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Abstract. Starting with the assumption that planetary surfaces are self-affine (fractal)
over the scales applicable to radar scattering, we derive various surface parameters,
e.g., mms slopes and autocorrelation functions, and examine the implications for radar
scattering models. The results of this work provide several new insights of interest to
planetary geologists and others using radar to study surface features. First, the unidi-
rectional slope histograms of self-affine surfaces are Gaussian, and the adirectional
slope histograms are Rayleigh. Normalization of the adirectional histogram by solid
angle results in a Gaussian adirectional slope density function and therefore a
Gaussian quasi-specular angular scattering function. Next, the wavelength dependent
behavior of surface roughness inferred from lunar radar observations is consistent
with self-affine topography. Finally, surface rms height measurements are functions
of profile length. Therefore, when determining the applicability of the small perturba-
tion model to a surface based on those measurements, it is necessary to consider the
length of the profile with respect to the sampling wavelength.

1. Introduction

Radar remote sensing provides a significant source of our
information about the topography and texture of planetary
surfaces. A large body of recent work has demonstrated that
many surfaces are described by self-affine or fractal statistics
over a wide range of scales, i.e., micrometers to kilometers
[cf. Mandelbrot, 1982; Turcotte, 1992]. The purpose of this
paper is twofold: (1) to examine how self-affine statistics
translate into more commonly used surface roughness
parameters like unidirectional and adirectional rms slope
distributions, rms height, autocorrelation length, and
effective slope; and (2) to explore some implications of self-
affine topography for radar scattering models. In this work,
we consider only monofractal behavior, i.e., behavior
described by a single fractal dimension.

The paper is divided into five sections, this introduction
being the first. Section two reviews the definitions of terms
used throughout this paper and discusses the generation and
measurement of fractal profiles and surfaces. The third section
uses fractal theory to derive the behavior of commonly used
surface parameters, including the autocorrelation function and
various surface slope distributions. In section four, several
radar scattering problems are examined in light of these
theoretical considerations, including a discussion of quasi-
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specular angular scattering functions, the wavelength
dependence of scattering, and a note on the application of the
small perturbation model. Finally, section five summarizes
our results.

Throughout this paper, examples from both real and
synthetic surfaces are given to foster an intuitive sense of
topographic description and the concepts discussed. However,
we are working with a system which is described only in
terms of statistical parameters. Whereas the behavior of a
large collection of topographic profiles will conform with
theoretical expectations, any single profile or segment of a
profile often will not. Therefore, in order to be succinct and
illustrative, we have chosen examples which display behavior
typical of the larger, i.e., theoretical, population.

2. Fractal Basics
2.1. Assumptions and Definitions

Although the term fractal is often used to mean either self-
affine or self-similar, in this paper we limit its use to mean
self-affine. We assume that natural surfaces are self-affine
over scales applicable to microwave scattering, i.e.,
centimeters to hundreds of meters. For surfaces, we use the
coordinate axes x and y to refer to horizontal directions and z
for the vertical direction. For profiles, we use x for the
horizontal direction and z for the vertical direction. We use
angle brackets to indicate the expectation or average value of
a quantity. For clarity, we review the definitions of a few
terms that will be used in the remaining discussion.

1. Self-affinity. The scaling behavior of a topographic
surface such that increasing the scale of the x and y axes by a
factor r must be compensated for in the z direction by a factor
rH for the surface to remain statistically identical. The term H
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is known as the Hurst exponent [Hastings and Sugihara,
1993] and sometimes referred to as the Hausdorff measure
[Falconer, 1990; Turcotte, 1992],0 < H < 1. The term self-
similar corresponds to the special case of H = 1 [Power and
Tullis, 1991].

2. Fractal dimension. For a self-affine surface, the fractal
dimension D = 3 — H; for a cross-sectional profile through a
self-affine surface, D =2 - H.

3. Ordinary Brownian noise (oBn). Self-affine behavior
with H = 0.5. Also referred to as a “random walk.”

4. Fractional Brownian noise (fBn). Self-affine behavior,
O0<H<]1.

5. Variance (62). The variance of all points on a surface
or profile about the mean value:

o’=(lz-z ) 1)

6. The rms height (). The square root of the variance.

7. Allan variance (v2). The (height) variance of the
population of points on a surface or profile separated by a
distance (Ax,Ay) [Allan, 1966]:

v'= ([exy) - s+ Axy+ay)l’) @
In many fractal texts, the Allan variance is often referred to as
simply the variance. We have separated these terms here to
avoid confusion later. The Allan variance is also known as
the structure function [Ogilvy, 1991] and variogram [Mark
and Aronson, 1984; Chase, 1992]. Strictly speaking, the
Allan variance is a vector function, i.e., dependent on the
direction of Ax and Ay. However, a common assumption in
scattering models is that the surface is isotropic; therefore we
have written (2) in its simpler scalar form.

