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ABSTRACT 

Chase, C.G., 1992. Fluvial landsculpting and the fractal dimension of topography. In: R.S. Snow and L. Mayer (Editors), 
Fractals in Geomorphology. Geomorphology, 5: 39-57. 

Quantitative models of landform development can help us to understand the evolution of mountains and regional to- 
pography, and the effects of tectonic motions and climate on landscape, including its fractal geometry. This paper presents 
a general and powerful three-dimensional model of fluvial erosion and deposition at hill- to mountain-range scale. The 
model works by accumulating the effects of randomly seeded storms or floods (precipitons) that cause diffusional smooth- 
ing then move downslope on digital topography grids, that erode portions of elevation differences, that transport a slope- 
limited amount of eroded material, and that deposit alluvium when their sediment-carrying capacity is exceeded.The 
iteration of these simple and almost linear rules produce very complicated simulated landscapes, demonstrating that com- 
plex landscapes do not require complex laws. Each process implemented in the model is affected differently by changes in 
horizontal scale. Erosion, a scale-free process, roughens topography at all wavelengths. This roughening is balanced by 
diffusive processes (scaling as 1/L 2 ) at short wavelengths and deposition (scaling as 1/L 2 ) at long wavelengths. Such a 
mixture of scale-free and scale-dependent processes can produce multifractal behavior in the models. The fractal dimen- 
sion of the model topography is much more sensitive to climatic variables than to tectonic uplift. Landscape evolution 
may be fractal, but it does not seem to be chaotic. Analysis of topography of areas in southern Arizona using variograms 
shows approximately fractal behavior, with mean fractal dimension around 2.2-2.3. Departures from an exact fractal 
relationship imply that the topography is in detail multifractal. The fractal dimension at short wavelengths is less than that 
at long wavelengths. This variation could either be caused by the relative strengths of diffusive and erosional processes 
shaping the topography, or a result of changes in climatic or tectonic conditions still preserved in the landscape. 

Introduction 

Recent years have seen an increasing reali- 
zation that surficial mass redistribution is an 
important, even crucial feedback element in 
mountain-building processes (Molnar and 
Lyon-Caen, 1988; King et at., 1988; Stein et at., 
1988; Flemings and Jordan, 1989). Models of 
large-scale landscape evolution are needed to 
understand the structural as well as the topo- 
graphic development of major landforms. In 
this paper I develop a three-dimensional nu- 
merical model of fluvial landsculpting opera- 
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tive over large periods of time and large spatial 
scales. The model is based on very simple ap- 
proximations intended to capture the synoptic 
effects of fluvial processes. If successful, it will 
allow insight into how the complexity of natu- 
ral landscapes develops. Experiments with the 
model also offer tentative insight into how cli- 
matic and tectonic variables affect the evolu- 
tion of landscapes. 

The results of the model also relate to the 
complexity of natural landscape and its de- 
scription through the language of fractal ge- 
ometry. Such description is not an end in it- 
self, but may open a path to understanding the 
interplay of climatic and tectonic influences on 
the development of landscapes. Fractal analy- 
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sis of some data drawn from a digital topogra- 
phy model of southern Arizona shows that 
multifractal behavior seen in the models is also 
characteristic of some natural landscapes. 
Consideration of the scaling relationships un- 
derlying fractal geometry may help construct 
useful approximations, valid at mountain- 
range scales, of the laws governing landscape 
evolution. 

A model for fluvial landscuipting 

The human race has directly recorded land- 
scape changes over a meager time scale com- 
pared to the millions of  years that major land- 
scape evolution requires. This is one reason it 
is desirable to model numerically the long-term 
and large-scale evolution of  topography. With 
appropriate models we can follow the evolu- 
tion of one landscape and avoid having to ap- 
ply the "ergodic principle" (Craig, 1982) of 
patching together a history from many pres- 
ent-day landscapes we hope are in some sort of 
developmental sequence. Below I present a 
three-dimensional model of landscape evolu- 
tion based on cellular automata (Chase, 1988; 
Mayer and Chase, 1989; Chase and Mayer, 
1989). Using very simple and nearly linear 
rules for the action of simulated storms, or pre- 
cipitons, we can produce realistic-looking 
model topographies. The evolution of  these 
model landscapes demonstrates a number  of 
principles readily observable in real land- 
scapes, and suggest some new interpretations 
as well. As will be discussed in a later section, 
the model also produces realistic fractal and 
multifractal geometries, thus establishing that 
the complexity of  landscapes doesn't  require 
highly nonlinear processes. 

The idea of  using simple rules to catch the 
essence of land-sculpturing processes is not a 
new one. G.K. Gilbert ( 1877 ) enunciated three 
laws of landscape formation in his classic 
Henry Mountains report: the law of uniform 
slope or declivity, by which speedier erosion of  
steeper slopes tends to reduce the landscape to 

low relief; the law of structure, by which hard 
rocks erode less quickly and therefore stand 
out; and the law of divides, whereby streams 
steepen toward their headwaters. Because the 
cellular automaton model presented here also 
incorporates three principal rules, none of 
which would have been all that foreign to G.K. 
Gilbert, the computer  program that imple- 
ments it is named Gilbert in his honor. The 
model processes employed in Gilbert the com- 
puter program produce the three laws of Gil- 
bert the geologist as consequences. 

There have been a number  of computer- 
based models for small-scale landscapes 
(Sprunt, 1972; Ahnert, 1976; Kirkby, 1986), 
but so far I have seen only one published 
(Koons, 1989) that specifically addresses 
mountain range-scale and long-term evolu- 
tion. Koons' (1989) model provides fascinat- 
ing insights into the evolution of the Southern 
Alps of New Zealand, but is based on diffu- 
sional transport mechanisms. As we shall see, 
diffusion alone is not enough to explain 
landscape. 

The use of  cellular automata as computa- 
tional devices has several virtues. A cellular 
automaton is in effect a set of  rules iteratively 
applied to individual points of  a grid of  nu- 
merical or logical values (Codd, 1968). The 
automaton has a set of states that evolve ac- 
cording to the values of the cell on which it re- 
sides and those of its nearest neighbors (Von 
Neumann,  1966 ). The automata used here are 
slightly unconventional in that they move 
across the grid of values, just as floods move 
across a landscape. The rules by which the au- 
tomaton operates can be as simple or complex 
as desired, without changing the basis of  im- 
plementation. This is one definite advantage 
over a formulation in terms of  partial differ- 
ential equations. Here, I have at tempted to re- 
duce the rules to the starkest form of  simplicity 
that can still reproduce some of the complexity 
of  natural landscapes. 

