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The Perimeter-Area Fractal Model and Its 
Application to Geology I 

Qiuming Cheng 2 

Perimeters and areas o f  similarly shaped fractal  geometries in two-dimensional space are related 
to one another by power- law relationships. The r obtained from these power laws are 
associated with, but do not necessarily provide, unbiased estimates a f  the fractal  dimensions o f  the 
perimeters and areas. The exponent (D4t ) obtained f rom perimeter-area analysis can be used onh' 
as a reliable estimate o f  the dimension o f  the perimeter (Dr.) i f  the dimension o f  the measured area 
is D A = 2. 1) r D4 < 2, then the exponent D4t = 2Dt./D.4 > DL. Similar relations hold true fiJr 
area and volumes o f  three-dimensional fractal  geometries. The newly derived results are used fo r  
characterizing Au associated aheration =ones in porphyry systems in the Mitc41elI-Sulphurets mineral 
district, northwestern British Calumbia. 

KEY WORDS: similarly shaped geometries, fractal dimension, area, perimeter, volume, power- 
law relation. 

I N T R O D U C T I O N  

For a group of  similarly shaped sets in two-dimensional  space, the ratio of  the 
perimeter (L) and area (A) has the form p = L / ~ / A .  For example,  if the sets 
consist of  circles, squares, or equilateral triangles, the values of  p equal 2x/~r, 
4, and 6/3 TM, respectively. As a generalization, the following relationship be- 
tween perimeters and areas tbr similarly shaped fractal sets was introduced 
originally by Mandelbrot (1983). 

L ( 6 )  = C 6  cl - D)A(6)D/2 (1)  

where C is a constant and D was used as the fractal dimension of  the perimeter 
L. This relation depends on the value of  the yardstick 6 which is used for 
measurement.  Equation (1) has been used extensively in physics, earth sciences, 
and other fields; for example,  for cloud and rain perimeter fractal dimension by 
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Lovejoy (1982) and Hentschel and Procaccia (1983); streams and drainage areas 
(Hack, 1957; Mandelbrot, 1982); fractal dimension of hail clouds (Rys and 
Waldvogel, 1986); fracture surfaces of titanium specimens (Pande, Richards, 
and Smith, 1987); perimeters and areas of  geochemical landscapes (Brlviken 
and others, 1992). In these applications, the exponent D in Equation (1) was 
used for estimating fractal dimension of perimeter or fractal dimension of frac- 
tional Brownian surface (D~) by the relation D, = D + 1 (Mandelbrot, 1983, 
1985; Voss, 1985). The technique of slit-island analysis (Mandelbrot, Passoja, 
and Paullay, 1984) also was based on Equation (1). 

The following modified expression was derived by Lovejoy and Schertzer 
(1991) on the basis of multifractal theory: 

L(6 )6"5 ~l - ~}A(6 )~T/2 (2) 

where ~r = 2D(pr)/D(ST~_); D(pr) and D(sr~) < 2 are fractal dimensions for 
the perimeter and the area of subsets with concentration values above threshold 
T. This relation holds for a yardstick 6 which is small enough to measure the 
smallest area accurately. For each value of 5, L(6) and A(5) satisfy the power- 
law relation: 

L(5) = CoA(5) ~rr (3) 

Korvin (1992) discussed the relationships between length (L), width (W), 
and area (A) of river and drainage systems and described Hack's (1957) law by 
the following equations: 

L o~ wry; A 0r wPx+Pr; L OC. A PI /{Px+Pr} (4) 

where or denotes proportionality, and PL, Px, and Py represent the exponents 
of the power-law relations between L, A, and W, respectively. 