8. Allan deviation (v). The square root of the Allan
variance.

9. Slope histogram (P(s) = P(tan8) ). A function
describing the frequency or number of slopes within any
angular interval. Note that s is the slope or tangent of the
slope angle 6.

10. Slope density function or slope distribution ( p(s) =
p(tan@) ). A function describing the frequency or number of
slopes within any solid-angle interval. The slope density
function is essentially the slope histogram normalized by
solid angle. The difference will become apparent when
unidirectional and adirectional slope distributions are
discussed.

2.2,

Ordinary Brownian noise (0Bn) (D=1.5 for profiles, 2.5 for
surfaces) or a “random walk” is a continuous but
nondifferentiable function. It can be generated in several
ways. One of the simplest methods is to start on a horizontal
axis, move in incremental steps along the x axis, and at
every increment take a (vertical) step up or down [Turcotte,
1992]. The limit of this process as step-size goes to zero is
Brownian noise [Hastings and Sugihara, 1993]. Another
method involves integrating a Gaussian white noise spectrum
[Voss, 1988].

There are several important properties of oBn which will
be used extensively throughout this paper. For any incremen-
tal step, Ax, the population of height differences Az(x) = z(x
+ Ax) — z(x) have the following properties: (1) the mean,
<Az>, is zero; (2) the Allan variance, <Az2> = v2 is

Ordinary Brownian Noise
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proportional to the step size, Ax, used to measure a profile
3

where ¢2 is a constant of proportionality; (3) the increments
Az are distributed according to Gaussian statistics; (4) the
increments Az are uncorrelated; and (5) the magnitude of z is
arbitrary — in fact, x and z are not even required to have the
same units [Hastings and Sugihara, 1993]. If Ax is taken to
be the length of the profile, L, then (3) also states that the
Allan variance is proportional to the length of the profile.

Sayles and Thomas [1978] note that oBn is a
nonstationary random process. A stationary process is one in
which the properties of any given segment (or area) are
statistically identical to any other segment or to the whole.
However, oBn is stationary in a more restricted sense, in that
segments of the same length (or area) are statistically
identical to other segments (or areas) of the same size, but
not to segments or areas of different sizes. This restricted
sense of stationarity has important ramifications, to be
discussed later.

Figure 1 shows a profile of oBn generated using a random
walk algorithm and a topographic profile (acquired using
helicopter stereophotography [cf. Farr, 1992]) of the Black
Rock lava flow, Lunar Crater Volcanic Field, Nevada
[Arvidson et al., 1991]. The two profiles are statistically the
same, and as we will show later, have the same fractal
dimension.

vi= ’Ax

2.3.

Fractional Brownian noise (fBn) is the general case of self-
affine behavior and permits fractal dimensions 1.0 < D < 2.0
for profiles and 2.0 < D < 3.0 for surfaces. The properties of
fBn are similar to oBn above except that the Allan variance
(3) is now given by

“

where H is the Hurst exponent [Hastings and Sugihara,

Fractional Brownian Noise

V2= ci(Ax)*

100 —
250 b
200 f

Brownian Motion

150
100

HEIGHT (cm)

Black Rock Profile

0 200 400 600 800 1000

HORIZONTAL DISTANCE (cm)

Figure 1. Plot of ordinary Brownian motion or “random
walk” (top curve) and a profile of the Black Rock basalt flow
(bottom curve). Both figures have a fractal dimension, D =
1.5. The oBn plot is offset for clarity. The Black Rock
profile was measured using helicopter stereophotography [cf.
Farr, 1992]. Data points are 1 cm apart and vertical errors are
up to +4 mm [Farr, 1992].
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1993]. Comparing (4) with (3) illustrates that H = 0.5 for
oBn. Furthermore, oBn property (4) above is not generally
true for fBn. For H > 0.5, adjacent Az are positively
correlated, i.e., a trend in the upward direction tends to remain
in that direction, while for H < 0.5, adjacent Az are
negatively correlated [ Hastings and Sugihara, 1993]. The
visual effect of this property is that surfaces with H > 0.5 (D
< 2.5) tend to look more “smooth”, while surfaces with H <
0.5 (D > 2.5) tend to look more “rough.”