The rules governing the cellular automata are 
in a sense homologous to the natural processes. 
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Thus the effect of gravity in causing water to 
almost always run downhill is embodied in the 
rule that the cellular automata move to lower 
elevation if they can and stop if they can't. Al- 
though the rules governing the automata are 
minimal, the models still show a very rich va- 
riety of behaviors. 

The scaling properties of the model are cru- 
cial for two reasons. One has to do with relat- 
ing the results to fractal geometry of land- 
scapes, which describe the scaling of 
topographic relief. The other is a practical one. 
If we wish to model both hills and mountain 
ranges, to make the calculations affordable we 
must be able to adjust the spatial resolution of 
the model and obtain equivalent results with 
both coarse and fine grids. 

Precipiton model: general principles 

This three-dimensional model of fluvial ero- 
sion and deposition is implemented by calcu- 
lating the cumulative effects of single incre- 
ments of precipitation (precipitons) that are 
dropped at random on a digital topography 
grid, then move downslope, carrying out ero- 
sion, transportation, and deposition. The pre- 
cipiton, as a simple mobile cellular automaton, 
has the conceptual and computational advan- 
tage of handling fluvial transport and deposi- 
tion as easily as erosion and diffusional slope 
degradation. 

The model is designed to simulate moun- 
tain-scale processes on a simplified but actu- 
alistic basis, emulating the large-scale effects of 
fluvial erosion and deposition by merging the 
overall action of the detailed small-scale geo- 
morphic processes into as few parameters as 
possible. Three input parameters may be suf- 
ficient for many situations. This approach of 
studying the large-scale and long-term land- 
scape evolution as a whole is akin to studying 
heat transport or mechanics in physics by deal- 
ing with large-scale laws rather than worrying 
about the motions of individual particles. The 
processes are almost all non-linear and compli- 

cated in action, but their synoptic effect on the 
landscape may be represented by simpler, 
nearly linear laws. 

There is a stochastic element in the precipi- 
ton model, in that the precipitons fall at ran- 
dom on the digital topography. After that, their 
action is deterministic. Each precipiton repre- 
sents a single event of precipitation, concep- 
tually that size of event that has the greatest 
product of probability and geologic action 
(Wolman and Miller, 1960; Wolman and Ger- 
son, 1978). This might, for instance, be the 
hundred-year flood, or an even less probable 
but more catastrophic event. 

The model simulates tectonic and isostatic 
uplift by allowing uplift rates that vary as a 
function of position on the digital topographic 
grid. The uplift function can have a separate 
value for each point of the topographic grid, 
and the uplift can vary in time in any way de- 
sired. At present, only vertical motions are eas- 
ily implemented. 

Before going on to describe the model pro- 
cesses, a few more comments are in order. One 
is that in a model intended to work at grid res- 
olutions up to km, there is no point in attempt- 
ing to distinguish between hillslope and chan- 
nel elements of the topography. Each grid cell 
represents topography containing both. There- 
fore, no a-priori distinctions are made between 
slope and channel, and the rules are uniform 
for all grid cells. The model must then form its 
own channels, rather than having them im- 
posed from outside. The rules of the precipiton 
model produce down-stream convergence of 
flow in an unforced way. By sending single 
packets of precipitation through the model at 
a time, the routing problem for storm flow is 
avoided. For the model to work with only one 
precipiton on the grid at a time requires the as- 
sumption that the effects ofprecipitons are lin- 
early independent. The rules adopted here are 
consistent with independence. 

A final comment is that I have found ani- 
mation of the operation of the model to be both 
fascinating and educational. To actually see the 
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model landscapes evolve seems to give extra 
understanding of the nature of the complex and 
subtle feedback loops between elevation, slope, 
erosion, and deposition in the model, if not in 
nature. 

Precipiton model processes and operative rules 

The realm in which the precipiton operates 
is expressed in Fig. 1. The grid of  digital topog- 
raphy, with cell dimension L, has no resolva- 
ble structure at scales smaller than L. Any be- 
havior a cell has is determined by its single 
value of elevation (and the elevation of its 
neighbors), and its material properties, espe- 
cially erodibility. 

Into this grid a precipiton is dropped, say on 

Fig. 1. The world according to the precipiton model. A 
precipiton is randomly seeded on a digital topographic grid 
with each grid cell represented by a single elevation. Grid 
cell size L is shown at the bottom of the figure. A precipi- 
ton falling at cell number  1 causes diffusive action on the 
four nearest cells, here numbers 3, 5, 7 and 9. The precip- 
iton then moves to the lowest adjoining cell, here number  
2. It will erode from cell I an amount  of material propor- 
tional to the elevation difference between 1 and 2 multi- 
plied by an erodibility coefficient. Deposition takes place 
when the precipiton's sediment carrying capacity, propor- 
tional to slope, is exceeded. 

the cell numbered 1. The first geologic action 
to be simulated is diffusive smoothing, repre- 
senting the geologic effects of  weathering and 
mass wasting processes such as slope wash, 
slumping, talus formation, soil creep, and 
storms too small to count among the most ef- 
fective (Table 1 ). The diffusion is carried out 
by slope-proportional downhill transport be- 
tween the target cell and its four nearest neigh- 
bors, 3, 5, 7 and 9. Material so transported is 
given the erodibility characteristics of allu- 
vium. The diffusion is modeled as linear Fick- 
ean diffusion, so its transport effectiveness de- 
creases as 1/L 2. A grid with cells twice as large 
in L as another will diffuse four times as slowly. 
The transport coefficient for the diffusion is set 
proportional to the erodibility of the surface 
materials, whether alluvial or bedrock. The 
diffusion pass is done only as each precipiton 
first falls, so that weathering in the model will 
be controlled by amount  of rainfall. An oro- 
graphic effect can be simulated by increasing 
the probability of a precipiton falling at high 
elevation relative to low. Calculating the dif- 
fusion effect at first contact makes "wetter" 
areas erode faster because more weathering ac- 
tion is included. 

Having fallen and caused some local diffu- 
sion, the precipiton searches for the lowest cell 
among its eight nearest neighbors, in our pres- 
ent example cell number 2 of Fig. 1. If that cell 
is lower than its present elevation, the precipi- 
ton moves there, and "erodes" material from 
its original cell (cell 1 here ) proportional to the 
elevation difference between the cells and the 
erodibility coefficient of  the material of the 
original cell. Were no near neighbor lower than 
cell 1, the precipiton would terminate, drop- 
ping any sediment it might be carrying. Mate- 
rial removed by erosion is budgeted to the pre- 
cipiton as sediment load that it transports 
downhill. As a precipiton moves away from the 
cell where it originally fell, it continues to ac- 
cumulate eroded material if it has not ex- 
ceeded its sediment carrying capacity. 

