one wavelength
in size, and the surface scaling behavior described by the fractal di-
mension or Hurst exponent. Additionally, this model predicts that
the scattering behavior should scale with wavelength in a self-affine
manner, i.e., the scattering behavior at long wavelengths should look
“smoother” than that at short wavelengths. The scattering behavior
predicted by the model is consistent with that observed for Venus
by the Magellan altimeter experiment. c© 1999 Academic Press
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I. INTRODUCTION

The topography of natural surfaces at scales of a few me
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only a minor role in surface scattering properties at microwave
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or less is often referred to as roughness and is of fundam
tal importance to the interpretation of geologic emplacem
mechanisms and modification processes. Because there ar
instances ofin situ measurements on the terrestrial planets,
planetary community relies extensively upon remote obse
tions to determine surface roughness and to infer geologic s
ture, processes, and history. While surface roughness is im
tant at all wavelengths, its effect on scattering behavior in
microwave (radar) spectrum is of particular interest. The sc
of roughness contributing to microwave scattering are in
centimeter to tens of meters range—the same scales at w
many important geologic properties are manifest. Furtherm
compositional variations generally (although not always) p
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microwave data is the physical interpretation of roughness
rameters extracted from scattering observations. For exam
one model used extensively by the planetary community is
Hagfors (1964) model for quasi-specular scattering. Its po
larity stems from its ability to consistently fit many near-na
(backscattering angle,θ <∼20◦) backscatter observations. Th
roughness parameter extracted from this model isC, and it is
generally agreed (Tyleret al. 1992) thatC1/2 is a measure of
the root-mean-square (RMS) surface slope at scales tha
large compared with the wavelength. It is not uncommon to
Hagfors parameters ofC= 100 reported in the literature, corre
sponding to RMS slopes of about 6◦. Interpretingthis value in a
quantitative fashion is the difficulty. What surfaces on the Ea
have RMS slopes of 6◦? If the profile of a terrestrial analog su
face were supplied, how would this value be measured? W
does this value imply about the surface geology?

The shape of the angular scattering function and the typ
surface statistics inferred from its behavior are also of inte
for their geologic implications. For example, studies done
Simpson and Tyler (1982) and Tyleret al. (1992) suggest tha
the meter-scale surface statistics of the Moon and Venus
significantly different. On the Moon, the majority of near-nad
observations are best fit by a Hagfors (1964) model, while
Venus the most common best-fit model has an exponential fo
Tyleret al.(1992) hypothesize that this reflects differences in
processes of erosion and deposition on the two planets. Be
this, little is understood about why these scattering differen
exist and how they can be exploited to provide new geolo
insights. Several workers have noted a wavelength depend
in the RMS slope inferred from near-nadir echoes (Hagfors
Evans 1968, Muhleman 1964, Simpson and Tyler 1982). It
long been recognized that surfaces appear smoother at lo
wavelengths than at shorter wavelengths, but there has been
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RADAR SCATTERING FR

progress in quantifying this behavior or interpreting it in term
of surface geology.

In this paper, we derive a radar scattering model which is ca
ble of quantitatively addressing each of the above problems.
derivation involves two new assumptions that fundamentally d
fer from previous work. First, we assume that the surface top
raphy is represented by a random, isotropic, self-affine fra
surface. Fractal surfaces are, by definition, nonstationary,
utilize a scale-dependent roughness parameter. Previous m
have assumed the surface roughness to be stationary and
lacked any explicit scale-dependent measures. We discuss
justify this assumption below at some length.

Our second major departure from earlier work is the assum
tion that the surface is rough at all scales. Previous w
(Beckmann and Spizzichino 1963, Hagfors 1964, etc.) assu
that the surface is smooth or gently undulating at the scal
the wavelength. This allowed traditional ray or physical o
tics methods and equations to be utilized, including the w
known Fresnel reflection equations for smooth surfaces. W
the assumption of a smooth surface at the wavelength sca
mathematically convenient, it is probably not realistic for mo
planetary surfaces. In order to make our assumption ma
matically tractable, we treat the scattering process as on
diffraction rather than reflection. This is essentially a phy
cal optics approach in which each point of the surface is m
eled as an independent source of Huygens spherical wave
i.e., isotropic electric-field wavelets. The trade-off is that th
methodology, while mathematically convenient, is only an a
proximation since it does not allow for a rigorous treatment
the electromagnetic field at the boundary. However, it does l
to new insights into the scattering process and explains man
the problems discussed previously.

In the next section we review previous efforts to model rad
scattering in the near-nadir regime. Following that, we provid
review of and justification for self-affine topography models. W
then derive the scattering model and follow with a discussion
the following topics: the physical meaning of the inferred surfa
roughness parameter, the variety in angular scattering “shap
and the wavelength dependence of the near-nadir echo. In
final section of this paper, we illustrate the inverse problem us
near-nadir observations of Venus. Throughout, we will illustra
concepts using both synthetic and real topographic profiles

II. PREVIOUS MODELS

Microwave scattering models developed for near-nadir (θ <

∼20◦) planetary applications have generally taken two differ
approaches, namely geometric and physical optics (cf. Bar
and Peake 1967, or Tyleret al. 1992, for a historical review).
All of the models currently in use make a tangent plane assu
tion, i.e., a smooth surface at the scale of the wavelength,
are collectively referred to as “quasi-specular” models. Unf
tunately, this term has become synonymous with scatterin

the near-nadir direction, even though it implies a particular ki
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of scattering mechanism. We do not make the tangent plan
sumption in our model and therefore will refer to all scatter
models at this geometry as “near-nadir.”

The most intuitive of the near-nadir models utilizes a g
metric optics approach. The surface is treated as a collectio
facets, large with respect to the wavelength and oriented
some statistical distribution, typically of a Gaussian or expon
tial form (Hagfors and Evans 1968, Simpson and Tyler 19
Tyler et al. 1992). Each facet is assumed to be smooth at
scale of the wavelength and therefore to coherently (i.e., s
ularly) reflect incident power according to the Fresnel pow
reflection equations for smooth surfaces. The near-nadir
is the incoherent sum (sum of powers, not of electromagn
fields) of reflections from those facets oriented in such a w
as to specularly reflect back to the receiver. Interference ef
from adjacent facets are assumed to be negligible. In this mo
the angular scattering function is proportional to the proba
ity distribution of surface slopes that are large and smooth w
respect to the wavelength. Muhlemann (1964) utilized a sim
approach, but modeled the facets as the combination of bo
random height and a horizontal scattering length variable.
mean surface slope is defined as the ratio of the standard
ations of these two variables. This latter model has been
ticularly successful in reproducing the scattering behavior
Venus at large scattering angles (>20◦), although the best-fi
parameters are strictly empirical (Tyleret al.1992).

The second approach to modeling near-nadir scattering
lizes principles of physical optics. Here, the near-nadir ech
modeled as the sum of the incident and reflected electromag
fields from a gently undulating surface. Again, it is generally
sumed that the surface is smooth at the wavelenth scale s
Fresnel equations can be used to model the power reflectio
efficient. The surface topography is assumed to have a statio
random distribution of heights about some mean, common
Gaussian distribution. In addition, an assumption is made reg
ing the correlation between adjacent points; common forms
this “autocorrelation” function include the Gaussian and ex
nential. Hagfors (1964) derived a model of this type, but assu
a linear autocorrelation function near the origin. This latter
sumption and subsequent model have been strongly critic
on mathematical and physical grounds (Barrick 1970); howe
the Hagfors model is still widely utilized because it appear
accurately fit observed near-nadir scattering behavior (Simp
and Tyler 1982, Tyleret al.1992).