Equations (3) and (4) show that length, width, perimeter, and area of river 
and drainage systems may follow power-law relations. In general, relations 
between any two different measures for fractal geometries with similar shapes 
follow power laws. It will be shown that the exponent of a power-law relation 
of this type is not necessary equal to the fractal dimensions of the two measures 
although it is associated with them. In this paper, relationships between perim- 
eters, areas, and volumes of similarly shaped geometries will be discussed and 
the newly derived results illustrated by application to perimeter-area relations 
for relatively simple examples and also for characterizing Au associated alter- 
ation zones in porphyry systems in the Mitchell-Sulphurets mineral district, 
northwestern British Columbia. 
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P E R I M E T E R - A R E A  M O D E L  

A group of  similarly shaped fractal geometries (e.g. ,  islands, landscapes, 
or  three-dimensional objects) can be characterized by their measures for perim- 

eter L, area A, or volume V. The fractal dimensions of  perimeter,  area, and 
volume will be denoted as D L, D A, and Dv, respectively. When the box-counting 
method with yardstick 6 is used, the estimate length, area, and volume of a 

geometry can be expressed as: 

L(8)  oc 6 ~' -o,~; A(8) oc 812-~ V(6) oc (5 (3-~ (5) 

and the Hausdorff-Besicovich dimensions D L, D A, and D v  can be estimated by 
fol lowing relations: 

log L(6) log A(6) log V(6) 
D L = l - l i r a - - "  D A = 2 - l i m - - "  Dv = 3 - l i m - -  

- o  l o g 6  ' 6~o l o g 6  ' 6~o l o g 6  

(6) 

For  convenience,  we take two-dimensional  geometries as examples for discus- 
sion. Similar relations are valid for three-dimensional objects. 

Suppose two sets or objects have similar shapes but different sizes as shown 

in the example of  Figure 1. Size is measured by counting boxes for presence 
of  a feature. The boxes (with widths a and b for the two objects (A and B) 

which are not of  the same size in Figure l can be subdivided into smaller boxes 
with the same size (6). The numbers of  boxes containing perimeter (N L) (boxes 
containing both black and blank areas) and area (NA) of these two objects are 

proportional to the size of  the subareas (6) according to the relations: 

NL, o= ; NA, oc 

NL: ~ " NA: ~ (7) 

Figure 1. Two similar sets measured with same yardstick. 
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where D c and D A represent the dimensions of the perimeter and area. Therefore, 
the estimated lengths of perimeters and areas of the two objects can be written 
a s :  

(~" - - D L  -- 

L2 

From Equation (8), it follows that; 

- -  ( X  " 

L2 

Therefore, 

(8) 

L~ (AI~ 1/20'~' 
oc \ • /  (9) 

where the ratio of perimeters (LI/L2) and the ratio of a r e a s  (AI/A2) satisfy a 
power-law relation with exponent DAL = 2DJDA. This power-law relation is 
independent of yardstick 6. From Equation (8), we also obtain: 

L(6) = C6 II DAI3A(6) D~'/2 (10) 

This equation is the same as Equation (2) with ~T = DAL" It follows that the 
power-law relationship between L(6) and A(6) depends on the value of 6. 

Similarly. the relations between length and volume and between area and 
volume can be expressed as: 

L, f V , ~  ''30'' 
Z = ; L ( 6 ) =  c6 ' - ~  'v(6) 

A (U~ 
- -  oc ; A(6) = CrI-Dv4v(6)  2/3D'4 (11) 
A2 

where DvL = 3DL/Dv and DvA = 3, DA/2Dv. For ordinary geometries with Dv 
= 3, D A = 2, andDc  = 1, we haveDvA = Dvc = DAL = 1; and for fractal 
geometries, DVA, DVL, and DAL > 1. If D A = 2 in Equations (9) and (10) 
corresponds to a two-dimensional set, then D4 L = DL. Only in this situation 
can DAC be used as a reliable estimate of the fractal dimension of the perimeter 
L. This special situation has been used widely in applications, However, a 
difference between DAL and D L has been determined in some applications of 
perimeter-area analysis. For example, by slit-island analysis, Pande, Richards, 
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and Smith (1987) obtained dimensions greater than those estimated from reso- 
lution-length analysis of vertical sections through the fracture surface used in 
their study. Goodchild (1988) generated random fractal surfaces by a stochastic 
process known as fractional Brownian motion, flooding them by water to obtain 
lakes. He checked the relationships between perimeters and areas of these lakes 
and concluded that the exponent D.~t. estimated from his data was significantly 
less than the theoretical value D s - l where D s is the fractal dimension of the 
surface. Indeed, if D A < 2, corresponding to fractal sets as will be shown in 
examples that follow, the exponent D~_ is not an unbiased estimate of DL~ Using 
D.4t, rather than DL we are in error by the ratio 2/D4 L > 1 (also see Lovejoy 
and Schertzer, 1991; Korvin, 1992). The following examples will be used to 
demonstrate that Equations (9) and (1) are identical only for the situation of D~ 
= 2, but different for DA < 2. 