No adjustment in the erosional process is 
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TABLE 1 

Model processes underlying the rules by which the precipiton model operates, their scaling properties, and generalized relation 
to climatic parameters 

Model process Represents Scales as Climate proxy 

Diffusion Weathering, slope wash, 1/L 2 Higher values represent 
mass wasting, talus, soil more humid, rapid weather- 
creep, small storms ing climates 

Erosion Removal of material into L ° Climate controls amount of 
suspension or bed load, time each storm represents 
corrasion and amount eroded by each 

storm 

Larger carrying capacity 
should represent larger 
storms and more competent 
floods 

Deposition Sediment carrying capacity 1/L 
proportional to stream 
power (discharge times 
slope). When exceeded, 
deposition occurs 

made for diagonal distance, or the scale con- 
stant L of the grid. This makes the erosion pro- 
cess scale free (Table 1 ). This is at first sur- 
prising, as a slope-dependent erosion function 
is more attuned to conventional wisdom. 
However, scaling experiments, a sample of 
which is displayed in Fig. 2, have shown that 
for bedrock erosion 1/L scaling (inverse slope 
dependence) makes the model inconsistent 
when the grid resolution is changed. For a given 
number of precipitons, the erosion is underes- 
timated when a coarser grid is used to cover 
the same model feature (Fig. 2). Chris Paola 
(pers. commun., 1991 ) has convinced me that 
1/L scaling would be more appropriate for 
erosion of sediments, which are transported 
according to a 1/L law. However, this change 
has not yet been incorporated in the models 
shown here. 

The ability to erode and the transport capac- 
ity of the precipiton are limited by a slope-de- 
pendent carrying capacity (Table 1 ). This car- 
rying capacity is an implementation of 
Bagnold's law (Bagnold, 1966) of sediment 
transport. The sediment-carrying capacity is 
proportional to steam power, or slope times 
discharge. In this model, the precipitons are 
considered to represent equal, if large, dis- 
charge events, so the carrying capacity is left as 

proportional to slope. When decrease of slope 
downstream cause a precipiton to exceed its 
carrying capacity, deposition starts. To pre- 
vent infinite loops, deposition is partitioned 
between the present and previous cell occu- 
pied by the precipiton. The amount of deposi- 
tion is also restrained so that slopes are never 
directly reversed by deposition. Deposition 
controlled by slope scales as l /L ,  so that a grid 
with the same elevations as another but a larger 
L will experience more deposition for a given 
precipiton sediment load. 

Precipitons terminate when there is no- 
where left to go and their sediment load has all 
been deposited, or when they reach the edge of 
the grid. They may deposit on the edge of the 
grid (simulating alluvial buildup ) or not (sim- 
ulating a constant base level) as desired. 

Scale and the precipiton model 

Figures 3 and 4 explore some of the effects 
of scale and illustrate the relative effects of the 
three model processes as they develop over a 
run of 20,000 model storms. The runs are 
paired, with both with the same number of cells 
but one model having L twice as big as the 
other. All runs start with the initial topography 
shown center left in the two figures. The mesh 
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f i l l l l l l l  
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L=I 
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l'~"~'I L=2 

........................... Unscaled 

......... : ............................ Scaled by 1/L 

....................... ~i ~ . ~  ~ Scaled by L 

Unscaled 

b) 
Scaled 

Fig. 2. Numerical experiments showing that the erosional 
process must scale as L 0 to maintain compatibility of dif- 
ferent grid resolutions. (a) The same feature, a conical 
hill shown by the circular contours, is represented at two 
different grid resolutions, L= 1 and L=2. (b) Profiles 
across the conical feature averaged as a function of radius 
after 20,000 model storms, vertical exaggeration 7.5 to I. 
The upper profile compares the reference model (L= 1 ) 
with an unscaled L = 2 model (erosion proportional to el- 
evation difference, or L ° scaling). The upper profile dis- 
plays an acceptable fit, in contrast to the lower profile 
showing the effect of erosion proportional to slope ( 1/L 
scaling) and for L i scaling in the L= 2 models. 

plots in Fig. 3 are vertically exaggerated but  
show relative horizontal scale, while in the 
contour  plots of  Fig. 4 the large- and small- 
model  areas are shown the same size to make 
comparison easier. Contours  to scale for one 
model  (all processes operat ive)  are displayed 
in Fig. 5. The starting model  represents a con- 

ical volcano with an eccentric crater. 
The height is the same for both large- and 

small-area models (Figs. 3 and 4 ), so the slopes 
are steeper for the small-area models. The 
small-area models ( L =  1 ) represent topogra- 
phy of  the same ampli tude but  shorter wave- 
length than the L = 2 models. 

To describe quantitatively the effects of  the 
various processes on the complexity of  the 
model  landscapes, I will use the mean fractal 
dimension D. How I estimate the fractal di- 
mension and more details of  what it means are 
discussed in subsequent  sections. For the mo- 
ment, it suffices to note that a surface with a 
fractal dimension of  2.0 is very smooth and 
plane-like. At low values of  D near 2.0 the ele- 
vations of  nearby points correlate very strongly, 
while points separated by large distances have 
greater variability in elevation. As D becomes 
larger, the variability of  elevation for nearby 
points becomes more similar to that o f  distant 
points. At D =  3.0 the surface is so rough that 
adjacent and far points are completely uncor- 
related in elevation, and the surface in essence 
becomes space filling. In this view, the fractal 
dimension is a measure of  surface complexity, 
and high D represents high complexity. Fractal 
dimension is independent  of  ampli tude of  re- 
lief on the surface. The fractal dimension of  the 
initial topography in Figs. 3 and 4 is 2.11. This 
represents a fairly smooth surface. 

The models using diffusion alone (lower left, 
Figs. 3 and 4) show the strongest effect of  scale. 
The 1 /L  2 scaling causes the diffusion to be a 
very effective smoothing agent for short dis- 
tances, but  quadratically less so as the length 
scale increases. This is reflected in reduction 
of  the fractal dimension for the small-area 
model  to 2,02, while the large-area model  is re- 
duced to 2.06 from the original 2.11. The dif- 
ference is clearly visible in the contour  plot at 
lower left o f  Fig. 4. 