III. SELF-AFFINE TOPOGRAPHY

A. The Need for a New Surface Roughness Paradigm

All of the radar scattering models discussed above assu
stationary surface, i.e., a surface with statistical properties
are invariant with respect to scale and position. Stationarit
most commonly invoked by the assumption that the RMS he
ndof a surface is a constant, and throughout the remainder of this
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paper we shall use the term “stationary” to refer to this spec
assumption.

Recent work by Sayles and Thomas (1978), Mandelb
(1982), and many others has conclusively demonstrated
contrary to the above assumptions, natural surfaces are no
tionary and are more appropriately described by fractal (pow
law) statistics. Figure 1 illustrates how commonly measu
quantities such as RMS height, slope, and autocorrelation le
vary with scale for a typical young basalt flow measured dur
the Geologic Remote Sensing Field Experiment (Arvidsonet al.
1991, Shepardet al.1995). Both the autocorrelation length an
the RMS height increase as the profile sample length is increa
while RMS slope decreases with increasing scale or step size
shall discuss exactly how these curves were generated be
Similar behavior is observed for many other geologic surfac

If we desire to extract meaningful geological informatio
from microwave observations, we must incorporate a more
alistic model for surface roughness/topography in our scatte
models. We suggest that many of the difficulties experience
quantitatively interpreting near-nadir observations are due to
realistic surface models–models that neither explicitly acco
for the scale-dependent roughness of the surface nor recog
its intrinsic power-law (fractal) behavior. We therefore adop
self-affine surface roughness model in this work and deriv
near-nadir scattering model based on that premise. Below
briefly outline the mathematical properties of self-affine surfa
and further justify our adoption of this model.

B. Description of Self-Affine Fractal Topography

In fractal statistics, there are defined two basic types of s
ing behavior—self-similar and self-affine. Self-similar fracta
were introduced by Mandelbrot (1967) in his classic study of
length of the British coastline. One of the major points of th
study was that the coastline was statistically indistinguisha
at any scale, i.e., without a labeled scale in the image, one c
not tell whether one was looking at kilometer- or centimet
scale versions of the coast. A self-affine fractal is one wh
scales differently in orthogonal dimensions and therefore ha
intrinsic scale dependence. In general, a self-affine surface
profile of that surface) does not roughen in the vertical direct
as quickly as the horizontal scale increases, and therein lie
major difference between self-similarity and self-affinity.

As an example, consider an island uniformly covered b
grass lawn. From a few hundred meters altitude, the surface
pears extremely smooth and the island perimeter, or coast
appears ragged. If we take the perspective of an ant on the c
line, however, the grass surface now appears incredibly ro
vertically, but the (horizontal) perimeter has the same rag
appearance. In other words, zooming in does not change
appearance of the island perimeter (self-similarity), but ha
substantial effect on the surface topography or roughness (
affinity). Surface topography falls exclusively within the rea

of random self-affine fractals, and it is this type of fractal me
sure that we shall utilize throughout this paper.
CAMPBELL

fic

rot
hat,
sta-
er-
ed
gth

ng

d
sed,
(we
w).
s.

n
re-
ing
in

un-
nt

nize
a
a

we
es

al-
ls
he
at
ble
uld
r-
ch
an
(or

on
the

a
ap-
ine,
ast-
gh
ed
the
a

elf-

FIG. 1. (A) Log–log plot of relationship between RMS height and profi
length for the Black Rock lava flow, Lunar Crater Volcanic Field, Nevada. E
point is the average RMS height for all possible profile samples of lengthL.
(B) Log–log plot of relationship between RMS slope and step length for
Black Rock lava flow, Lunar Crater Volcanic Field, Nevada. As in (A), ea
point is the average RMS slope for all possible slopes measured at length1x.

a-(C) Autocorrelation function for two different profile lengths, Black Rock lava
flow, Lunar Crater Volcanic Field, Nevada.
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For a surface, we definex andy to be the (orthogonal) hori
zontal coordinates of a point, andz to be the vertical coordinate
or height, at that point. For a profile sample of length,L, we
usex as the horizontal coordinate, and again,z as the verti-
cal coordinate. There are several surface parameters comm
measured by field workers (typically along profiles or transec
and we now examine each of these and their behavior on a
affine surface. For each surface, we assume the mean hei
be constant, and for convenience will often assume it to be z
Throughout this discussion, we will frequently refer to a surf
or a profile of that surface interchangeably; the concepts ar
same for each, but profiles are more commonly measured.

The most commonly measured surface parameter (other
the mean) is the RMS height, or standard deviation,ξ ,

ξ (L) = [〈(z− z̄)2〉]1/2. (1a)

Here, the angle brackets indicate the expectation value, or we
ed average, over all possible values ofz within a sample profile
of length,L. (Note: We use the symbolξ instead of the more fa
miliar σ and reserveσ for radar backscatter cross-section.) F
a stationary surface, such as white noise,ξ is independent of the
length of the profile over which it is measured. For a self-affi
profile or surface,ξ is a function of the sample length over whic
it is measured (Hastings and Sugihara 1993, Shepardet al.1995,
Campbell and Shepard 1996):

ξ (L) = ξ (L0)

(
L

L0

)H

= ξ0

(
L

L0

)H

. (2a)

L0 is a standardized reference length andH is a constant, the
Hurst exponent, and is discussed at length below. As illustr
in Fig. 1, RMS height increases with increasing sample len
on a fractal profile. For clarity, each point in that figure is t
average of the RMS heights measured over all possible pro
of length,L. For each possible profile, the mean height,z̄, which
is used to compute the RMS height [Eq. (1a)], is a local me
i.e., the mean of each individual profile.

A second parameter, less commonly measured, is the R
deviation (also referred to as structure function, variogram, A
deviation),ν,

ν(1x) = [〈(z(x)− z(x +1x))2〉]1/2. (1b)

In essence, this parameter is a measure of the difference in h
between points separated by a distance,1x. For a stationary
surface,ν is, again, a constant. For a self-affine surface

ν(1x) = ν(1x0)

(
1x

1x0

)H

= ν0

(
1x

1x0

)H

, (2b)

analogous to the RMS height. The term1x0 is a reference ste

size. Unlike the RMS height, the RMS deviation is independ
of the length of the profile over which it is measured—it is on
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a function of the step interval between two points on any gi
profile.

The RMS deviation is frequently measured as an intermed
to the RMS slope,s,

s(1x) = ν(1x)

1x
. (1c)

Although ν is a constant on a stationary surface,s is not and
falls off as 1/1x. For a self-affine surface, RMS slope also fa
off with increasing step size, but at a rate dependent uponH ,

s(1x) = s(1x0)

(
1x

1x0

)H−1

= s0

(
1x

1x0

)H−1

. (2c)

In Eqs. (2),ξ (L0)= ξ0, ν(1x0)= ν0, ands(1x0)= s0 are com-
mon roughness parameters anchored at a specific reference
and H is a parameter that describes how these values ch
with scale, 0≤ H ≤ 1. There are severalH parameters in the
literature which have similar or analogous meanings and
often confused with one another, among them the Hurst e
nent, Hausdorff measure, and Holden exponent (Falconer 1
Hastings and Sugihara 1993, Shepardet al. 1995, Mandelbrot
and Wallis 1995, Turcotte 1997). In order to maintain con
tency with previous work (Hastings and Sugihara 1993, She
et al.1995, Campbell and Shepard 1996), we will refer toH as
the Hurst exponent.