2.4. Scaling Properties of the Variance and rms
Height

Our discussion so far has concentrated on properties of the
Allan variance and deviation. The behavior of the variance
and rms height of a surface or profile will be similar to that
of the Allan variance and deviation, but with a subtle
difference. Equations (3) and (4) have emphasized that the
Allan variance and deviation increase with increasing scale
size, Ax. Interestingly though, for a given profile length the
variance and rms height will be independent of the scale, Ax,
used to measure them. However, if the profile length is
varied, the variance and rms height will vary in accordance
with (4), where Ax is replaced by the profile length, L. Note
also that the proportionality constant, ¢, will be different
from that used in the Allan variance. We will discuss the
relationship between these quantities in more detail below.

2.5. Measurement of Fractal Dimension

There are many methods of measuring the fractal
dimension of surfaces. One of the first and most intuitive
methods used involves plotting the length of a profile as a
function of the ruler size used to measure it [Mandelbrot,
1982]. There are variations on this method, including
counting the number of boxes or circles of a certain size
needed to cover a profile [cf. Voss, 1988]. In this paper, we
utilize two different methods: the power spectrum method [cf.
Voss, 1988; Turcotte, 1992] and the variogram method [cf.
Mark and Aronson, 1984; Chase, 1992]. We use these
methods because, in addition to calculating the fractal
dimension, they describe the behavior of other statistical
parameters.

Power spectrum method. The power spectrum
method is often used for both determining the fractal
dimension of a surface or profile and synthesizing a fractal
surface or profile. Essentially, the power spectrum is a
function that defines the amplitude of a given spatial
frequency. For a profile, it is defined as

2 5
$() = TIXGL) ©)

where § is the power spectral density function, f is the
spatial frequency, L is the length of the profile, and X is the
Fourier transform of the profile [Turcotte, 1992]. A fractal
surface can be defined as one with a linear power spectrum (in
log-log space), defined by S = Bf + o, where B is the slope
(-3 < B < -2) and « is the intercept. Note the units for a
profile with height and length measured in meters: X is in
m2 and L is in meters so that § is in m4m-! or m3. The
variance can be defined as the total area under the power
spectrum [Sayles and Thomas, 1978; Ogilvy, 1991]. The
slope of the power spectrum for a profile is related to the
fractal dimension by [Turcotte, 1992):
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Figure 2. Power spectrum of the Black Rock profile
shown in Figure 1. Slope of the best fit line is -2.01, giving
D =1.50.

©)

Note that the limits of B correspond to limits of 1 <D <
1.5. Determination of fractal dimensions higher than 1.5
using the power spectral method are to be made with caution
because of the possible effects of overhangs [Brown and
Scholz, 1985]. An example of the power spectrum from a
profile of the Black Rock a’a flow surface is shown in Figure
2, with a corresponding fractal dimension D = 1.50.

Variogram. Another common method of measuring the
fractal dimension of a surface or profile is the variogram
method [e.g., Mark and Aronson, 1984; Chase, 1992]. Recall
that the variogram is equivalent to the Allan variance (2).
Therefore, on a variogram, fBn is represented by (4) [Mark
and Aronson, 1984]. When plotted on log-log axes, the
variogram is linear with slope equal to 2H. Figure 3 shows
the variogram of the Black Rock a’a profile. The fractal
dimension from the variogram is 1.48, quite close to the
power spectral determination of 1.50.

Comparison of methods. There is an ongoing debate
about the use of the power spectrum method for quantifying
the fractal dimension. Work relying on the power spectrum
method often reports fractal dimensions of ~2.5 for surfaces
and ~1.5 for profiles [Huang and Turcotte, 1989, 1990; Farr,
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Figure 3. Variogram of Black Rock profile shown in

Figure 1. Slope of best fit line is 1.04 giving D = 1.48,

quite close to the power spectrum determination of D = 1.50.
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Figure 4. (a) Synthetic fractal surface, D = 2.2, area 512 m x 512 m, point spacing 1 m, rms height of
4 m. (b) Synthetic surface, D=1.5, area of 512m x 512m, rms height of 3.3 m. This surface is statistical-

ly identical to the Black Rock flow topography. Vertical exaggeration for both figures is 10x.

1992]. However, work using the variogram method more synthetic surfaces with fractal dimensions of 2.2 and 2.5
often reports lower fractal dimensions, typically 2.1-2.3 for generated using the power spectrum method [Voss, 1988;
surfaces and 1.1-1.3 for profiles, especially at scales of Turcotte, 1992].

centimeters to hundreds of meters [e.g., Mark and Aronson, Recent work by Austin et al. [1994] indicates that
1984; Chase, 1992]. For comparison, Figure 4 shows two determinations of the fractal dimension using the power
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spectrum method are biased to slopes of -2.0 (D = 1.5 or 2.5)
by spectral leakage (from low frequencies into the higher
frequencies). One remedy suggested by Austin et al. [1994] is
the use of a Hanning filter on the profile or surface prior to
computing the power spectrum. We found that filtering out
the highest frequency information before the linear regression
also improved results. The power spectrum in Figure 2 was
generated in this manner.