The pure erosion models (upper  left, Figs. 3 
and 4) show no effects o f  scale, as advertised. 
The contours are identical. For both, the frac- 
tal dimension has been raised to 2.50, and con- 
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E r o s i o n  Eros ion ,  d e p o s i t i o n  

In i t i a l  t o p o g r a p h y  

2 . 1 1  

Eros ion ,  d e p o s i t i o n ,  d i f f u s i o n  

Di f fus ion  Eros ion ,  d i f f u s i o n  

Fig. 3. Perspective mesh diagram showing the effects of combinations of the precipiton model processes on an initial 
topography representing a conical volcano with an eccentric crater. Large (long wavelength, i.e., L = 2) and small, (short 
wavelength, L = 1 ) versions of the same model were run for 20,000 storms each .The small version of the initial topogra- 
phy has the same model height as the large version, so the slopes are steeper in the small versions. The numbers below 
each model are the mean fractal dimension as measured from variograms. 

tinues to rise if the model is run longer. As a 
scale-free process, erosion in the precipiton 
model roughens the landscape at all scales 
equally. In as far as landscape is fractal, some 
such process must dominate. The lack of a 
roughening process is also the reason why dif- 
fusion-based models cannot properly simulate 
the evolution of landscapes. Koons' (1989) 
model for the Southern Alps of New Zealand 
required the artificial introduction of con- 
trolled stream drainages and profiles, because 
diffusional models can't develop drainage on 
their own. 

The frames on the right in Figs. 3 and 4 show 
the effect of combined processes. Deposition 
can't be shown by itself, as there would be no 
source of material for the precipitons to trans- 
port. The general conclusion that can be drawn 
from comparing the models on the right is that 

the depositional process smooths at long wave- 
lengths. For erosion and deposition together 
(upper right) the large-area model has a lower 
fractal dimension (2.35) than the small 
(2.40). However, when diffusion is added so 
that all processes are active, the small area be- 
comes smoother, with D equal 2.22 as com- 
pared to 2.34 for the large-area model. 

The overall picture that emerges is that these 
model topographies are approximately fractal 
because the erosional process roughens at all 
scales, while the diffusion process smooths the 
topography at small scales and the deposi- 
tional process smooths it at large scales. Some- 
thing like this is probably also true of natural 
landscapes. A secondary conclusion from these 
results, maybe even a prediction, is that small 
hill should be smoother than large hills, even if 
they start with steeper slopes. This can be seen 
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E r o s i o n  o n l y  E r o s i o n  

Smal l  2.50 Large  2.50 Sma l l  2.40 

+ d e p o s i t i o n  

Large  2.35 

O r i g i n a l  

2.11 

E r o s i o n  + de 

I 
Smal l  2.22 

) o s i t i o n  + d i f f u s i o n  

Large  2.34 

D i f f u s i o n  o n l y  E r o s i o n  

i 

+ d i f f u s i o n  

J 

Sm a l l  2.02 Large  2.06 Sma l l  2.30 Large  2.4B 

Fig. 4. The same suite of models as Fig. 3, only represented in contour form. The contour maps of the large (L = 2) models 
are reduced by a factor or two for direct comparability with the small (L= 1 ) models. See Fig. 5 for an correct scale 
rendition of one model. Contour interval somewhat arbitrary but constant for all models, intended to be something like 
250m. 

J 
Small Large 
D = 2.22 D = 2.34 

Erosion, deposition, diffusion 

Fig. 5. One pair of models, with all processes operative, 
and contour maps plotted to true relative scale. The inset 
shows the variograms for the large and small models, with 
the dash-dot line marking the variogram of the initial 
topography. 

by comparing the large- and small-area plots of 
Fig. 5. I cannot claim to have made an exhaus- 
tive study of small hills versus large hills, but 
at least anecdotal evidence from topographic 
maps and the scenery of  southern Arizona is 
consistent with the prediction. 

Climate, tectonics, and the precipiton model 

The erodibility of model materials, the ratio 
of diffusive action to erosive action, and the 
sediment carrying capacity are all to some ex- 
tent proxies for climatic variables (Table 1 ). 
Imposed uplift is the proxy for tectonic effects. 
It is clear that these variables control the model 
landscape evolution, but it is not necessarily 
easy to relate the climatic proxies to what is 
conventionally thought of  as climatic controls. 
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The erodibility of  the model  rocks can be 
stratigraphically layered and optionally, those 
layers can be warped vertically in the present 
implementat ion of  the program Gilbert. In ad- 
dition "alluvial" materials deposited in the 
model can be assigned a separate, usually 
higher erodibility. In effect, setting the erodi- 
bility of  the rocks is an important  component  
of  establishing the time scale of the model. One 
external observable, or at least guessable, to 
which the model  clock can be calibrated is the 
rate of denudation of  the landscape. The higher 
the erodibilities are set, the faster t ime passes 
per precipiton by this standard. The other pos- 
sible calibration, as discussed above, is through 
definition of  recurrence interval of  the most 
significant storm event. Both need be consid- 
ered for a consistent t ime scaling. In general, 
however, for the same t ime per precipiton, 
higher erodibilities will probably correspond to 
more chemically and physically aggressive cli- 
mates. Material must  be physically or chemi- 
cally weathered before it can be removed. 

The relative importance of  diffusive redis- 
tribution compared to erosive removal of  ma- 
terial is another climatic proxy. High rates of 
diffusive activity correspond to rapid mass 
wasting, slope, wash, soil creep, and slumping. 
Humid  climates should experience relatively 
more of  these kinds of  diffusive processes than 
dry ones. Figure 6 displays the results of model  
runs varying the ratio of  diffusive to erosive 
activity (d/e) and the horizontal scale L of  the 
models. The upper part of  the plot shows the 
effect on average fractal dimension. The "dry" 
(d/e= 0.1 ) models are relatively insensitive to 
scale, while the "wet" models clearly show the 
greater effectiveness of  diffusive smoothing at 
short wavelengths. This implies that below 
some threshold, diffusive action becomes un- 
important  in controlling the average fractal 
dimension. 

Figure 6 also shows the effect of d/e and scale 
on peak and mean elevation of  the model  land- 
scape during its evolution. The average eleva- 
tion responds more to scale than to "wet" or 

d/e L = I  L = 2  

3 - 0.5 ........................ 
0.1 ........... 

E 

P e a k  > 
1 A v e r a g e | s ,  ' n 

A l l u v i u m  
0 - -  

I I I I I I 

0 1 2 3 

Time, 10000 storms 

Fig. 6. The effect of ratio of diffusional to erosional pro- 
cesses (d/e) on the evolution of model topography. Initial 
topography same as shown in Fig. 3 and 4. Four models, 
long (L=2) and short (L= 1 ) wavelength coupled with 
high (0.5) and low (0.1) ratio of diffusivities to erodibil- 
ities, are shown. The carrying capacity for these models 
was 1.0. The buildup of alluvial thickness for all four was 
similar enough to represent with a single curve. 

