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Abstract
We compute the fractal dimensions of the ‘hulls’ or external boundary and the
boundaries of the internal cavities in several deterministic as well as random
fractal structures. Our conclusion is that the two fractal dimensions are in
fact identical. The deterministic fractals we study are Sierpinski carpets
(SC) in a two-dimensional space and the random fractals are percolation
clusters at criticality. As an intermediate case, we present results on some
randomized SC. In the random structures, statistics of the area and perimeters
of all internal cavities or holes are taken and the fractal dimension of the
hull borderline is computed. Two different definitions of the borderline are
used, considering nearest neighbours as well as nearest and second nearest
neighbours as connected. The conclusion is valid for both cases.

PACS numbers: 61.43.Hv, 89.75.Da, 64.60.Ak

1. Introduction

Natural growth processes very often lead to self-similar systems with fractal dimensions [1, 2].
Examples are sponges, corals, vacuum-deposited surfaces and so on. Many of these objects
have cavities or holes inside, developed as a result of the same natural process, which generate
the structure. The holes also show fractal characteristics. For Euclidean objects with embedded
holes, we expect the dimension of the outer surface to be the same as the dimension of the
internal surface bounding the hole. It is quite clear that an object in a three-dimensional space
has a two-dimensional external surface, and any hole in it is also bounded by a two-dimensional
surface. An object embedded in a two-dimensional space, as well as any hole in it will have a
linear boundary. The corresponding situation in fractals is not so obvious. Is it necessary for
a porous material to have an external and internal interface with the same fractal dimension?
Is it at least usual? The present work gives a tentative answer to this question.

It is well known that, for mass fractals, the total interface including external as well as
all internal boundaries scales exactly as the total mass [1, 3]. The external perimeter alone
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Figure 1. Definitions of the borderline, left: natural borderline, right: nearest-neighbour
borderline.

scales with a different fractal dimension, usually referred to as the ‘hull dimension’ [3, 4].
Franz et al [5] showed that for the Sierpinski carpet (SC) holes are characterized by a fractal
dimension dp. We demonstrate first that for the Sierpinski carpet family with internal holes,
the fractal dimension of the hole boundaries dp is indeed equal to the fractal dimension of the
external boundary. This does not imply, of course, that this is a general result, especially it
may not hold for random fractals, and hence for natural systems. Then we turn to the case
of a typical and much-studied random fractal—the percolation cluster at criticality [6] which
is still a subject of intensive research [7–9], but to our knowledge statistics of the holes or
cavities has not received any attention. The percolation cluster has to be studied by numerical
methods and exact answers cannot be obtained as in the case of the Sierpinski carpets. It
appears, however, that within the limits of error the fractal dimension of the hole boundaries is
equal to the well-known ‘hull dimension’, i.e. the dimension of the external perimeter. So, our
conjecture is that this identity of the internal and external perimeter dimensions is a general
result. As an intermediate case, we also study the randomized Sierpinski carpets, where some
randomness is introduced into the pattern. Such systems have been studied previously under
the name ‘regular random fractals’ [10, 11, 13].

2. Borderlines

Let us recall the standard percolation problem [6] on a square lattice. Unit squares are randomly
occupied on a square lattice with probability w. Usually one is interested in the condition for
percolation, i.e. the value of w = wc, when a spanning cluster appears, connecting opposite
boundaries of the system. If the system is realized on a computer, each unit square is a pixel
at the highest resolution. At present, we are concerned with a system where w = wc, i.e.
at criticality, when the largest spanning cluster is known to be a fractal [3]. Let us look at
the spanning cluster. The common definition of a two-dimensional site percolation cluster
is that two occupied pixels, which only touch each other at one corner, are not connected.
Therefore, as a logical consequence, two vacant pixels, which touch each other at one corner,
are connected and belong either both to the outer space or both to the same hole. In other
words, a vacant pixel is connected with vacant pixels being nearest or next nearest neighbours.
This is the way to define a ‘natural’ borderline. However, for some physical applications, for
example transport through holes, there is another sensible definition of a so-called ‘nearest
neighbour’-borderline. In that case it is suggested that particles cannot pass the (theoretically
infinitesimal) small gap between two occupied pixels touching at one corner. Within this
definition, two vacant pixels are only assumed to be connected if they are nearest neighbours,
see figure 1.
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Figure 2. Increasing the ruler for measuring the length of a borderline. The property of each new
‘superpixel’ (vacant or not) is determined by the majority of its 4 × 4 primary pixels.