Our experience leads us to favor the variogram method
over the power spectrum method for calculating fractal
dimensions from surfaces and profiles. In part, this preference
is due to a desire to work with unfiltered data. Also, we find
that the variogram is less noisy than the power spectrum
(compare Figures 2 and 3). However, for synthesizing fractal
surfaces, the power spectrum method is preferred; it is rapid
and does not suffer from many of the artifacts that tend to
plague spatial methods (cf. Voss [1988] for a review of
synthesizing algorithms).

2.6. The Role of Scale on Fractal Surfaces

We discuss the role of scale on fractal surfaces through an
example. Consider two profiles taken from the same surface.
Each profile is a sample of surface height at 1-cm intervals.
Profile A is 1000 points long, or 10 m; profile B is 100
points long or 1 m. We assume for simplicity that the mean
of the surface heights is zero, that each profile has a fractal
dimension of 1.5 corresponding to oBn, and that the profiles
were produced with the same random walk algorithm (this
latter assumption is equivalent to stating that profile B is a
subset of profile A). The rms height of profile A we
designate 6, and profile B is op. Because our profiles are
oBn and produced by the same algorithm, the rms heights are
proportional to the square root of profile length (section 2.4
and (3)). Therefore, the relationship between 64 and op is:

1/2 7
o= (—10—"‘-) 0,= (3.16)0, )
1m

Comparing the power spectra of profiles A and B, we find
that the slope and intercept will be identical. Examination of
(5) reveals why. The amplitudes of the Fourier transform of
profile A will be V10 = 3.16 times higher than profile B
because on average, profile A has an rms height 3.16 times
larger than B. However, the length of profile A is 10 times
longer than B. So the longer profile (1/L term) exactly
offsets the amplitude square (X2) term, resulting in similar
power spectral density functions. The only discernible
difference will be the existence of more low-frequency terms
in the A profile spectrum.

Now multiply the heights of profile B by 3.16 and
designate this profile C. The rms height of C is equal to that
of profile A. Examination of the power spectrum of C
reveals the same slope, i.e., the fractal dimension of C is
still 1.5. As discussed earlier (section 2.2, property (5)), the
magnitude of the z axis units have no effect on the fractal
dimension. However, the intercept of the power spectrum
changes in proportion to the height magnification squared,
i.e., by a factor of 10. Therefore, although A and C have the
same rms height and fractal dimension, they are statistically
different, as evidenced by the different power spectra. This
difference will manifest itself through the Allan variance and
rms slope values, to be discussed below.
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3. Fractal Surface Parameters
3.1. Autocorrelation Functions: Background

The autocorrelation function of a profile or surface relates
the correlation (or normalized covariance) between points
separated by a distance, Ax. If Ax = 0, the points being
compared are the same and the autocorrelation function has a
value of 1.0. As Ax is increased, points are generally less
correlated, and the function value decreases. The
autocorrelation functions most often assumed for surfaces are
the Gaussian

2 8
p(Ax)zexP(“Alf ) ®

and exponential
oA%) = exp (_ IAle ) ©

functions (cf. Ogilvy [1991] for a discussion of these and
other functions). The variable [ is the autocorrelation length,
defined as the distance over which the autocorrelation
function decreases to a value of 1/e or ~0.37.

An important property of any autocorrelation function is
the behavior of its derivative at the origin. Examination of
(8) and (9) reveals that the Gaussian function has a continu-
ous derivative at the origin, while the exponential function
has a discontinuous derivative, i.e., the value of the
derivative is different, depending upon whether the origin is
approached from the positive or negative side. This difference
makes the Gaussian function easier to manipulate mathemati-
cally.

3.2. Autocorrelation Functions of Fractal
Surfaces

One method of calculating the autocorrelation function of a
sample set is to take the inverse Fourier transform of the
power spectral density function [Falconer, 1990]. However,
we choose to calculate the autocorrelation function of fBn
with the variogram because of its simplicity and intuitive
nature. Because any given finite segment of a fractal surface
is stationary, i.e., the statistical properties of similar length
segments are identical, the variogram and covariance are
related by

vY(Ax) = k[ 6*—Cov(Ax)] (10)
where 62 is the variance, k is a constant, and Cov(Ax) is the
(auto)covariance between points Ax apart [Jupp et al., 1988;
Falconer, 1990]. For stationary functions, Jupp et al . [1988]
show that k=2. When Ax = 0, the variogram is zero, i.e., the
points being compared are identical. As Ax --> oo, Cov(Ax)
--> 0, i.e., the profiles are uncorrelated and v2 = ko2.