PERIMETER-AREA ANALYSIS FOR FRACTAL SETS 

Example  1. Figure 2 shows the construction of a rectangular Euclidian 
Sierpinski gasket of which the initiator is a rectangle with unit side. The gen- 
erator eliminates an upper left subrectangle as shown. The striped areas in Figure 
2 show the 4th and the 5th generations of this prefractal (cf. Feder. 1988, p. 
17). 

For the nth generation, the yardstick satisfies 6, = (1/2)". and the estimated 
length of the perimeter, which includes all edges enclosing the striped area. is 

L(6,,) = 6L(6,, ~) - 46,  (12) 

L(6,,) = 4 3 " -  (3" I-k) 6,, = 3" 4 -  6,, 
= 0  3 k=o 

= 3" [ 4  4 1 1 3" + o(n) 6,, = [2 + o07)] 6,, 
31  - ~  

13) 

where lim . . . .  o(n) = 0. Using the definition of Equations (5) and (6) we obtain: 

log {3"[2 + o(n)]6,,} log (3) 
D L = I  - lira - - -  - 1.58 

, , -  ~ log 6,, log (2) 

The corresponding estimated area is 

n 2 A(8,,) = 3 8,, (14) 

and the fractal dimension D 4 can be estimated by definition (5) and (6) as: 
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n• a 

a n=5 

N N 
NNN  

UAW /x//JJYYY/A A 
b 

F i g u r e  2. Example  I .  Construction of  rectangular  Euclidian 

Sierpinski gasket.  Initiator is rectangle: generator  el iminates 

upper-left submetangle with hall" length of  side. Result shown 

is fl~r 5th generation with n = 5 for yardstick (5,, = (1/21". 

Dimensions of  per imeter  and area are equal with D I = D4 

= 1.58. whereas  exp~ment obtained from perimeter-area re- 

lation is D ~  = 2. 

n 2 log (3 6,) log (3) 
D. 1 = 2 - lira - - -  

1, - ~  log 61, log (2) 
- 1 . 5 8  

Therefore,  the fractal dimensions are estimated to be: Dr. -- D 4 = 1.58. From 
Equation (91. it then follows that D.tL = 2. For this example.  DAL ~: DL. and 
Equation (11 is not satisfied. 

To verify the relationship between length of  perimeter and area, the two 
generations of  the prefractal in Figure 2 can be regarded as objects constructed 
by using squares with different unit sizes a and b (a e: b) as initiators. Using 
yardstick 6 to measure both length and area, the lengths of  perimeters and areas 
of  these two objects are estimated as: 
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L,(6) = 6; A , ( 6 ) =  62; L.__(6)= ~ )  6; A2(6)= 

Therefore. 

Ll(6) A1(6) L(6) o: 6-tA(6) (15) 

These expressions are identical to Equations (8) ancl (9) with DAL = 2. 
Example 2. Figure 3 illustrates the construction of a Koch curve with as 

initiator an equilateral triangle with unit length of sides. Each next generation 
Koch curve is a curve with sides consisting of four line segments that are 1/3 
times as long as those of the previous generation. The 3rd hand 4th generations 
of this prefractal are shown in Figure 3. 