The area of a hole a is the number of its pixels. The perimeter is the number of edges,
which form the borderline. In our sample of hundreds of clusters we have an excellent statistics
provided by millions of holes. This means, the dimension d of hole perimeters p can easily be
determined by applying the regression formula

p ∼ a
d
2 (1)

as realized in sections 4.2 and 5.

3. Hull dimension

In the case of the hull, we have to extract the dimension from much less information, i.e. (a)
only one hull per cluster with (b) nearly the same extent for all clusters. Therefore, to calculate
the fractal dimension of these borderlines, just in the same way as for geographical islands:
increase, step-by-step, the length l of a ruler, measure repeatedly the length of the borderline
L, and fit the results to the function L ∼ l(1−d). To implement this procedure for our structure,
we overlay the system by a grid with a side length larger than the pixel size. This length is
the new l. The grid is our new structure. Now we look at the pixels using some kind of matt
screen as illustrated in figure 2. For example, if the grid length is increased by a factor 4, the
16 pixels of each grid cell are transformed to one new but larger ‘superpixel’. The property of
that new pixel is determined by the majority of the former small pixels. If there is no majority
that property is specified by ‘flipping a coin’.

4. Sierpinski carpets and the hole-perimeter dimension

Now we turn to a family of deterministic fractals, the well-known Sierpinski carpets (SC).
Many different aspects of these fractals have been studied [14–16]. SC are simple to construct
in any dimension and properties such as the fractal dimension and connectivity can be tuned
to desired values. This makes the SC a convenient choice for a prototype deterministic fractal
which may serve as a model for natural fractals, e.g. porous media. One can make the
resemblance closer by randomizing the SC [10, 11, 13]. This makes the system stochastic
to a certain extent, while still tractable and having a tunable fractal dimension. Sierpinski
carpets are constructed in the following way: one starts with a unit square, divides it into n×n

congruent smaller subsquares and removes (n2 − m) of them. That gives an n × n pattern
called the generator of the Sierpinski carpet. This construction procedure is repeated with all
the remaining subsquares ad infinitum. The resulting object is a fractal of fractal dimension
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df = log(m)/ log(n), called a Sierpinski carpet. This can be generalized to three dimensions
to a Menger sponge [1], but at present we remain confined to two-dimensional carpets.

Sierpinski carpets can be finitely or infinitely ramified like other deterministic fractals
[17]. The ramification may be different in the vertical and horizontal directions, and is
determined by how many occupied squares in the generator connect with the neighbouring
block, if a replica of the generator is placed beside it. These are the ‘connection points’ of
the generator. If the number of connection points is 1 in the vertical as well as horizontal
direction, the fractal is finitely ramified. If it is more than 1 in either direction, ramification
is infinite. Further details are discussed in [5]. If the resulting carpet has a connected path
from one end to the other, after the required number of iterations, we say it is ‘percolating’.
An example is shown in figure 3. The generator of that carpet was a fixed 4 × 4 pattern, with
12 occupied positions. All parts of the carpet which are not connected with the percolating
cluster have been removed.

4.1. Deterministic Sierpinski carpets

It has already been shown that the pores within Sierpinski carpets have a definite fractal
dimension between 1 and 2 which can be exactly determined from the generator [5]. Below
we show that the external boundary has the same fractal dimension as the holes.