The autocorrelation function, p(Ax), is the normalized
(auto)covariance of that function:

Cov(Ax) (11)

o

Substituting (11) and (4) into (10) and rearranging terms, we
obtain

p(Ax) =

2 12

p(Ax) =1 — P
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Figure 5. Autocorrelation functions of fractal profiles,
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facilitate comparisons of the autocorrelation functions
between the different fractal dimensions.
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A similar derivation of (12) is given by Falconer [1990].

Compare the behavior of (12) at the origin with the
Gaussian and exponential functions. For “smooth” surfaces
(i.e., D < 2.5, H > (.5), the derivative is continuous at the
origin, similar to the Gaussian function. However, for
“rough” surfaces (i.e., D > 2.5, H < 0.5), the derivative is
discontinuous, similar to the exponential function. Further-
more, Ogilvy [1991] notes that surfaces with exponential
autocorrelation functions have more high-frequency terms
than those with Gaussian autocorrelation functions,
mirroring the behavior of the analogous fractal
autocorrelation functions.

Figure S illustrates the behavior of (12) for three cases of
fractal behavior: D = 1.3, 1.5, and 1.7. Figure 6 shows the
autocorrelation function of the Black Rock profile (Figure 1).
There are obvious differences between the theoretical and
observed behavior. Whereas the Gaussian, exponential, and
fractal autocorrelation functions monotonically decrease with
distance, real surfaces often show periodicities, crossing the x
axis several times. This behavior is reminiscent of the sinc
function (sin(x)/x). The similarity is not coincidence. A sinc
function is the result of sampling an infinite time or spatial
series with a finite window filter. Similarly, the damped
periodic behavior exhibited by the autocorrelation functions
of many real surfaces is due to the finite size of the profile.

There is one final and important point to note about fractal
surface autocorrelation functions. When using the Gaussian
or exponential autocorrelation functions, the surface is
assumed to be stationary, as defined earlier (section 2.2).
Stationary surfaces have autocorrelation lengths that are
independent of the profile length or surface area. However,
fractal surfaces are not stationary, except in the limited sense
that profiles or areas of the same size are statistically
identical. Nonstationary surfaces have autocorrelation
functions, and therefore autocorrelation lengths, that are
dependent on the profile length or surface area. This can be
seen by examining (4) and (12). Therefore, assigning an
autocorrelation length to a fractal surface or profile is
meaningless unless the scale is considered.

3.3.

‘When modeling the wave scattering properties of planetary
surfaces, it is convenient to utilize a parameter related to the

Slope Distributions of Fractal Surfaces
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distribution of surface slopes. Several types of slope
parameters are in common use, the unidirectional slope
distribution and rms value, adirectional slope distribution and
rms value, and effective slope. We will briefly discuss each
of these parameters and then derive their quantitative forms
for a fractal surface. To illustrate the distribution forms, we
utilize the synthesized surface shown in Figure 4b. This
surface was designed to simulate the Black Rock flow and
therefore has a fractal dimension of 2.50, area of 512 m x
512 m, and rms height of 3.3 m. Note that the simulated
surface has a much higher rms height than the 46 cm
measured from our 10-m profile. We have simply scaled the
rms height for the larger simulated size using (3). This
allows us to compute slope statistics at a 1-m scale with a
statistically significant number of data points.

Unidirectional slopes. The unidirectional slope is the
rise over run between two points along a linear transect of a
surface, i.e., the slope that would be measured from a profile.
Efford [1990] notes that synthetic fractal surfaces have
unidirectional slope histograms that are accurately represented
by Gaussian functions.

From the properties listed for oBn and fBn, we note that
the difference in heights, Az, between any two points on a
fractal surface has a Gaussian distribution. If we imagine a
transect along a horizontal fractal surface from which we
measure the change in height, Az, at uniform intervals, Ax,
then the slopes derived from these measurements, Az/Ax, will
also have a Gaussian distribution. Therefore, the unidirection-
al slope distribution of a fractal surface is Gaussian, with
(slope) variance <(Az/Ax)2>. The rms slope is just the square
root of this variance and is typically converted to degrees by
taking the inverse tangent. Figure 7a shows a histogram of
the unidirectional slopes of the surface in Figure 4b measured
with a Ax of 1 m. The curve is fit by a Gaussian with sp,s=
0.60 (Byms =31°).