"dry" conditions, while alluvial thickness is 
insensitive. Only in peak elevation is there 
much of  a difference related to diffusive ac- 
tion. This demonstrates that diffusion is not an 
effective long-distance transport mechanism in 
any of  these models. 

The sediment-carrying capacity of the pre- 
cipitons is also a climatic proxy variable, as well 
as part of  the time-scaling question. Large car- 
rying capacities represent conditions under 
which the most effective storms cause very 
large floods. This is related less to total amount  
of  precipitation than to how it is distributed in 
time. A mostly arid desert with a very large 
100-year flood might require higher carrying 
capacity than a tropical region with much more 
annual precipitation. In the limit, as the car- 
rying capacity approaches zero, the action of  
the erosive/depositional process approaches 
linear diffusion. In effect, the precipiton de- 
couples the erosional and the depositional parts 
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of what would otherwise be a diffusive pro- 
cess, and allows material to be carried rapidly 
to large distances. 

The effects of  carrying capacity change do 
not show the threshold of  indifference to scale 
that was characteristic of  the diffusion/ero- 
sion ratio. As seen in Fig. 7, higher carrying ca- 
pacities are more erosive and favor larger frac- 
tal dimensions for both long- and short- 
wavelength models. The long-wavelength 
models show somewhat stronger sensitivity to 
carrying capacity. Dispersion in the denuda- 
tion rates for these models is more marked than 
those of  Fig. 6, as might be expected. The main 
means of  transport is being adjusted, and both 
peak and average elevations respond to the 
changes. Feedback in the models keeps the re- 
sponses from behaving linearly, however. Note 
that the average elevation at 30,000 storms for 
the L = 2 models is only halved while the car- 
rying capacity is increased by a factor of  four. 
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Fig. 7. The effect of carrying capacity variation on evolu- 
tion of model topography. Initial topography same as 
shown in Figs. 3 and 4. Four models, large and small size 
coupled with high (2.0) and low (0.5) sediment carrying 
capacity (cc) coefficients, are shown. The diffusion/ero- 
sion ratio for these models is 0.5. The buildup of alluvial 
thickness for all four was similar enough to represent with 
a single curve. 

At L =  1 the residual elevation at the end of  the 
run is more commensura te  with the carrying 
capacities. One conclusion from this set of  runs 
is that max imum effective storm size (proxied 
by carrying capacity) is an important,  perhaps 
the most important  climatic variable in deter- 
mining the landforms that develop. 

The final numerical  experiment  I will deal 
with here attacks the problem of  how tectonic 
activity affects the model  fractal dimension. 
For this purpose, a model was run for 30,000 
storms with extremely active uplift o f  a "box- 
car" shaped block across the span of  the grid 
(Fig. 8, left). Then, without changing any of  
the climatic parameters, the uplift was stopped, 
and the model  allowed to erode for another 
30,000 storms (Fig. 8, right). The model  to- 
pographies at these stopping points, plotted to 
the same contour interval in Fig. 8, are con- 
spicuously different. During the uplift, the 
fractal dimension reached some sort of  steady 
state (Fig. 9 ), then actually rose slightly when 
the uplift stopped. This is not encouraging in 
terms of  identifying high fractal dimension 
with tectonically active areas. In fact, the re- 
sult is understandable in terms of  the relation- 
ship of  fractal dimension to roughness varia- 
tion with scale. The tectonic uplift feeds 
information into the topography at long wave- 
lengths only, thus tending to make the vario- 
gram slightly steeper. When this tectonic input 
ceases, the fractal dimension rises to its climat- 
ically controlled value. The whole question of  
relation of  fractal dimension to tectonic activ- 
ity is examined, using real data, in the com- 
panion paper by Lifton and Chase ( 1992 - this 
issue). 

Precipiton discussion 

The complicated topographies produced by 
the Gilbert models (Figs. 3, 4 and 8 ) demon- 
strate one thing clearly: a complex landscape 
does not require complex rules. Natural  land- 
scapes may indeed be formed by inextricably 
non-linear and difficult processes, but the re- 
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Fig. 8. Contours of model sequence showing indifference of fractal dimension to rate of tectonic activity. (a) Contours of 
model topography after 30,000 storms falling on vigorous, active uplift with rectangular cross section. (b)  Situation 
30,000 storms after uplift is stopped. All erosional parameters except uplift rate the same as in (a).  Contour interval same 
as for (a).  
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Fig. 9. Evolution of fractal dimension D, peak and aver- 
age elevation, and alluvial thickness for model shown in 
Fig. 8.30,000 storms of rapid uplift are followed by 30,000 
storms with no uplift, all other erosional parameters held 
constant. 

suits of these models offer some hope of under- 
standing landscape evolution in terms of sim- 
pler, synoptic generalities. The feedback loops 
between the form of the landscape and the pro- 
cesses that excavate and transport material 
across it may be more important than the ac- 
tual details of those processes. 

Accepting the general outlines of this model, 
then the approximately fractal geometry of 
natural landscapes is forged in the balance be- 
tween roughening at all scales by erosive pro- 
cesses and smoothing at small scales by diffu- 
sive processes augmented with smoothing at 
large scales by depositional processes. This 
conclusion is robust to the details of the pro- 
cesses and how they are simulated. Delving into 
more model-dependent conclusions, the point 
of balance and the degree of landscape com- 
plexity is much more responsive to climatic in- 
fluences than to tectonic ones. Of course, the 
amplitude of relief is much more immediately 
controlled by the level of tectonic activity. 

If I might be permitted a few speculations, 
prejudices and observations acquired by hours 
of watching these model landscapes evolve: the 
development of fluvial topography may lead to 
fractal geometry but it is not chaotic. Initial 
conditions for the model topographies that are 
close together lead to final models that resem- 
ble each other strongly. This is certainly true 
for the erosive part of the model, but might not 
be as true for the depositional part, were one 
to label the deposited material with its point of 
origin. Inheritance in the model landscapes is 
strong, and a die cast early can be seen stamped 
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on the final product. Notice in Figs. 3 and 4 
that the eccentric crater of  the initial topogra- 
phy lives on in the U-shaped high parts of  the 
eroded models. Once one part of  the landscape 
has an advantage in drainage area, it keeps 
ahead of  the rest. Among its rich repertoire of  
behaviors, Gilbert makes pediments readily 
where eroding mountain  cores grade into sta- 
ble alluvial aprons. Only under these circum- 
stances does lateral planation occur easily. 
Where precipitation falls is important,  as pre- 
cipitons from the headwaters of drainage sys- 
tems come through laden with sediment and in 
a depositional mode, While precipitons falling 
lower in the system are unladen and thereby 
highly erosive. Partly because of  this balance 
between traveled and fresh precipitons, the 
grade or profile of the model rivers is one of 
the characteristics most sensitive to all the pa- 
rameters, and therefore should be a focus point 
for calibration of the models against real 
landscapes. 