To illustrate the role of the Hurst exponent, Fig. 2 shows th
synthetic self-affine profiles, each of which have the same v
of s0 (in this case the RMS slope at the smallest facet scale
differ in their Hurst exponents. If one were to zoom in to ea
of these profiles, they would be difficult to tell apart because
roughness at small scales is the same for each profile. How

FIG. 2. Three self-affine profiles, each with the same RMS slope at
smallest scale (1 unit onx axis), but differing in their Hurst exponents. Althoug
ent
ly
each profile has the same small scale roughness, the large scale roughness in-
creases with increasingH .
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at larger scales, the profiles change dramatically. Note tha
profile with the smallest value ofH is relatively smooth at large
scales; i.e., the RMS height does not increase rapidly with s
Conversely, the profile with the largest value ofH is relatively
rough at all scales because its RMS heightdoesrapidly increase
with increasing horizontal scale.

There are three “endmember” self-affine behaviors worth
ing: H = 0.0, 0.5, and 1.0. In the case ofH = 0.0, Eqs. (2) show
that the RMS height and deviation are independent of the le
of the profile from which they are measured, while the RM
slope decreases hyperbolically (1/x) with scale. This case, then
illustrates a form of stationary behavior, somewhat analog
to white noise [it is actually referred to as pink or 1/ f noise
in the engineering community (Schroeder 1991)]. The cas
H = 0.5 is very commonly observed in nature and is often
ferred to as Brownian noise (Schroeder 1991, Turcotte 19
On a Brownian profile, the RMS height and deviation scale
the square root of the horizontal scale. The case ofH = 1.0 is
a form of self-similar behavior. Examination of Eq. (2c) sho
that the RMS slope is constant at all scales (thus the term “
similar”) while the RMS height and deviation increase at
same rate as the horizontal axes.

Another interesting characteristic of these endmember c
relates to their “persistence” (Malamud and Turcotte 19
Turcotte 1997). Surfaces or profiles withH < 0.5 are said to
be anti-persistent; i.e., if the general trend of the profile in
past has been in one direction, there is a greater than av
chance that the profile will change direction in the immediate
ture. This gives rise to a very jagged appearance to these sur
at small scales; however, over the long term these trends
to cancel and so the entire surface never deviates far from
mean (Fig. 2). Surfaces withH > 0.5 are said to be persisten
i.e., future trends will tend to be the same as past trends. A
small scale, these surfaces appear to be fairly smooth, but
the long term become quite rough and rolling in appeara
(Fig. 2). Brownian surfaces (H = 0.5) have no persistence—
future behavior is independent of past behavior (Fig. 2).

The Hurst exponent,H , is related to the commonly reporte
fractal dimension,D, by

D = 2− H
D = 3− H.

(3)

The first expression in Eq. (3) is applicable to a profile, and
second is applicable to a surface (Hastings and Sugihara 1
Shepardet al.1995, Turcotte 1997). In this paper, we will prima
ily utilize the Hurst exponent instead of the fractal dimensi
it minimizes the size of the derived equations and avoids
confusion that sometimes arises when alternately discussin
roughness of profiles and surfaces in terms of fractal dimens

C. Justification for Assumption of Self-Affine Behavior

It is not well understood why natural surfaces obey the

lationships (or derivatives of them) expressed by Eqs. (2);
D CAMPBELL
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empirical evidence that that they do, however, is overwhe
ing. Figure 1 illustrates this behavior for a basalt flow; both
RMS height and the RMS slope obey the scaling relationship
Eqs. (2) withH ∼ 0.6. Mark and Aronson (1984) report value
of H ranging from 0.1 to 0.96 for a variety of geologic provinc
at scales ranging from tens of meters to tens of kilometers. Br
and Scholz (1985) reportH values ranging from∼0.4 to 1.0 for
rock surfaces measured at scales of micrometers to centim
Our own work with numerous lava flows yieldedH values from
0.25 to 0.75 at scales of centimeters to tens of meters (Cam
and Shepard 1996). Farr (1992) foundH ∼ 0.5 on a wide range
of geologic surfaces, also at scales of centimeters to ten
meters. Recent work on the terrestrial planets has shown
lar behavior. Haldemannet al.(1997, personal communication
foundH ∼ 0.5 for the terrain around the Mars Pathfinder land
site at scales of centimeters to tens of meters, while Helfen
and Shepard (1999) reportH values of 0.5–0.7 for undisturbe
lunar regolith at scales of submillimeters to centimeters.

While the Hurst exponents of natural terrain tend to clus
aboutH = 0.5 (Brownian noise), the roughness of surface
any standardized length scale spans an enormous range of v
Basaltic lava flows measured in Hawaii display a range of R
heights on 1-m profiles, from∼8 cm for rough a’a flows to
<1 cm for very smooth pahoehoe flows. RMS slopes at 1
scale for these same flows ranged from 0.23 (∼13◦) to 0.04
(∼2◦). The smoothest site for which we have topographic d
is the Lunar Lake playa, Nevada, with an RMS slope of∼1◦

or less at the 1-m scale, while one of the roughest sites
have investigated is the a’a flow in Fig. 1, also in the Lu
Crater Volcanic Field, which has an RMS slope of∼25◦ at the
1-m scale (Arvidsonet al. 1991, Shepardet al. 1995). J. Plaut
(1998, personal communication) has measured RMS slop
high as 40◦ at the 1-m scale on rhyolitic flows at Inyo Dome
California. While this list of examples is far from exhaustive
does give a sense for the range of surface roughness value
may reasonably be encountered.

In several instances, we have noted that a single Hurst e
nent is insufficient to describe the scaling behavior of a sur
(Campbell and Shepard 1996). In these cases, we find tha
ferent Hurst exponents are valid at different ranges of scal
more generally, thatH has a piecewise functional dependence
scale. This behavior is thought to be caused by different phy
processes operating at different scales; e.g., for lava flows, m
scale properties are controlled by magma characteristics and
placement rates while centimeter scale properties are domin
by weathering rates and styles (cf. Campbell and Shepard 1
The most realistic treatment of natural surfaces should inc
this behavior. While this is readily implemented in the mo
derived below, we limit our discussion to cases in whichH can
be assumed constant over the range of scales which dom
the radar scattering process.

Finally, we note that a purely self-affine surface cannot e
in nature. A quick examination of Eqs. (2) shows that the R
theslope approaches infinity as the scale decreases to zero and the
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RMS height and deviation approach infinity as the length s
increases without bound. There obviously must be maxim
and minimum scales beyond which a fractal model (with a
gle Hurst exponent) breaks down. However, over the rang
scales we are interested in, from one or more orders of ma
tude smaller than a typical radar wavelength to an order o
more magnitudes larger than a wavelength, most surfaces c
realistically treated as self-affine and modeled with a cons
Hurst exponent.

IV. MODEL DERIVATION

A. Assumptions and Terminology

The following assumptions are utilized in our model deri
tion.

(1) The surface can be described as an azimuthally isotr
self-affine surface described by a single Hurst exponent,H , and
vertical roughness parameter (RMS height, deviation, or slo
at a known horizontal scale. The height distribution at all sc
is Gaussian.

(2) The surface is rough at horizontal scales ranging fr
several orders of magnitude smaller to several orders of m
nitude larger than the wavelength, i.e., not necessarily ge
undulating. (Note that this implies that the surface area dim
sions are much larger than the incident wavelength.)

(3) The incident wave is of wavelengthλ and is planar, im-
plying a distant radar source.