A note on terminology is in order. Figure 7a shows the
undirectional slope distribution with the x axis in terms of
slope, i.e., rise/run, and not in degrees or radians. If the x
axis is in terms of degrees or radians, we prefer the term
unidirectional slope angle distribution. Although a seemingly
trivial distinction, the unidirectional slope angle distribution
of a fractal surface will not be Gaussian, except in the limit
as Oy -> 0. This is because the inverse tangent is increas-
ingly nonlinear at higher slopes.

Adirectional slopes. The adirectional slope is the
tangent of the angle between a surface normal and the
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w
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Figure 6. Autocorrelation function of the Black Rock
profile shown in Figure 1.
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Figure 7. (a) Unidirectional slope distributions of Figure
5b (circles). Curve is best fit Gaussian, tan 6y = 0.60 (Byps
= 31°). (b) Adirectional slope distributions of Figure 6b
(circles). Curve is best fit Rayleigh, mode at 0.56 (29°).

vertical. Initially, one might think the adirectional slope
histogram to be of the same form as the unidirectional slope
histogram. However, examination of Figure 7b, a histogram
of adirectional slopes for the surface in Figure 4b, shows this
not to be the case. The histogram shown in Figure 7b is best
fit by a Rayleigh function, defined by

~ (21 25
P(s) = %e "

0

(13)

where P is the slope histogram function, s is the slope of the
surface normal polar angle, and sp is the mode of the
distribution, equal to the unidirectional slope rms slope. In
Fig. 7b, the best fit Rayleigh to our synthetic surface gives
5o = 0.56 (69 =29°), very close to the unidirectional value of
0.60. Interestingly, field measurements of geologic surfaces
have adirectional slope histograms similar to the Rayleigh
distribution [McCollom and Jakosky, 1993].

The Rayleigh histogram of slopes follows directly from
the behavior of surfaces with Gaussian unidirectional slope
histograms. A Rayleigh function is effectively the sum of
two Gaussian functions in quadrature [ Beckman, 1963]. This
may be visualized as follows. Imagine two orthogonal
transects along some surface, the unidirectional slope
distribution of each being Gaussian. At every point on the
surface, the adirectional slope, s,4jr, for that point can be
approximated by

SELF-AFFINE TOPOGRAPHY
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$o= (14)

(Az,z‘+ Az;')”2
where Az, is the vertical change in the x direction, Az, is the
vertical change in the y direction, and we have assumed the
horizontal distance between points is 1.0. From (14) it is
apparent that the adirectional slope will always be greater
than or equal to the maximum of Az, or Az, . Since it is
unlikely that zero slopes along one direction will coincide
with zero slopes in the orthogonal direction, the mode of the
resulting function will be nonzero. This is responsible for
the skewed nature of the Rayleigh function.

In radar scattering studies, the parameter that must be
utilized is the adirectional slope histogram normalized to
solid angle, also known as the adirectional surface slope
density function (see 2.1, definition 10) [ Simpson and Tyler,
1982; Campbell and Garvin, 1993; McCollom and Jakosky,
1993]. We adopt the nomenclature of Simpson and Tyler
[1982] to express our normalized function. Our synthetic
surfaces are generated so that the projected surface area of each
facet is a constant; we therefore utilize the modified Rea,
Hetherington, and Mifflin probability density function,
PruMm’(0) [Simpson and Tyler, 1982, equation AS]. The
normalization for this function is

n2 . (15)
27 [ Prine(6) SinBdB = 1
0
Normalizing (13) to this form gives
e 3 0 —1an29/2nm291_Im (16)

The secant term arises in part from the conversion of (13) in
terms of slope into degrees. Equation (16) is a Gaussian
function with rms slope tan(0,y) [Simpson and Tyler,
1982].

The rms slope as a function of scale. We now
derive the behavior of the rms slope for a fractal surface
sampled at different horizontal scales, Ax. We have defined
the rms slope, Syms, as V<(Az/Ax)?>. The rms value of Az
will equal v (the Allan deviation) and from (4), v is equal to
c(Ax)H. Therefore, the rms slope can be written as

4 T T T T L

3 i
e Black Rock RMS slope

g m Synthetic RMS slope
w 2t —s=4(Ax)"? ]
1t i
1
1

0 -l 1 1 1 1

0 20 40 60 80 100 120
AX (cm)

Figure 8. Plot of rms slope versus scale for the Black
Rock profile, demonstrating the A-0-5 dependence.
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co(Ax)! a7

Ax

Sn,=tan 6_ = =c¢(Ax)!
For 0Bn, H = 0.5, and the rms slope will decrease as 1/VAx.

Figure 8 shows a plot of s, as a function of scale length
Ax for the Black Rock profile and synthetic profile, and a
curve with the ¢/YAx dependence expected from (17). Note
that s, measured at 1 m is 0.56 (6,5 = 29°), in excellent
agreement with the value calculated for this scale on our
synthetic surface (see Figure 7).