In the next section I will flesh out how the 
fractal dimension of the model landscapes was 
determined, and offer some data on actual 
landscapes for comparison with model results. 
This will involve going beyond strictly fractal 
behavior. 

Complexity and the fractal geometry of 
landscapes 

The complexity of landscapes is one of their 
most obvious characteristics. Large valleys 
have smaller tributaries, these in turn are fed 
by creeks, which collect the product of an in- 
definite number  of  rills. Not only are land- 
forms thus nested in scale, but there is a sense 
of sameness of  the features as scale changes. It 
is not easy to tell from an unlabeled map of 
drainages whether one is looking at m or km of 
ground. Alluvial fans l0 km wide formed at 
mountain fronts closely resemble those 1 m 
wide formed in road cuts. None of these fea- 
tures are even statistically self-similar, because 
the vertical scale does not vary the same way 

the horizontal scale does. They are, however, 
statistically self-affine (Huang and Turcotte, 
1989; Turcotte, 1991 ). 

The complexity of natural landscapes may 
reflect an underlying order, and it is important 
in understanding the evolution of landscapes 
to ascertain if that order exists, and if so, how 
it arises. It may contain retrodictive and pre- 
dictive power concerning the tectonic and cli- 
matic influences that shape natural land- 
scapes. Because the order is one of scaling 
relationships, it can give insight into the ap- 
propriate nature of  the laws governing land- 
scape development at large scales, and guide 
the construction of conceptual and numerical 
models embodying approximations to those 
laws. 

For the purposes here of investigating the 
complexity of  landscapes at horizontal scales 
up to tens ofkm,  it is more appropriate to work 
with a digital approximation of the topogra- 
phy rather than that of the drainage network it 
defines. With min imum resolutions of  the or- 
der of hundreds of  meters or of  km, there is no 
part of  the system that is not a mixture of  hill- 
slopes and channels. At these scales, drainage 
density is not a particularly useful concept. 

The use of the fractal dimension as a de- 
scriptor of  the complexity of surfaces has been 
made popular by the efforts of Mandelbrot 
( 1982, for review of  his publications). A sur- 
face can vary in its texture from extremely 
smooth, which would represent a fractal di- 
mension of  2, the same as its Euclidean dimen- 
sion, to extremely complex, and jagged, so that 
it becomes in some sense space filling. This lat- 
ter surface would have a fractal dimension ap- 
proaching 3. The fractal dimension of a sur- 
face, as noted before, is independent  of the 
amplitude of its relief. Likewise, curves may 
have fractal dimensions between 1 and 2. Any 
intermediate value is possible. In general, the 
surface fractal dimension should be greater by 
one than the fractal dimension of  a profile or 
contour of that surface (Mandelbrot, 1982; 
Voss, 1988). 
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Many environmental variables seem to be 
fractal (Burrough, 1981; Mandelbrot, 1982). 
To be a true fractal, a topographic surface needs 
to be at least statistically self-aff'me, so that it 
looks about the same represented at any hori- 
zontal scale. In approximately fractal surfaces, 
this size independence may be restricted to a 
limited range of scales. Natural topography ap- 
proximates a fractal with dimension usually 
between 2.1 (smoothish) and 2.7 (rugged in- 
deed) (Burrough, 1981; Mandelbrot, 1982). 
Obviously, if we deal with discrete digital top- 
ographic data, the smallest scale available is 
limited to the grid spacing and the largest to 
the area covered by the data set. 

Natural landscapes are often only approxi- 
mately fractal, and show apparent fractal di- 
mensions that change as a function of horizon- 
tal distance (Culling and Datko, 1987; L.E. 
Gilbert, 1989; Goodchild, 1980; Mark and 
Aronson, 1984; Chase and Woodward, 1990). 
Mark and Aronson (1984) found that some 
areas demonstrate variable fractal dimensions 
over different scale ranges. In particular, data 
from several quadrangles in Pennsylvania 
showed fractal dimension D of 2.2 at scales 
smaller than 0.6 km and D from 2.5 to 2.75 at 
scales between 0.6 and 5 km. Such a variation 
of apparent fractal dimension as horizontal 
length varies can be described as multifractal 
behavior (Mandelbrot, 1989). A multifractal 
surface will have a different characteristic 
fractal dimension at different horizontal wave- 
lengths. Most of the data from the semiarid 
Southwest presented here is discernibly mul- 
tifractal. Roy et al. ( 1987 ) suggest that this ap- 
parent multifractal nature may be due to an- 
isotropy in the topography at long wavelengths. 
The data shown here is chosen in a way that 
should minimize anisotropic effects. 

Variogram technique 

I have chosen here to investigate the com- 
plexity of natural landscapes using the fractal 
dimension of the topographic surface as deter- 

mined by the variogram method (Mark and 
Aronson, 1984). This method has proved to 
me rather more intuitive than other ways of es- 
timating the fractal dimension, such as Fourier 
spectra (Huang and Turcotte, 1989; L.E. Gil- 
bert, 1989; Turcotte, 1991). Variograms 
sometimes give different results than other 
methods (Clarke and Schweizer, 1991 ). How- 
ever, we are using the same measure to com- 
pare both model and natural landscapes, so it 
doesn't particularly matter what the "true" 
fractal dimension is, only how the same statis- 
tical measure of complexity compares for both. 

The variogram of a surface is constructed by 
considering the variance of its elevation as a 
function of horizontal distance. For a pair of 
points x~, y~, Z l and x2, Y2, z2 on a grid of digital 
topography with x and y horizontal coordi- 
nates and z the elevation, the contribution to 
the variance is (Zl--Z2) 2= ( A z )  2 and the hori- 
zontal distance is [ (Xl -x2)2+  (y~--y2) 2 ] 1/2 

= Ax (see Fig. 10 ). We calculate these for every 
pair of points on the grid, and plot the loga- 
rithm of the standard deviation over a binned 
distance interval against the logarithm of the 
distance at the logarithmic midpoint of that 

Fig. 10. Geometric basis for the calculation of vario- 
grams. The topographic variability is given by the average 
of the elevation difference dz. This is then plotted as a 
function of (binned) horizontal distance ,Jx. 
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Fig. 11. Location map of mountains surrounding Tucson, 
Arizona. The shaded boxes represent the approximately 
10-km-square regions from which the variograms of Fig. 
12 are drawn. Elevations from 15 second digital topo- 
graphic data set. Contour interval is 500 m, and the low- 
est contour is at 1 km elevation. 

interval. This is a computationally intensive 
operation, because an n by n grid contains 
n2(n 2 -  1 ) /2  point pairs. 