(4) The receiver is in the far-field or Fraunhofer zone.
(5) Each point of the surface independently reradiates

singly scatters, the incident energy as a spherical wave
Huygens wavelet, with magnitude proportional to the bulk pr
erties (i.e., dielectric constant) of the surface. All points are
ther assumed to have identical electric-field amplitudes in
chosen polarization state and a phase determined only b
relative height of the surface. This representation will not lea
a rigorously correct analysis of the scattered electric field ab
the surface, as it ignores point-to-point coupling and prefere
polarization of the reflected wave due to local surface tilt or d
crete structures (cracks, edges, vesicles, etc.). In previous
ical optics models, this assumption was validated by stipula
the surface to be gently undulating or well behaved in the vici
of the scattering point. Here, we make no such stipulation—
surfaces do not behave in this fashion. Instead, we will ar
below that the use of a scale-dependent roughness para
allows us to plausibly invoke a smoothing behavior in the re
diated field at smaller horizontal (and vertical) scales, simila
that first propounded by Hagfors (1964). It is also a neces
approximation to make the solution mathematically tractab

(6) Because our derivation utilizes Huygens wavelets, we
plicitly assume the electromagnetic field to be scalar and ign
depolarization effects; i.e., if the incident field is horizonta
polarized, we assume the reradiated field is also horizon

polarized. Again, this is a convenient approximation. In reali
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each point will have a scattered field which is partially dep
larized by surface roughness and by internal scattering wi
the target material. The observed like-polarized (HH, VV, L
or RL) echo will thus be less than that predicted by the sim
Huygens radiator case by some unknown amount. Howeve
long as the polarization state of each point is a random func
of the surface height (e.g., discrete linear elements do not o
solely at the tops of hills), then we may take the net effec
depolarization into the “effective reflectivity” of the surface.

(7) Multiple scattering between adjacent points is ignor
This will be a reasonable assumption for most rocky surfa
where approximately 5–20% of the incident power is singly sc
tered. However, it will become an increasingly poor assump
for radar bright regions, such as the venusian highlands.

Throughout the following discussion, we will treat the proce
of scattering from a surface of arbitrary shape to be equiva
to the process of diffraction through an aperture or radiat
from an antenna of the same shape. The mathematics of
processes are virtually identical. The surface area under co
eration is assumed to be azimuthally isotropic so that it can
treated as a circular aperture or antenna with radial symm
Under these assumptions, terms like1x in the previous section
can be replaced by1r .

For convenience, we normalize the anchoring roughness
rameters (ν, s, ξ ) to the scale of the wavelength and define th
to be the “wavelength-scaled” or “scaled” roughness param
e.g., scaled RMS slope,sλ= s(λ); scaled RMS height,ξλ= ξ (λ);
and scaled RMS deviation,νλ= ν(λ). From Eq. (1c) we can also
write the scaled-RMS slope as

sλ = ν(λ)

λ
= νλ

λ
. (4)

Normalizing in this fashion has no effect on our assumptio
about the roughness of the surface; it is, however, a very co
nient natural scale length for our derivation. The physical in
pretation of the scaled RMS slope will also be very import
later. In essence, it is the RMS slope that would be measure
a field worker using a ruler of lengthλ.

Throughout the following, we will often discuss the ph
nomenon of wave interference. To clarify our terminology, co
sider the interference of two fields of the same wavelengthλ,
and amplitude,E1 and E2 (we retain separate subscripts on
to distinguish between the two waves). If the two fields are
actly in phase (e.g., they originate from the same source
follow similar path lengths), they constructively interfere a
their time-averaged combined field is

ETotal = E1+ E2 > 0; (5a)

i.e., the sum of the fields is always greater than 0. The po
from the combined fields is
ty, P = (E1+ E2)2 = E2
1 + E2

2 + 2E1E2 (5b)
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and the cross-term (2E1E2) represents the increase in field s
ength due to mutual constructive interference. If, however,
phases between the two fields are randomized (e.g., they o
nate from independent and uncorrelated sources), then the
averaged field is

ETotal = 0 (5c)

because the randomized phases tend to cancel one another
ever, the power from the combined fields is not zero but gi
by

P = (E1+ E2)2 = E2
1 + E2

2. (5d)

Only the cross-term (2E1E2) is zero. We will loosely use the
term “coherent” to refer to echoes composed of constructiv
interfering fields (in any significant measure) and the term
coherent” to refer to echoes composed of randomly interfe
fields.

B. The Huygens Wavelet Methodology

The use of Huygens wavelets to solve problems in diffrac
and antenna theory is well established and is the underlying b
of Fresnel–Kirchhoff integral solutions (cf. Ulabyet al. 1981,
Goodman 1968, Gaskill 1978). Conceptually, we may view
propagating electromagnetic wave as a source which, at
point in space, generates a new spherical wave. The inte
ence of these new wavelets gives rise to a new wave front,
this continues ad infinitum. In diffraction problems, an incide
wave is blocked by an obstruction and only generates sphe
wavelets within the confines of an aperture or opening wit
that obstruction. The associated diffraction pattern opposite
aperture is the result of the interference between the wav
arising from the continuous, but finite, aperture area. Simila
in antenna theory, each point on the antenna is viewed a
independent source of spherical wavelets, and their mutua
terference gives rise to the antenna beam pattern.

Mathematically, the solution of diffraction or antenna pro
lems of this type involves integrating the amplitude and phas
all wavelets to determine the angular amplitude function of
resultant electromagnetic field. Under the conditions assu
in this paper, most critically the far-field approximation, it c
be shown that the resultant electromagnetic field is proporti
to the Fourier transform (or, where circular symmetry is invok
as it is here, the equivalent Fourier–Bessel or Hankel transfo
of the aperture or antenna shape (Goodman 1968). Specific

E = j

λZ
exp[− jkZ]

(
1+ cosθ

2

)
E0H0(A), (6)

where j is the root of−1, Z is the distance of the observ
tion plane from the aperture or antenna,k is the wavenumbe
(2π/λ), θ is the scattering angle,E is the amplitude of the
0

incident field,H0 is a Fourier–Bessel or zeroth-order Hank
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transform, andA is a function describing the shape and tra
mission (or scattering) properties of the aperture (aperture f
tion). The cosine term in parentheses is called the obliquity
tor, and for near-nadir observations (θ <20◦), it can be ignored
with insignificant error. In essence, Eq. (6) represents a c
plex Huygens wavelet (first two terms) modified by the Fouri
Bessel transform of the aperture or antenna shape. The qu
measured by a receiver is the radiated “power density” (W/m2),
given by

P = 1

2η
|E E∗|, (7)

whereη is the impedance of free space (Ulabyet al.1981).
In the following sections, we develop the near-nadir cohe

backscatter cross-section of a self-affine fractal surface in s
beginning with a smooth conducting surface. We will herea
refer to the process as one of scattering, i.e., absorption
plane wave by individual points and reemission as a wavelet
note modifications to the above mathematical treatment w
required to maintain consistency with the scattering geome

C. Scattering from a Smooth, Conducting Surface

For a circular surface (or plate), Eq. (6) is written

Ecirc = j

λZ
exp[− jkZ]E0H0(circ(r0)), (8a)

which is equivalent to

Ecirc = j

λZ
exp[− jkZ]E0πr 2

0
2J1(kr0 sinθe)

kr0 sinθe
, (8b)

where circ is the “circular” function (circ= 1 for r ≤ r0 and
circ= 0 for r > r0), θe is the emission or scattering angle (me
sured from nadir, always positive), andJ1 indicates a first-orde
J–Bessel function. The associated power density of Eq. (8
called the Airy pattern (Gaskill 1978, Ulabyet al.1981).