Effective surface slope. We define the effective
surface slope following Campbell and Garvin [1993] as:

2o

Serp I

(18)

where [ was defined earlier (section 3.1) as the autocorrelation
length [Hagfors and Evans, 1968]. Both (18) and (17) are
referred to throughout the literature as “rms slope.” Campbell
and Garvin [1993] chose the term “effective slope” to
differentiate (18) from (17). We have included the V2
following the original form of this function given by
Hagfors and Evans [1968].

As previously discussed, for fractal surfaces, both / and
are functions of the profile length and Hurst exponent
(sections 2.3, 2.4, and 3.2, (4) and (12)). Therefore, different
profile lengths should have different sgpp following the
general form of (17) with Ax replaced by profile length L.
However, both / and ¢ are independent of the scale used
(sections 2.4 and 3.2). Therefore, for a fractal surface the
effective slope is a constant for any given profile length.
This behavior was noted by Campbell and Garvin [1993] in
their topographic analysis of several lava flows.

Relationship of Allan variance and variance. So
far, we have primarily discussed the properties of the Allan
variance and deviation of points on a profile or surface
separated by a distance, Ax. However, the quantities
commonly reported on surfaces or profiles are variance and
rms height. As mentioned earlier (section 2.4), the variance
and rms height follow the general fractal scaling law (4) but
with constants different from the Allan variance, and with the
term Ax replaced with the profile length L. According to
(10), when considering an area or profile as a whole, the
following relationship should exist between the Allan
variance and variance:

V2= ko’ 19

where k is a constant. For stationary functions, k = 2.
However, our experience with millions of computer
simulations indicates that k tends to fall between 4 and 6 for
fractal (oBn) profiles, but this value can vary significantly.
We have found examples of k = 25 or more. The difference
between these findings and the theoretical value for stationary
functions is apparently due to the more limited stationary
properties of fractal behavior, although at this point we
cannot be more rigorous.

The significance of (19) is that the rms slopes reported
from topographic measurements or radar scattering curves are
related to the rms height of the surface, but smaller by a
factor of Vk. For example, consider the Black Rock profile.
At 1-m scale, we obtained an rms slope of 0.6. The Allan
deviation of 1-m segments is therefore 1 m x 0.6 = 60 cm.
However, a calculation of the rms height of 1-m segments
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from the Black Rock and synthetic profiles averages ~15 cm,
400% smaller. In this case, k~16.

The point of this discussion is to emphasize that the rms
height of a surface is related to the rms slope, but only
through the intermediate Allan deviation and (19). It is
critical to keep this relationship in mind when attempting to
interpret radar-derived values of rms slope in terms of surface
roughness parameters.

4. Applications to Radar Scattering

4.1 Quasi-Specular Scattering From a Fractal
Surface

Quasi-specular models for radar backscatter assume that the
surface is composed of a statistical distribution of facets,
large and smooth compared with the wavelength of incident
power. It is also commonly assumed that only facets oriented
with normals coincident with (or within a differential solid
angle of) the radar beam contribute to the returned power.
Therefore, the parameter that must be utilized in quasi-
specular models is the adirectional surface slope density
function [Simpson and Tyler, 1982; Campbell and Garvin,
1993; McCollom and Jakosky, 1993]. For a self-affine
surface, we have demonstrated that the surface slope density
function is Gaussian (16). This can readily be converted into
radar cross section [Simpson and Tyler, 1982]:

4, —tanz(i) /2tan?0
sec’(i)e i

(20)

A
2
tan®g__

where A is a proportionality constant and i is the radar
incidence angle.

Equation (20) conveniently neglects that, by definition, a
self-affine surface will display roughness at scales smaller
than the incident wavelength, thus adding a component of
diffuse scattering to any return. The modification of (20) to
account for this addition is beyond the scope of this paper.

4.2. Relationship of Lunar rms Slope and Radar
Wavelength

The rms slopes of planetary surfaces are often calculated by
fitting quasi-specular models to angular scattering functions
[e.g., Muhleman, 1964, Hagfors and Evans, 1968, Simpson
and Tyler, 1982, and numerous others]. All of these models
have a parameter which is closely related to the surface rms
slope. If planetary surfaces are self-affine, how should rms
slope and radar wavelength relate?