Before we derive a formula for the total perimeter of the ith iteration of the carpet iterator,
let us introduce the notation used. Let I be an n × n iterator (i = 1) of the carpet of
interest and m be the number of tiles in the iterator. We denote by rH and rV the horizontal
and vertical ramification of the carpet, respectively, that is the number of horizontally and
vertically connecting surface tiles. sH and sV denote the number of horizontal and vertical
inner surfaces, respectively. Then we have for the number of surfaces of all tiles in the ith
iteration

sT
i = misT

0 (2)

with sT
0 being the number of surfaces of one single tile (sT

0 = 4 for quadratic tiles).
Next we count all inner surfaces of the ith iteration. We start with a single tile which, of

course, has no inner surface and thus sI
0 = 0. Then the ith iteration has

sI
i = msI

i−1 + ri−1
H sH + ri−1

V sV (3)

inner surfaces because we have m replicas of the iterator of stage (i − 1) and (ramification ×
inner surfaces) new inner surfaces in vertical and horizontal direction because of the new
connections appearing in the next stage. From the hole counting polynomial (see [5]), we can
calculate the total perimeter of all inner loops sL

i .
Thus we have for the outer perimeter si of the ith carpet iteration

si = sT
i − 2sI

i − sL
i (4)

because the outer perimeter is all that is left when we count the surfaces of all tiles, subtract
twice the number of inner surfaces and all inner loop surfaces. If we examine the scaling
behaviour of the carpet perimeter, we find that it scales with the pore dimension dp. For all
iterators that generate pores, we either have a pore in the iterator itself or it is generated from
a pattern of tiles after the iteration. In the latter case, we can easily see that the pore surface is
composed of exactly the surface of the iterator minus the surfaces of the ramification points
(see figure 4). Thus the surface becomes an inner loop after the first iteration and thus we
could expect its surface to scale just as an inner loop. For inner loops already present in
the iterator, we would expect the same except that we will be able to map the iterator surface
several times onto the loop surface. Interestingly, the surfaces of the ramification points appear
only once.
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Figure 3. Examples for: a regular Sierpinski carpet (left), a random Sierpinski carpet (middle),
and a random percolation cluster (right). Below each cluster: the hulls and the corresponding holes
for both types of borderline, ‘natural’ and ‘nearest neighbour’.

4.2. Random Sierpinski carpets

The construction of random Sierpinski carpets is similar to that of regular ones. The generator
is divided as before into n × n congruent squares, m are occupied and (n2 − m) being vacant.
In the next stage, each remaining occupied subsquare is divided into n × n equal subsquares,
but the assignment—whether it is occupied or vacant—is based on different randomly chosen
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Figure 4. Two examples for the first iteration.
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Figure 5. Average perimeter for each area for random Sierpinski carpets 1024 × 1024, together
with the results of regressions (white lines), circles: natural borderlines, crosses: nearest-
neighbour-borderlines. Exponents of the power-laws shown are half the fractal dimension
according to (1)

generators each time. This procedure is repeated ad infinitum or up to a desired iteration depth.
An example is shown in figure 3. It is to be noted that deterministic SC can be constructed
so as to have no isolated occupied site, i.e. with all occupied sites belonging to one spanning
cluster, but this is not possible for randomized SC. So arguments valid for deterministic SC in
section 4.1 are not directly applicable to randomized SC. In figure 5, we present the results for
a set of 500 equally dense and random Sierpinski carpets, 1024 × 1024 each. As generators
we have randomly used a set of 16 patterns, each 4 × 4 with 12 occupied positions. Only if
the resulting cluster connects two opposite sides of the 1024 × 1024 square, the connecting
part of the cluster will be further analysed. The discontinuities of the functions p(a) are
due to qualitatively new lakes with particularly smooth perimeters. These lakes contain large
and coarse patterns from early steps of carpet generation, as the big rectangle in the example
lake on the right of figure 5. For better reliability, the regressions following (1) have been
performed in all cases only for lakes containing 100 or more pixels, neglecting millions of
very small lakes which would falsify the statistics due to their angular non-fractal perimeters.

The randomized SC are in between deterministic and random fractals. We consider next
a truly stochastic fractal—the percolation cluster at criticality.

5. Random percolation clusters

5.1. Generation and analysis

To create a connected cluster at the percolation threshold, at first the sites of a square lattice are
occupied randomly with a probability w = 0.592 746, which is the site percolation threshold
on a square lattice [6]. Two occupied sites are connected, if they touch each other by one of
the edges. Then, if there is a continuous connection from one end of the system to the opposite
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Figure 6. The modified Hoshen–Kopelman analysis, simplified for a 3 × 3 partitioning. Left:
first step, complete, parallel, and independent analysis of smaller subsquares, right: sequential
renumbering by analysing the borderlines of the subsquares (example detail: two holes of an upper
subsquare are newly linked by a hole of a lower subsquare).

side, a spanning cluster exists and all other occupied sides are eliminated, so that only this
cluster with its holes remains. An example is shown in figure 3.