Equations (8) are based on the assumption that a plane
is normally incident upon the surface. For an obliquely incid
wave, we must account for the phase change that occurs
impinges upon the surface. It can be shown that the solution
more general bistatic case (source and receiver in the prin
plane) is

Ecirc = j

λz
exp[− jkz]E0πr 2

0
2J1(kr0(sinθe− sinθi ))

kr0(sinθe− sinθi )
, (9)

whereθi is the incidence angle (from nadir, positive when o
posite the scattering angle, i.e., forward scattering direct
negative when on the same side as the scattering angle
backscattering direction). Equation (9) reduces to Eq. (8b)
normal illumination (θi = 0). The effect of the modification to
Eq. (9) is to make a specular “lobe” in the forward scatter
eldirection when illuminated off-nadir and to reduce the scattered
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field (and power) more rapidly than Eqs. (8) in the backscat
ing direction. Note that the angular width of the scattered lo
is a function of the surface size,r0: a small surface has a ver
wide, low amplitude lobe, while a large surface has a very n
row, high amplitude lobe. In the limit of an infinite half-plan
the lobe becomes a delta function with no angular width, i
purely specular. One may envision this latter case as an
nite number of spherical wavelets constructively interfering
produce a reflected plane wave.

D. Scattering from a Smooth, Circular Dielectric Surface

In the case of scattering from a smoothdielectric plate of
radius r0, the electric field in the principal plane far-zone
given by

Ediel,circ = j

λZ
exp[− jkZ]RE0πr 2

0
2J1(kr0(sinθe− sinθi ))

kr0(sinθe− sinθi )
,

(10)

whereR, which we call the “effective reflectance amplitude
is a function giving the fraction of power reflected from th
surface, 0≤ R≤ 1. For a perfectly smooth dielectric surfac
the functionR is given by the Fresnel reflection coefficient a
is a function of the incident and emission angle as well as
dielectric constant. For the case of normal incidence,

RFresnel= ε1/2− 1

ε1/2+ 1
, (11)

whereε is the dielectric constant, and we have assumed a m
netic permeability∼1 (Ulaby et al. 1981). We assume tha
RFresnel remains approximately constant and equal to Eq. (
for near-nadir scattering.

E. Scattering from a Roughened (Stationary) Dielectric Surf

For the problem of near-nadir reflection from a stationa
randomly rough surface (of any given shape), the aperture f
tion is modified by a random phase retardation. The solu
is essentially the same as those discussed above, excep
the amplitude of the scattered electric field is modified by
Fourier transform of the phase density function (or charac
istic function in statistics literature). For astationarydielectric
surface whose roughness (or phase retardation function) is g
by a Gaussian distribution of heights with RMS height ofξ , the
coherent scattered field is given by

Erough,diel = exp[−2k2ξ2 cos2 θ ]Esmooth,diel. (12)

The characteristic function in Eq. (12) (exponential term)
closely related to the well-known Rayleigh roughness cr
rion and is discussed by Beckmann and Spizzichino (1963)
Barrick and Peake (1967). Note that the coherent scattered
tric field will only be significant for values ofξ which are small
relative toλ, and therefore Eq. (12) only represents the c

structive interference cross-terms illustrated by Eqs. (5a) a
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(5b). For largeξ , there is no constructive interference (only ra
domized phase relations), and the scattered field and powe
incoherent and analogous to that given by Eqs. (5c) and (5

Barrick and Peake (1967) restrict the use and applicatio
Eq. (12) for surfaces that are “slightly rough,” in the same se
that we discussed in the previous paragraph. However, wh
lacking in their and subsequent analyses is thehorizontal scale
at which the surface roughness is measured or defined. We
argue that the relevant horizontal scale is the wavelength o
incident energy. As noted earlier, a fractal surface can be
tively smooth at the wavelength scale (e.g., 12 cm for S-ba
and become incredibly rough at larger scales, or not, depen
upon the Hurst exponent. This allows us to examine a contin
of surface roughness types, from very smooth to very rough,
the same model. We will also make an assumption, first invo
by Hagfors (1964) and later by Barrick and Peake (1967),
small-scale roughness (below the Rayleigh criterion) does
significantly affect the angular scattering function of the coh
ent echo. In his discussion of this assumption, Hagfors (19
treated the incident wave as a type of smoothing filter. Altho
this assumption precludes rigorous treatment of the scatt
field (i.e., it disregards the common physical optics assump
of a well-behaved or gently undulating surface), it is not with
some empirical basis. Opticians frequently polish optical s
faces to a geometric figure, accurate to within a fraction o
wavelength of incident light. The exact nature of the deviati
at this scale is unimportant to the final optical performance.

Barrick and Peake (1967) state that, for surfaces obe
Eq. (12), our model parameter (Eq. 10)R= RFresnel. For reasons
to be discussed below, we believe that the Fresnel reflection
ficient is an upper bound for the effective reflectance amplitu
and that in general,Rwill differ from RFresnelby a depolarization
factor that is a function of wavelength and dielectric const
While this additional factor will modify the magnitude of ou
model solutions, it will not affect their shape or width.

F. Scattering from a Roughened Self-Affine Dielectric Surfa

We now extend the problem to one of scattering from a
face which is roughened and self-affine, i.e., nonstationary,
account for the functional dependence of RMS height and de
tion with scale in the following manner. For any and every po
on the surface, we may define a series of concentric thin an
of increasing radii,ra. For convenience, we will discuss only on
such arbitrary point and associated annuli. As we move outw
from the center point, Eqs. (2) indicate that the RMS deviat
ν(ra), relative to the center will increase. By definition, all of t
points in any given annulus are Gaussian distributed with R
heightξ proportional toν at that radius,

ξ (ra) = 1√
2
νλ

(
ra

λ

)H

, (13)

and we have chosen (for convenience) our reference leng

ndbe one wavelength. The factor of

√
2 is a required constant of
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proportionality that can be theoretically derived (cf. Shep
et al. 1995 and references therein). Equation (13) allows u
think of a nonstationary surface in a new way—as an infin
number of points, each with an associated collection of con
tric annuli which individually have a constant RMS height (i.
are stationary), but collectively represent a surface with an R
height that increases with distance from each point.

From Eqs. (6) and (12), the coherent scattered field from
roughened (stationary) annulus of radiusra(δ(r − ra)) is

Erough,annulus= j

λZ
exp[− jkZ] exp[−2k2ξ2 cos2 θ ]

× RE0H0[δ(r − ra)], (14a)

whereξ is the RMS height of the given annulus. For the gene
case of bistatic scattering in the principal plane, Eq. (14a)
be written

Erough,annulus= j

λZ
exp[− jkZ] exp[−2k2ξ2 cos2 θe]

× RE0kraJ0(kra(sinθe− sinθi )) dra, (14b)

or for the specific case of backscattering,

Erough,annulus= j

λZ
exp[− jkZ] exp[−2k2ξ2 cos2 θi ]

× RE0kraJ0(2kra sinθi ) dra, (14c)

whereJ0 is a zeroth-orderJ–Bessel function. From this point on
we shall only consider backscattering solutions since that is
principal interest and drop the subscript onθ for succinctness.

Babinet’s Principle states that the diffracted E-field of an a
trary aperture can be found by summing the diffracted E-fie
of many smaller apertures that, all together, are equivalen
area and shape to the larger aperture (Klein 1970). There
to find the coherent E-field scattered from the entire illumina
roughened area about any given point, we sum the E-fields
all the annuli around any single point on the surface:

E = jλ

Z
exp[− jkZ]2πRE0

×
∞∫

r̂=0

exp[−8π2(ξ/λ)2 cos2 θ ]r̂ J0(4π r̂ sinθ ) dr̂ . (15)

Note in Eq. (15) that we have explicitly written out the wavenu
ber,k, inside the integral and introduced a new variable of in
gration given by

r̂ = ra

λ
, (16)

which, again, normalizes all measurements to wavelength u
Further, we have assumed the illuminated area to be infini

extent (̂r→∞).
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On a self-affine surface, the RMS height in Eq. (15) is a
a function of scale, and we may calculate the coherent ang
scattering function from any point on a surface given its Hu
exponent (or fractal dimension from Eq. 3), scaled RMS de
ation and/or slope, and scattering angle by combining Eqs.
(13), and (15):

E = jλ

Z
exp[− jkZ]2πRE0

×
∞∫

r̂=0

exp
[−4π2s2

λ r̂
2H cos2 θ

]
r̂ J0(4π r̂ sinθ ) dr̂ . (17)

In the event that a surface is better represented by two or m
Hurst exponents at different ranges in scale, the constantH in
Eq. (17) should be replaced byH (r̂ ).