A convenient sample (for me) of natural to- 
pography is drawn from a digital elevation 
model of southern Arizona. Figure 11 shows 
the location of several 20 by 20 point grids (9.3 
north-south by 7.8 km east-west) of digital 
topography drawn from U.S. Geological Sur- 
vey 15 second data. In this data set, the grid 
cells are approximately 460 m tall (north-  
south) and 390 m wide (east-west). No at- 
tempt was made to correct for the map distor- 
tion. The areas are chosen to represent moun- 
tainous regions with a variety of total relief. 
The shortest length scale represented is the grid 
spacing, while the longest has been clipped to 
half the total grid size to avoid sampling prob- 
lems. Roy et al. ( 1987 ) suggest an even shorter 
cutoff, but these small data sets would have al- 
most nothing left. Thus wavelengths between 
460 m and 4.6 km are present. Figure 12 con- 
tains the resulting variograms. The distance 
bins have been chosen at logarithmically equal 
intervals. 
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Fig. 12. Variograms for the ten areas identified in Fig. 11. 
Topographic variability in m is plotted versus horizontal 
distance in km. Distance bins are at equal logarithmic in- 
tervals. Note that the Variograms approximate straight 
lines (fractals) with varying degrees of success. 

The relationship of the variogram to surface 
fractal dimension is straightforward. For a 
three-dimensional, self-affine fractional 
Brownian function (Voss, 1988, eq. 1.8), 
which is characterized by a single fractal 
dimension: 

( (z] -z2  )2) =K[ (xl -x2)2+ (Yl - -Y2)  2 ] (3--D) 

(1) 

where the angle brackets ( ) represent an av- 
erage over the binning interval, K is a constant 
that scales horizontal to vertical variation, and 
D is the fractal dimension. Equation ( 1 ) im- 
plies that on a logarithmic plot of standard de- 
viation versus distance (Fig. 12), the slope of 
the variogram is (3-D)/2. Thus a steeply slop- 
ing variogram represents a low fractal dimen- 
sion, and a shallow slope represents a high 
fractal dimension. 

Because of this relationship to slope of top- 
ographic variance, the fractal dimension of to- 
pography is controlled by how its variability 
changes with distance, not the amplitude of 
that variability. A high fractal dimension rep- 
resents topography that is uncorrelated at all 
length scales, while a low fractal dimension 
represents topography that is strongly corre- 
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TABLE 2 

Mean fractal dimension for the ten sample areas, and the r 2 goodness of fit parameter for a least-squares linear fit to the data. 
Locations shown in Fig. 2 and variograms in Fig. 3. The relief is interpolated on the variograms at 1 km horizontal relative 
distance 

Location Number Mean fractal Goodness of fit Relief at 1 km 
dimension D r 2 wavelength (m) 

Tortolitas a 2.40 0.973 82 
Catalinas b 2.26 0.975 130 

c 2.25 0.986 163 
d 2.20 0.991 190 
e 2.31 0.980 181 
f 2.22 0.999 120 

Rincons g 2.22 0.993 97 
h 2.02 0.994 128 
i 2.10 0.992 147 
j 2.30 0.993 60 
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Fig. 1 3. Rel ief  ampli tude est imated at 1 krn length scale 
from variograms in Fig. 1 2 compared to mean fractal di- 
mension estimated by straight-line fit to entire vario- 
gram. Areas keyed by letters to Fig. 1 1. 

lated at short wavelengths and less so at long 
wavelengths. The amplitude of the variability, 
a parameter related to the relief (Huang and 
Turcotte, 1989 ), is given by the vertical place- 
ment of the variogram. This can be seen in Fig. 
12: variograms d and g have quite similar av- 
erage fractal dimensions, but the relief of re- 
gion d is almost twice that of region g (Table 
2). The average fractal dimensions given in 
Table 2 are obtained by a least-squares straight- 
line fit to the variograms. I have quantified the 
relief by the variability value interpolated on 
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Fig. 14. Variograms from Fig. 12 reduced to fractal di- 
mension D = 2.4 by subtracting straight line of  slope + 0.6. 
Lines on this diagram with positive slope represent D less 
than 2.4, while lines with negative slope represent D higher 
than 2.4. Note  that most o f  the variograms are signifi- 
cantly curved, showing multifractal behavior.  At wave- 
lengths longer than 1.5 km, the average fractal dimension 
is around 2.4, while at shorter wavelengths the fractal di- 
mension is less in all cases. 

the actual variogram at 1 km horizontal dis- 
tance. There is no uniform relationship be- 
tween the fractal dimension and the estima- 
tion of relief amplitude (Fig. 13 ). 

A true fractal would have a straight vario- 
gram. Although the goodness of fit for straight 
lines fitted to these variograms is quite high 
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(Table 2 ), most of them depart systematically 
from straightness, and thus are multifractal 
(Mandelbrot, 1989). Typically, the vario- 
grams have steeper slopes at shorter length 
scales with fractal dimensions around 2.2, and 
flatter slopes at wavelengths longer than 1 km, 
representing D in the vicinity of 2.4. This kind 
of variation is consistent with that reported by 
Mark and Aronson (1984) for several regions, 
and by L.E. Gilbert ( 1989 ) for a single profile 
across the Sierra Nevada. To point up the vari- 
ation in slope, I follow L.E. Gilbert (1989) in 
plotting a "reduced" version of the variograms 
in Fig. 14. In this plot, a line of slope equiva- 
lent to D=2 .4  is subtracted from each vario- 
gram, so portions of  variograms with positive 
slopes have fractal dimension less than 2.4. For 
a fractal dimension greater than 2.4, the var- 
iogram will have a negative (downward) slope. 