To derive this behavior, we assume that (1) the only
contribution to the near-nadir radar echo is quasi-specular
scattering from the planetary surface, i.e., no significant
diffuse or volume scattering component; and (2) the incident
radar samples surface features at length scales proportional to
its wavelength, i.e., short wavelengths sample smaller
portions of the surface than long wavelengths [cf. Hagfors
and Evans, 1968]. The derivation then leads to a form
identical to (17):

21
mms nA

where n is a constant that relates the size of the wavelength
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to the size of the area sampled by the wave, and X is a
combination of the constants » and ¢ (4).

Simpson and Tyler [1982] were among the first to observe
a power law dependence between radar wavelength and inferred
lunar surface roughness. They noted that the power law
exponent varies with the terrain and reported best fit
exponents (H-1) of 0.0 to -0.42, corresponding to fractal
dimensions of 2.0-2.4. Muhlemann [1964] noted a
logarithmic relationship on the Moon between his roughness
parameter, o, and radar wavelength. Although not identical,
Muhlemann’s logarithmic function is very similar in form to
the power law function in (21).

As an example, we illustrate the behavior of the wave-
length dependent scattering observed on the Moon. Hagfors
and Evans [1968] report angular scattering functions for
observations of the moon at 3.6 cm, 23 cm, 68 cm, and 600
cm. We fit these functions using (20) and the Hagfors
equation [Hagfors and Evans, 1968] to estimate quasi-
specular slope values. In general, the Hagfors equation gave
significantly better fits to these functions than (20). We plot
the rms slopes inferred from the Hagfors fits (Hagfors C-172)
versus A in Figure 9. To the extent that the Hagfors
roughness represents the true surface topography, the best fit
power law (21) implies a fractal dimension of ~2.2.

The apparent similarity between the wavelength dependent
scattering behavior of the Moon and that derived for self-
affine topography is highly suggestive, although by no
means conclusive. There are complications that undoubtably
arise due to diffuse (subwavelength scale) scattering and
penetration into the regolith. If the lunar surface is self-affine
and scatters purely through a quasi-specular mechanism, the
Gaussian function (20) should have provided better fits to the
angular scattering function than the Hagfors equation.
Despite these difficulties, this is a promising area for future
investigations.

4.3. Note on the Application of the Small

Perturbation Model

The small perturbation model (SPM) is a group of radar
scattering models which are commonly employed to study
surfaces that deviate slightly from perfectly smooth [e.g.,
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Beckmann, 1963; van Zyl et al., 1991]. The model is
considered limited to those surfaces with rms heights of

o< X 22)
20

[van Zyl et al., 1991). In practice, little consideration is
given to the length of the profile from which ¢ is measured.
If, for example, the surface is oBn, rms heights measured
along profiles 200 m long are ~3 times higher than those
from 20-m profiles, which are, in turn ~3 times higher than
2-m profiles. If we assume that the length scale of the surface
sampled by the radar is proportional in size to the wave-
length, then rms heights measured along profiles should be
scaled to this length. This has been instinctively known by
many using the model; one practice is to use a high-pass
filter on profiles, effectively limiting the profile length (B.
Campbell personal communication, 1994). Many surfaces
have probably been falsely ruled eligible or ineligible for the
SPM based on (22) and rms heights from profiles of
inappropriate length. Further work is needed to understand the
relationship between wavelength and surface sampling size in
this model. More generally, work is needed to determine the
effects of non-stationary topography on these models.

5. Summary

The assumption of fractal topography explains several
problems observed in the literature of surface roughness
parameterization and planetary radar scattering. The
adirectional slope distributions of surfaces measured by
McCollom and Jakosky [1993] had nonzero means and
modes, unlike the commonly assumed Gaussian or exponen-
tial distributions. Self-affine topography predicts this
behavior in the form of a Rayleigh adirectional slope
histogram. However, the adirectional slope density function
utilized in quasi-specular models is a normalized (to solid-
angle) histogram function. When suitably normalized, the
Rayleigh histogram becomes a Gaussian adirectional slope
density function with an rms slope equivalent to that found
from a unidirectional profile.

The rms slope of the lunar surface inferred from
multiwavelength radar measurements has been observed to
decrease with increasing wavelength [Muhleman, 1964;
Hagfors and Evans, 1968] and was found to have a power law
dependence by Simpson and Tyler [1982). We have shown
that this behavior is consistent with fractal topography with
fractal dimensions typical of many geologic surfaces
measured on the Earth.

Finally, the small perturbation models applied to slightly
rough surfaces usually place limits on the acceptable surface
rms height, but no limits on the length over which this
value is measured. If topography is self-affine over the scales
assumed in this paper, then the rms height is a function of
the profile length used to measure it. Therefore, we suggest
that the length of the profile measured should be scaled to the
radar wavelength; however, work is needed to determine this
relationship and the more general effects of nonstationary
topography on small perturbation models.
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