Equation (17) represents the enhancement in scattering
ative to an isotropic Huygens wavelet, that takes place fr
every point on the surface due to constructive interference b
nearest neighbors. On a nonstationary surface, constructiv
terference (coherence) is only significant between wavelets
originate from points close together. Points separated by a g
distance are statistically independent, because the RMS hei
scale-dependent, and randomly interfere. This differs in a su
but significant way from the more traditional view that poin
separated by a distance greater than the autocorrelation le
will randomly interfere. Recall that models invoking this mech
nism assume stationary surface behavior and thus every an
on such surfaces will have the same RMS height. As we
elucidate in more detail below, the model proposed here lead
the concept of a coherent patch or “effective aperture” for e
point on the surface. Because the region surrounding var
points on the surface is statistically identical, the backsca
cross-section of the entire surface is enhanced, relative t
isotropically scattering surface, by the same factor as its i
vidual scattering elements are to a Huygens wavelet.

Equation (17) can be evaluated in a closed form for three ca
H = 0.0(D= 3.0), i.e., a stationary surface;H = 0.5(D= 2.5),
i.e., a Brownian surface; and H = 1.0 (D= 2.0), a self-similar
surface. In the first case, the exponential function become
dependent of̂r and comes out of the integral. The remaini
integral is easily evaluated and gives an Airy pattern solut
identical to Eqs. (10) as modified for roughness by Eq. (1
As previously noted, integrating over a surface of infinite ext
results in a delta function of infinite magnitude and zero wid
If such a surface is uniformly illuminated over an infinite are
the constructively interfering component of the scattered fi
will equal zero for any nonzero backscattering angle (altho
the randomly interfering, or incoherent, component of the fi
will remain nonzero).

For the case of a Brownian surface,H = 0.5, Eq. (17) is eval-
uated to give

jλ s2
λ cos2 θ
E =
Z

exp[− jkZ]RE0
8
(
π2s4

λ cos4 θ + sin2 θ
)3/2 (18a)
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and a power density of

P = λ2

2ηZ2
ρE2

0
s4
λ cos4 θ

64
(
π2s4

λ cos4 θ + sin2 θ
)3 , (18b)

whereρ= R2 and is equivalent to the Fresnel power reflecti
coefficient in the limit as the surface becomes perfectly smo

For the case of a self-similar surface,H = 1.0, Eq. (17) leads
to

E = jλ

Z
exp[− jkZ]RE0

1

4πs2
λ cos2 θ

exp

[− tan2 θ

s2
λ

]
(19a)

and

P = λ2

2ηZ2
ρE2

0
1

16π2s4
λ cos4 θ

exp

[−2 tan2 θ

s2
λ

]
. (19b)

G. The Effective Aperture

For surfaces with Hurst exponents other than zero, i.e., non
tionary, the solution to Eq. (17) is finite in amplitude and wid
even when integrating to infinite surface scales, because the
face roughness at some annular radius eventually increase
value where there is no further significant constructive inter
ence [see Eqs. (12) and (13)]. The area around each point o
surface covered by all the annuli up to and including this rad
we call the effective aperture since it defines the approxim
limits of the region contributing to the coherent near-nadir ec
We define this radius to be the distance at which the ann
constructive interference becomes less thane−n, wheren is a
constant. Combining and rewriting Eqs. (12) and (13) yields

r̂eff =
[

n

4π2s2
λ cos2 θ

] 1
2H

, (20)

where r̂eff is in units of wavelength. We prefer to setn= 5,
the point at which the constructive addition has dropped
∼1%. This corresponds to the annular radius at which the R
height becomes approximately one-quarter wavelength—a
the Rayleigh criterion.

To illustrate Eq. (20), consider a surface with scaled RM
slope,sλ= 0.2 (∼11◦) (Fig. 3). This value is typical of smooth
pahoehoe lava flows measured at S-band (12 cm) scales
Campbell and Shepard 1996). For this surface with Hurst
ponents of 0.2, 0.5, and 0.8, the effective apertures are∼18 λ
(2.1 m),∼3 λ (0.36 m), and∼2 λ (0.24 m), respectively (note
that only theH = 0.2 surface resembles a pahoehoe). It is app
ent that the Hurst exponent plays a major role in determining
size of the effective aperture, which in turn affects the magnit
and width of the resulting scattered field.

It should also be noted that the effective aperture is wa
length-dependent because the surface roughness paramets ,
λ
is measured at the wavelength scale. If we consider the ab
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FIG. 3. Three profiles of surfaces withH = 0.8 (top), 0.5 (middle), and 0.2
(bottom). The scaled RMS slopes of each profile are identical and equal t
(11◦) at the 12-cm scale (S-band). The wavelength is shown for scale in the u
left corner. The lines above each profile represent the size of the effective ap
of those particular profiles. The roughest surface at meter scales (H = 0.8) has
the smallest effective aperture (∼24 cm or two wavelengths) and would displa
only a weak coherent near-nadir echo. The smoothest of the three at meter
(H = 0.2) has a large effective aperture (∼18 wavelengths) and would displa
a significant near-nadir coherent echo.

surface illuminated by an L-band (24 cm) wave, the scaled R
slope differs significantly from that at S-band scales. For
same surfaces as above (H = 0.2, 0.5, and 0.8), the values forsλ
are 0.11 (6◦), 0.14 (8◦), and 0.17 (10◦), respectively (see Eq. 2c
Note in each case that the scaled RMS slope is less at L-band
at S-band. The effective apertures at L-band for these three
are∼296λ (71 m), 6.5λ (1.6 m), and 2.5λ (0.6 m), respectively

H. Backscatter Cross-Section of a Self-Affine Dielectric Sur

The backscatter cross-section of a surface is defined a
ratio of power density scattered from that surface to the po
density scattered from a perfect isotropic scatterer of the s
area, at the same distance, and under the same illuminatio
viewing conditions (Elachi 1987, Ulabyet al.1981). The power
density of such a scatterer is

Piso = λ2E2
0

(2η)4πZ2
. (21)

For the closed forms above [Eqs. (18) and (19)], we can there
write the backscatter cross-section,σ0, as

σ0(H = 0.5)= ρπs4
λ cos4 θ

16
(
π2s4

λ cos4 θ + sin2 θ
)3 (22)

and

ρ
[

2 tan2 θ
]

ove
σ0(H = 1.0)=

4πs4
λ cos4 θ

exp −
s2
λ

. (23)
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For the general case, we can write the backscatter cross-se
as

σ0(H ) = 16π3ρ

×
 ∞∫

r̂=0

exp
[−4π2s2

λ r̂
2H cos2 θ

]
r̂ J0(4π r̂ sinθ ) dr̂

2

. (24)

I. Similarities to Current/Previous Models

Both Eqs. (22) and (23) exhibit interesting similarities to p
vious work. Equation (23) is a Gaussian function, similar
the one derived by Hagfors (1964) (see also Hagfors and E
1968) for a surface with Gaussian height distribution a
Gaussian autocorrelation function, and to the Gaussian
tributed facet model utilized by Simpson and Tyler (1982). Eq
tion (22) displays interesting similarities to the commonly us
Hagfors (1964) solution for a surface with Gaussian height di
bution and exponential autocorrelation function, approxima
as a linear function near the origin

σ0(θ ) = ρC

2
(cos4 θ + C sin2 θ )−3/2, (25)

where the roughness parameter,C−1/2, is defined as

C−1/2 = 4π
ξ2

lλ
(26)

andl is the autocorrelation length of the surface. In our soluti
πs2

λ appears to be analogous toC−1/2 (although we do not car
to attach a physical interpretation to this grouping of paramet
and our denominator is cubed where Hagfors’ is raised to/2
power. Equation (22) also displays interesting similarities to
Muhleman (1964) geometric optics model, specifically the cu
denominator of sine and cosine terms. And, as we will see be
numerical solutions to Eq. (24) using intermediate forms oH
(especiallyH < 0.5) are very close in shape to the common
used exponentially distributed facet model (Simpson and T
1982). The similarity of our model solutions to these equati
is not singular. In the next section, we demonstrate that
model comprises afamily of functions that smoothly transitio
between Gaussian, Hagfors-like, and exponential-like scatte
behaviors.