Fractal analysis of mountains of southern 
Arizona 

Some of the idiosyncrasies of  fractal inves- 
tigation of real topography are revealed by a 
closer examination of specific cases. The most 
crooked of  the variograms in Figs. 12 and 14 is 
drawn from the Tortolita Mountains (Fig. 11 ), 
a low satellite range with 0.5 km relief to the 
west of the higher Catalina range, which has 
almost 2 km relief. It has the highest average D 
of any of  the data sets here, and the second 
lowest relief. The fractal dimension D is 2.1 for 
wavelengths less than 1.5 km, while at longer 
length scales D approaches 2.6. This particular 
data set covers both low mountains and a sig- 
nificant portion of alluvial fan and plain. Nu- 
merical experiments involving shifting the or- 
igin of the data set demonstrate that the 
mixture of  geographic environments encour- 
ages the non-linearity in the variogram. This is 
a sensible result, for the alluvial plain has less 
absolute variance at long wavelengths. Vario- 
grams do not combine linearly: the variograms 
for a pure alluvial environment and for the hills 
alone are both uncomplicated, though the al- 

luvial region has lower D and considerably less 
amplitude of  relief. 

The variograms for the Catalinas (b-g, Figs. 
11, 12 and 14) are rather more linear. The 
northernmost,  b, resembles the Tortolita data 
set in having a significant mixture of alluvial 
fan, and likewise a high fractal dimension at 
long length scales (Fig. 14 ); c, d and g all have 
short-wavelength D near 2.1, and long-wave- 
length D around 2.4. Sample f is the closest of 
any of  these data sets to a true fractal over the 
range of wavelengths studied. The important  
things in common among the Catalina vario- 
grams are: mean fractal dimension between 2.2 
and 2.3; and fractal dimension increasing with 
length scale. 

The three data blocks drawn from the Rin- 
con Mountains (Fig. 11 ) present one interest- 
ing anomaly. The westernmost data block, h, 
has the lowest fractal dimension of all, 2.02 
(Table 1 ). This is almost as low as it can go 
and still be a surface. Examination of U.S. 
Geological Survey topographic maps reveals 
that most of the topographic roughness in the 
area has wavelength less than 400 m. The 
smoothness of this terrain at longer wave- 
lengths is partly due to lithology and partly to 
structural control, with resistant mylonites 
forming a dip slope over much of the block. In 
this case, 15 second topographic data just 
hasn't fine enough resolution to catch the ac- 
tual roughness of  the area. At the shortest 
length scales, block i shares the low fractal di- 
mension of h. 

Implications of fractal character 

The strongest conclusion of this fractal anal- 
ysis is that the topography of some selected 
mountain  ranges (Fig. 11 ) in southern Ari- 
zona is approximately fractal, with variograms 
for length scales between 460 m and 4.6 km that 
show an orderly progression of increasing var- 
iance as wavelength increases (Fig. 12). This 
is consistent with the findings of other work- 
ers. The mean fractal dimension from these 
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variograms varies from 2.02 to 2.40, with an 
average of 2.22 (Table 2 ). The fractal dimen- 
sion D is not a function of relief (Fig. 13 ). 

The second strongest conclusion is that the 
topography is actually multifractal, and is 
smoother at smaller length scales within the 
wavelength range studied (Fig. 14). For length 
scales between 460 m and 1.5 km, the average 
fractal dimension is around 2.1, while for 
length scales between 1.5 and 4.6 km the aver- 
age D is 2.5. 

There are several ways in which the multi- 
fractal nature of the real landscape might arise. 
It may be an inherent result of the laws govern- 
ing evolution of the landscape at present, or it 
may in part result from climatic and tectonic 
changes that have affected that evolution in the 
past. Woodward (1990) has shown that dis- 
sected fans along the northwest side of the Ca- 
talina Mountains (area d, Fig. 11 ) result from 
base-level or climatic change rather than tec- 
tonic activity. Curvature of the variograms 
could thus be related to transition with time 
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Fig. 15. Model variograms showing several ways to achieve 
multifractal behavior like that seen in measured vario- 
grams (Figs. 12 and 14). a = model run 30,000 storms with 
low diffusion/erosion ratio, alternating high (2.0) and low 
(0.1) carrying capacities at 5,000 storm intervals; 
b = model run with high ratio of diffusive to erosive ac- 
tion, which produces strongly multifractal variogram. This 
is the case d/e--  0.5, L=2 ,  30,000 storms of Fig. 6; c=low 
ratio of diffusion to erosion produces more nearly linear 
variogram: d/e--  0. l, L = 2, 30,000 storms of Fig. 6. These 
three models are scaled to relief similar to the southern 
Arizona samples. 

from regimes of relative smoothing of topog- 
raphy to relative roughening, with effects at 
different length scales having different re- 
sponses delays. This scenario can be studied 
with the help of Gilbert. In Fig. 15, the curve 
labelled "a" represents the variogram from a 
model run with alternating large and small car- 
rying capacities. The short-wavelength topog- 
raphy is smoothed because, as mentioned 
above, the precipitons with small carrying ca- 
pacity act more diffusively than precipitons 
with large carrying capacity. The result is a 
multifractal model topography. 

Another set of models (Fig. 15; b,c) dem- 
onstrate that the balance between diffusive and 
erosional processes can affect how curved the 
variogram is, and therefore how multifractal 
the topography. Variograms from the L = 2  
models of Fig. 6 show much more curvature 
for case (b) in which a high diffusion to ero- 
sion ratio is used than for a low ratio (a). In 
fact, the high-diffusion case shows more cur- 
vature than any of the variograms measured on 
real topography. The difference between short- 
and long-wavelength fractal dimension of nat- 
ural topographic variograms can thus be used 
to quantify the relative importance of diffu- 
sive versus erosive processes on the landscape. 

Summary 

A simple but powerful model of landscape 
evolution based on cellular automata can sim- 
ulate the effects of diffusive (mass wasting) 
processes, erosion, and deposition. Each of 
these processes react differently to changes in 
horizontal scale. The model produces com- 
plex, almost fractal topographies with its sim- 
ple, almost linear rules. This demonstrates that 
complex landscapes do not require compli- 
cated laws for their formation. The fractal ge- 
ometry of the models arises from the balance 
between erosional roughening at all scales and 
diffusive smoothing at short wavelengths plus 
depositional smoothing at long wavelengths. 
The fractal dimension of the models is much 
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more responsive to climatic variables than to 
tectonic uplift. 

Variograms from selected areas from south- 
ern Arizona show that the topography at length 
scales from 460 m to 4.6 km is approximately 
fractal, with mean fractal dimension around 
2.2-2.3. The systematic departures from an 
exact fractal relationship imply that the topog- 
raphy is in detail multifractal, with lower frac- 
tal dimension at wavelengths less than 1.5 km 
than for longer length scales. Model results 
show that this curvature of  the variograms 
could either be inherent to the relative impor- 
tance of diffusional and erosional processes 
shaping the topography, or a result of changes 
in climatic or tectonic conditions still pre- 
served in the landscape. 
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