To analyse the large amount of different holes they have to be completely labelled, using
the Hoshen–Kopelman algorithm [18] for natural boundaries: each site is not only checked for
its upper and left single neighbours, but also for the complete upper and left neighbourhood.
After this check in a lot of cases, all sites of the whole area with a certain number have to
be renumbered. Therefore, the computing time of that algorithm normally enlarges with the
fourth power of the cluster side length and it takes too much time to analyse clusters with more
than 1024×1024 pixels. Using the following two-step algorithm this limit has been overcome.
As shown in figure 6, the square area of the cluster is firstly divided into smaller squares like
a chessboard. By trial and error we found an 8 × 8 partitioning to be the most effective for
clusters larger than 1024 × 1024. Next, the Hoshen–Kopelman analysis is applied for each
partial square independently. Dividing the integer number space into non-overlapping ranges
guarantees an independent numbering for each square. Note, that in this first step nearly all
of the small- and medium-sized holes are finally renumbered, if they are completely located
within the area of one partial square. We have got advantage by additionally using a message-
passing interface with one CPU for each square, which results in saving considerable time for
this step of computation.

The final step of the analysis is to apply the Hoshen–Kopelman algorithm again, but only
for the pixels at the top and left edge of each partial square, beginning at the upper left and
ending at the lower right corner of the chessboard. The most complicated situation to be
tackled now is, that two holes of an upper or left subsquare, so far not connected within this
subsquare, can now be linked by a new hole in the actual subsquare, in the case of natural
borderlines already by one single empty pixel as shown in the detail of figure 6. In that special
case two of three holes must be renumbered simultaneously. Nevertheless, in this step of
computation, the number of pixels analysed is only a linear function of the cluster side length
and, in most cases, only holes that are in contact with a hole on the other side of a borderline
are renumbered.

As you will see in subsection 5.2, it was necessary to handle clusters up to 4096 ×
4096 pixels, and it is the method described here, which enables this handling. The method
reduces the computation time for one 4096 × 4096 cluster from a couple of days to about 1 h.

5.2. Results

For 500 clusters with 1024 × 1024 pixels each, figure 7 shows the average perimeter of holes
versus area. The hole fractal dimensions have been calculated from the results of regression,
equation (1), as in chapter 4.2.
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Figure 7. Average perimeter for each area for random Sierpinski carpets 1024 × 1024, together
with the results of regressions (white lines), circles: natural borderlines, crosses: nearest-
neighbour-borderlines.

Table 1. Results for hole dimensions (nat.) in 50 percolation clusters 4096 × 4096, allowing only
holes with a minimal size.

Hole size taken into Number of Calculated
consideration (pixels) holes fractal dimension

�100 342 918 1.723
�1000 39 714 1.730
�10 000 4 469 1.744

Table 2. Results for hull and hole dimensions calculated for natural borderlines (nat) and nearest
neighbour connections (nn). (500 clusters 1024 × 1024, bold numbers: 50 clusters 4096 × 4096).

Random Random Percolation Percolation
SC (nat) SC (nn) cluster (nat) cluster (nn)

Hull dimension 1.48 1.37 1.76 1.36
Hole dimension 1.474 1.364 1.744 1.346

In an early stage of collecting data, we supposed a weak underestimation of the hole
dimensions of percolation clusters due to the finite size and granularity of the structures. To
analyse this systematic error more precisely, we performed an additional computation series,
exemplarily with much larger clusters containing 4096 × 4096 pixels and using the method
described in subsection 5.1. This cluster size allows us to extract data for particularly large
holes. Table 1 shows clearly that the lake-shore fractal dimension increases by excluding
small holes. Moreover, it seems that the value tends to the theoretical result 7/4. It turned out
that this effect appears specifically for percolation clusters with natural borderlines.

The dimension for nearest neighbour connected holes only slightly increases in analysing
4096 × 4096 clusters, due to the too rare appearance of holes with an area greater than
1000 pixels. We have taken the mean value for areas greater or equal 100 as the final result.
All numerical results for fractal dimensions in random Sierpinski carpets and percolation
clusters are summarized in section 6, table 2. The hull dimension results are in a very good
agreement with earlier work [19, 20].