With these similarities noted, however, we do not wish
leave the reader with the impression that the above model
endmembers, in any sense, to the model derived here. W
specific examples of similar form can be found, there are
simple relationships between the roughness parameters us
our model and those above. The basic physics of scatteri
the same; however, the fractal surface model utilized her
based on observed surface behavior and is fundamentally
ferent than any previously used. One possible explanation
the observed similarities is that the models discussed a

have all survived a type of selection process; those models
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successfully fit observed data were retained; those that did
were discarded. Therefore, similarities between this and pr
ous models are probably coincidences of functional form t
have been selectively winnowed by comparisons with obse
data.

V. DISCUSSION

Having derived the near-nadir scattering behavior of a s
affine surface in the previous section, we now wish to brie
discuss the model and its properties in a larger context and
dress the questions posed in the Introduction.

A. Interpretation of RMS Slope Inferred from Radar Backsca

The model derived above and given by Eqs. (22)–(24) in
cates that the near-nadir angular scattering function is stro
controlled by constructively interfering wavelets from an ar
of the surface approximated by the effective aperture. Typ
radii for this area range from a few to hundreds of waveleng
Interestingly, one of the two major surface roughness parame
that determines the effective aperture is the wavelength-sc
surface RMS slope,sλ (or other appropriately scaled roughne
parameter). In previous work, we demonstrated that the
nadir diffuse return could also be directly correlated with t
wavelength-scaled surface roughness (Campbell and She
1996). Taken together, these works suggest that the surface
tering process is completely controlled by the wavelength-sc
surface roughness and its scaling behavior.

One intriguing result of this model is that it predicts a s
nificant quasi-specular echoonly for surfaces that are relativel
smooth at the wavelength scale and does so without assu
a well-behaved or gently undulating surface. A surface wit
scaled RMS slope of 20◦ will have a scaled RMS height of abou
one-quarter wavelength and an effective aperture on the o
of one wavelength. At this roughness and higher, the model
dicts essentially no coherent echo. Therefore, surfaces w
exhibit significant near-nadir echoes are predicted either to
relatively smooth at the wavelength scale or to contain areas
are relatively smooth.

Another intriguing component of this model is the physic
link between the radar-derived wavelength-scaled roughnes
the surface topography. In essence, the radar wave appears
acting as a “ruler” with which we measure surface roughnes
the same roughness one measures in a topographic survey
servations at a single wavelength give us a snapshot of the
face statistical properties at scales from below the wavelen
up to (approximately) the effective aperture. Using observati
made of the same area at different wavelengths, it may be
sible to construct a statistical picture of the surface morphol
which can be directly compared with the same scale-depen
statistics measured on terrestrial analogs.

Based on this and previous work, we suggest that the s
tering process may be visualized in the following way. T
thatnear-nadir echo is dominated by constructive interference
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(coherent or quasi-specular echoes) because the paths tra
by waves on any given wavefront (or equivalently the ph
changes in those waves) are modified primarily by variati
in surface height. In the event that the surface is rough a
wavelength scale (ξλ >λ/4), no significant coherent echo w
occur. As the incidence angle increases, the paths travele
waves on any given wavefront vary systematically with th
lateral locationin addition to the random variations in sur
face height. The returned echoes will be increasingly domin
by random interference between wavelets separated in p
(incoherent or “diffuse” echoes) as the incidence angle is
creased. Although many aspects of the scattering proces
cluding polarization states, must be worked out to quantify
kind of model, we believe it is a simpler and more satisfy
view than the more traditional one of two separate scatte
regimes.

B. Interpreting the Shape and Width of the Near-Nadir Ech

The analytical solutions given by Eqs. (22) and (23) and
merical solutions to Eq. (24) suggest that the shape of the an
backscattering function is controlled primarily by the Hurst e
ponent or fractal dimension and secondarily by the wavelen
scaled roughness. Figure 4A shows the range in angular
tering behaviors observed for surfaces with the same valu
sλ but varyingH . Note the change in shape from Gaussian-
(concave down) for surfaces with large values ofH to forms
similar in shape to the Hagfors (concave up) and expone
(linear) functions at lower values ofH . Figure 4B shows the
ability of our model to mimic the Hagfors (1964) angular sc
tering function. Our model never looks exactly like an expon
tial function at the origin, i.e., a sharp, discontinuous derivat
but instead always rolls over near the origin like the Hagfors

Gaussian functions. The tail, however, can take shapes similar

scale of the

fors
to the Gaussian, exponential, and Hagfors functions.

FIG. 4. (A) Normalized near-nadir angular scattering behavior for self-affine surfaces. Each surface has the same RMS slope measured at the
◦

scales will have the lowest Hurst exponents and have Hag
wavelength (10), but different Hurst exponents. Note the transition from conv
behavior. (B) Illustration of our model’s ability to mimic a typical Hagfors mo
M A FRACTAL SURFACE 167
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The magnitude of the angular scattering behavior is a fu
tion of the wavelength-scaled RMS slope and effective a
ture, the latter of which is controlled by the combination
Hurst exponent and scaled RMS roughness parameters thr
Eq. (20). This can be easily understood if one views the a
defined by the effective aperture as analogous to a hole thr
which a virtual source is being diffracted or as the diameter
transmitting antenna. The larger the aperture and the smalle
wavelength-scaled roughness, the narrower the scattered
and the greater its magnitude (the magnitude will increase
proximately asr 2

eff.) The largest effective apertures occur w
surfaces that have low values ofH (high fractal dimensions) an
low scaled RMS slopes (see Fig. 3). The smallest effective a
tures occur with surfaces that have high values ofH (Fig. 3).
This can be understood by recalling that fractal surfaces
low values ofH will roughen at a slower rate than those w
high H . Therefore, for a given value ofsλ (or νλ), a greater dis-
tance to the outer annulus is required of a lowH surface before
the constructive interference decreases below 1%.

It is interesting to compare the above shape and rough
interpretations with historical accounts of the best-fit scatte
functions to various planetary surfaces. Tyleret al. (1992) note
that, on Venus, the best-fit angular scattering function for
majority of the planetary surface is exponential in form. Th
further note that near-nadir echoes best fit by a Hagfors m
tend to correlate with the smoothest areas, while echoes
fit by a Gaussian model tend to correlate with the roughes
eas. Similar trends and correlations were observed for the M
by Simpson and Tyler (1982) with the exception that the m
common best-fit angular scattering function was the Hag
model. Based on the previous discussion, we expect the ro
est surfaces at wavelength and higher scales to have the hi
Hurst exponents (see Fig. 2) and Gaussian-like angular sc
ing functions. The smoothest surfaces at wavelength and h
ex down, Gaussian-like behavior to behaviors reminiscent of exponential and Hagfors
del (C= 200).
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to exponential-like angular scattering functions. It is also r
sonable to expect the most common angular scattering sha
be Hagfors or exponential because very rough surfaces wil
have coherent near-nadir echoes.

C. The Wavelength Dependence of Radar Backscatter

The final problem we address is the question of how the
ferred RMS slope varies with the wavelength of the incid
radar. Figure 5 shows several views of two synthetic profi
which have the same Hurst exponent (H = 0.5) but which dif-
fer in roughness by a factor of 2. Both profiles are sample
the 1-cm scale. The raw data in Fig. 5A illustrate a comm
method of display for this type of data in which the vertic
(or y) axis is exaggerated. We have added horizontal line
the maximum and minimum for each profile to emphasize
roughness differences between them. The profile on the to
obviously smoother than the profile on the bottom.

The second and third profiles down (Figs. 5B and 5C, resp
tively) are portions of the same profiles, plotted with no verti
exaggeration; the second shows a 50-cm portion of the smoo
profile, and the third shows a 200-cm portion of the rougher p
file. If we use their aspect ratios (max−min/profile length) as
a measure of roughness, the two profiles (Figs. B & C) look
remarkably similar and, in fact, are statistically the same. If
now take the position that the incident wave is acting as a kin
ruler and is sensitive to roughness as characterized by the R
height/wavelength ratio, it becomes apparent that an incid
50-cm wave would view the smoother site (Fig. 5B) in the sa
way that an incident 200-cm wave would view the rougher s
(Fig. 5C), and their respective near-nadir echoes would be
same. Note, however, that while the rougher site is only tw
as rough as the smoother site, the wavelengths involved in
example differ by a factor of 4.

To state this relationship in a different way, when both a
and a 200-cm wave are scattered from thesamesurface, the
50-cm wave perceives the surface to be

(
200

50

)1−H

= 41−H

times rougher than the 200-cm wave. For a Brownian surfa
(H = 0.5), it looks twice as rough; for a stationary surfa
(H = 0), it appears four times as rough; and for a self-sim
surface (H = 1), it looks identical to both waves.

The scale-dependent scattering behavior described abo
a consequence of the self-affine nature of each profile. Bec
the near-nadir echo is a function of the roughness at the w
length scale, i.e., by the roughness as perceived by the inc
wave, we expect the RMS roughness inferred from backsc
observations to scale as the surface roughness, i.e., in a
affine manner. This prediction is consistent with observation
the wavelength-dependence of scattering from the lunar sur

(Simpson and Tyler 1982).
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FIG. 5. (A) Brownian profiles (H = 0.5) with a factor of 2 difference in
RMS slope at smallest scale (1 unit onx axis). The horizontal lines demarcate th
range of extreme values and illustrate that the lower profile is twice as roug
the upper profile. Vertical exaggeration is the same for both profiles. (B) 50
subsection of the smoother profile, rescaled with no vertical exaggeration. H
zontal bars again demarcate the range of extreme values. (C) 200-cm subs
of the rougher profile, rescaled with no vertical exaggeration. Note that the
files in (B) and (C) are statistically similar and have similar aspect ratios
roughness) in their respective scales. This is a consequence of self-affinit
illustrates that a 200-cm wave would view the rough surface in the same way

a 50-cm wave would view the smoother surface, i.e., they would have identical
angular scattering functions.
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FIG. 6. Best-fit model curve to Magellan SCVDR data (20.0◦S Lat.,
107.0◦ Long.). The area was identified by Tyleret al.(1992) as extremely smoot
based on a Hagfors model fit to the data. The Hurst exponent is very simi
those measured from extremely smooth pahoehoe flows and playas on E

VI. ILLUSTRATION/APPLICATION

We now illustrate the model using scattering data derived
Tyler et al. (1992) from the Magellan altimeter experiment a
published on the Magellan Surface Characteristics Vector D
Record (SCVDR) (Tyleret al.1994). This data set represents t
best estimate of the raw angular scattering behavior of the v
sian surface. The data have a 0.5◦ angular resolution with the

first data point at 0.25◦ incidence angle. The maximum incidenceslightly smoother at the wavelength scale (11◦), the higher value
◦
FIG. 7. Very smooth pahoehoe site with surface parameters,H ∼ 0.2, s12 c

inferred from the data fit in Fig. 5, the Hurst exponent is the same and ultim
M A FRACTAL SURFACE 169
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angle available is latitude-dependent and ranges from 4.5◦ at the
poles to 10◦ for equatorial sites. Each “pixel” is approximate
16 km in diameter. Error bars are one standard deviation
we note that, by far, the largest uncertainties are associated
the first two points (0.25 and 0.75◦), a result of fewer averag
“looks,” off-nadir antenna pointing, and ranging uncertaint
Further information on the development of this data set ca
found in Tyleret al. (1992).

Two areas were chosen to illustrate observed scattering
havior on Venus. One of the most interesting sites obse
on the planet falls in an area between Kuanja and Juno C
mata (20◦S, 107◦E). Tyleret al.(1992) noted this area to be th
smoothest they observed with implied Hagfors RMS slope
0.5–0.7◦. Our best-fit model to the data indicates a surface
very low H (0.20), with wavelength-scaled slopes of∼12◦ and
effective reflectance of∼0.12 (Fig. 6). Although the wavelength
scaled RMS slope appears high, it must be remembered tha
is the slope of the surface measured at 12 cm, and it is
mately the value ofH that controls the meter scale rough
smooth appearance of a surface. For comparison, these p
eters are very similar to those measured from some areas
Lunar Lake Playa, Nevada (discussed earlier), and extre
smooth Hawaiian pahoehoe flows (Fig. 7) (Arvidsonet al.1991,
Campbell and Shepard 1996). In our preliminary search o
data, we find lowH values (<0.5) to be very common in th
plains, consistent with surfaces smooth at meter and hi
scales.

Our second example is from an area in Vellamo Plan
(36.5◦N, 170◦E) and is typical of the average behavior obser
throughout the venusian plains (Fig. 8). Although this surfac
m= 0.12 (7 ). Although this site is smoother at the wavelength scale than that
ately controls the large scale topographic roughness.
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FIG. 8. Best-fit model curve to a typical Venus plains region (36.5N La
170.0 Long.). This Hurst exponent and roughness are more typical of moder
smooth (terrestrial) pahoehoe flows (cf. Campbell and Shepard 1996).

of H (0.4) implies that it roughens more quickly with increasi
scale than the previous example; at scales of 1 m and higher, this
surface will be significantly rougher than the Kuanja–Juno s

We have found that the backscattering behavior from so
areas on Venus appears to be composite in form, i.e., an
sortment of different surfaces combining to give a mixture
scattering behaviors. These observations often correlate
more Gaussian-like angular scattering shapes. Several w
ers (e.g., Simpsonet al. 1977, McCollom and Jakosky 1993
have noted that inhomogeneities in surface statistics could
to nonlinear mixtures of near-nadir scattering behavior. In
near-nadir regime (θ <20◦), the echo from a mixture of smoot
and rough surfaces will give a disproportionate weighting to
smooth surface. Given the area covered by each SCVDR p
(∼250 km2), this is not an unexpected observation and will
explored further in the future.

Our future work will also include a more comprehensi
examination of the Magellan SCVDR data using this mod
specifically in the extensive venusian plains where large reg
of homogeneous terrain are more likely to occur. It will be
some interest to determine if systematic scaling differences e
in different plains regions and to compare those characteris
to measured terrestrial analogs. Additionally, we plan to p
form first-order tests of the model using new multiwavelen
data from the Moon and, where available, other targets of
portunity.
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