Quite interesting properties have been found for ‘lakes with islands’. After its primary
generation, the percolation cluster has islands within its internal lakes, again second-generation
lakes within these, and so on. For all calculations discussed so far, these islands, not belonging
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Figure 8. Average perimeter for each area for random percolation clusters with islands,
1024 × 1024, together with the results of regressions (white lines), circles: natural borderlines,
crosses: nearest-neighbour-borderlines.

to the cluster itself, had been deleted. Otherwise, in case one does not delete these islands
and includes their boundaries when calculating the ‘lake shore’ dimension, the results are
quite different. Including all the boundaries of these islands reduces the areas and increases
the perimeters. As shown in figure 8, we can easily obtain for this case a fractal dimension
up to 1.996, which allows us to predict it to have generally a value of (2 − ε)(0 < ε � 1)

for large lakes with islands. This is of course very different from the ‘hull dimension’.
Indeed, an analysis of the pixel properties indicates that for these lakes nearly all pixels (up to
about 97%) touch the perimeter. Therefore, it is evident that the islands ‘deform’ the lakes to
narrow strips, either with a strongly restricted length when only the rigorous nearest neighbour
connections are allowed (maximal length found: 190 pixels), or with considerable lengths if
the natural connection rules are applied. These linear strips are uniformly and randomly
distributed inside the cluster, like a two-dimensional network of lines with a uniform mean
density. Consequently, their fractal dimension is nearly equal to that of an Euclidean plane.
An example for such a kind of lake is shown (magnified) in figure 8, only 23 pixels (out of
917) of this lake are not part of the perimeter.

6. Conclusions

Table 2 shows that hull and hole dimensions for random fractals do agree within limits of
computational error. The standard errors determined in averaging out the samples of each kind
of clusters are all close to ±0.02 for the hull data and ±0.006 for the hole data, respectively.

Therefore, we conclude from table 2 that our conjecture—external and internal perimeters
should have the same fractal dimension—appears to hold well for random fractals. For
deterministic SC, we have shown that this is an exact result.

Though this conclusion seems very reasonable, it is by no means obvious. One may better
realize that it is non-trivial from the following considerations. It is perfectly possible for a
compact non-fractal object to have a fractal boundary as for example in Eden clusters [21] or
the triadic Koch island [1]. These examples do not have internal holes. Our present study
shows that as soon as internal holes appear naturally through the fractal generation rule, they
should have the same dimension as the outer boundary. Again, one can also think of mass
fractals with a smooth hull, SC of this class are easy to construct, e.g. those in Franz et al [5]
with dp = 1. These patterns have internal holes of all sizes (otherwise they could not be mass
fractals), but smoothness of the external boundary implies that the internal holes cannot have
fractal interfaces, according to the findings presented here.
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A random walker walking along the hull or a lake shore returns to its starting point and
may not be able to distinguish whether it has traversed an internal or the external boundary.
But this does not mean that hull and lake shores are equivalent and indistinguishable. If the
walker compares the sets of lattice sites bounded by the perimeter for all such walks, all the
sets, except one will be disjoint with no common point. The remaining one will include all
the others and this corresponds to the hull, so in principle the hull is distinguishable from the
lake perimeters.

The fractal dimension of the internal boundary of a cavity in a porous fractal [5] has not
received much attention, though there are many studies related to the hull of a percolation
cluster [19, 20]. Now we have demonstrated that for deterministic as well as random fractals,
where the internal cavities and external boundary are formed by the same iteration rule
or the same natural growth process, the internal and external perimeters scale similarly.
We can expect to see this in practical cases, such as vacuum deposition on a substrate or
electrodeposition from an electrolyte solution.

The result may not hold for example, in the case of a piece of porous rock broken off from
a large sample. In this case, the outer surface is formed by the process of fracture, whereas
the internal holes are a result of the sedimentation and diagenesis processes which created the
rock [22, 23]. So these new results are of practical importance and convey some information
about how the surfaces are formed. Furthermore, for mathematical fractals the result may
have a deeper topological implication.
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