The perimeter and enclosed area of the nth generation prefractal can be 
estimated from the relations: 

L(6.,) = 3(4)"6., (16) 

N~4(6,,) = NA(6,,-0 9 + No(6,,-I) (17) 

where N.I is the number of areas and NL(NL(6,,) = 3 • 4") is the number of 
segments, both of which are measured by using the yardstick 6. The length of 
each yardstick 6,, for the nth generation is 

6 .  = (~)" 

From Equation (16) it follows that 

Figure 3, Example 2. Construction of  Koch 
curve. Initiator is triangle. Each segment of  in- 
itiator is replaced by generator.  First generation 
of  this prefractal is curve consisting of  four line 
segments each of  length equal to (1/3) of  each 
of laterals, Results shown are Ibr 3rd and 4th 
generation with n = 3 and n = 4 tor yardstick 
(1/3)". For dimensions: Dr_ = 1.2618 and D4 = 
2; therefore, D41 = Dr, 
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DL = 1 -- lim log [3(4)"8,,] _ log (4) _ 1.2618 
,, ~ ~ l o g  6,, l o g  (3 )  

From Equation (17) we have 

k 2 9" I 4 k A(8,,) = NA(5~)9" + ~ NL(8~)9"-i 8, = 1 + ~ (~) 67, 
/,=0 k= } 

I 9 "~ = 9" 11 + ~ x ~ + o ( n ) 1 6 7 ,  = [s + o(n) ]9"8, ,2  

(18) 

Consequently, the dimension of area is 

log {1~- + o(n)l 9"8~1 
log (9) 

D4 = 2 - lira - - 2 
, , - =  log 6,, log (3) 

so that D.~L = Dr. = 1.2618. For this example, 
7}6z~ g 

Ll(6,,) Al(6,,)| " 
L2(6,,) oc A2(6,,)| ! (19) 

and both Equations (1) and (9) are satisfied. 
Example 3. Figure 4 shows the constsruction of a set of an initiator that 

is a triangle. First. nine subtriangles with one-third-length sides are formed. 
The generator eliminates the triangles except the two in the lower-left and lower- 
right comers. The first generation consists of two lower triangles. Each new 
generation is obtained by applying the generator to all remaining triangles. This 
prefractal results in a geometry with zero perimeter and zero area. The length 
of yardstick of the nth generation is 

6, = (~)" 

The length and area of the nth generation prefractal are given by 

L(8,,) = 3(2)"6,, (20) 

A(8,,) = Ao2"8~, (21) 

where A o = 3~'e/4. It can be estimated that the dinaensions of the perimeter and 
the area are same and D L = D . 4  = 0.6309, the set is actually the triadic Cantor 
set. From Equation (8). it follows that DAL = 2. Consequently,  DAL -~ Dr. 

Example 4. Figure 5 shows the construction of a set of  an initiator that 
is a triangle. First. 16 subtriangles with one-fourth-length sides are formed. The 
generator eliminates the triangles except the shaded four. The first generation 
consists of four triangles linked to the one at the center. Each new generation 
is obtained by applying the generator to all remaining triangles. This prefractal 
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Figure 4. Example 3. Construction of set with fractal 
dimension Dt = D., = 0.6309. Initiator is triangle. In 
each generation, triangles are divided into 16 same- 
shaped triangles: generator eliminates 14 and leaves two 
small triangles in lower comers. Four generations of 
prefractal sets are shown in figure. Consequently. D~t 
{= 2) which is more than three times D t. 

r e su l t s  in a g e o m e t r y  c o n s i s t i n g  o f  s epa ra t e  dots .  T h e  l eng t h  o f  y a r d s t i c k  o f  the  

n th  g e n e r a t i o n  is 

6,, = (')" 
T h e  l eng th  and  a rea  o f  the  n t h  g e n e r a t i o n  pref rac ta l  are  g i v e n  by 

L(6,,) = 3(4)"6,, (22) 

tt 2 A(6, , )  = A o 4  6,, (23) 

w h e r e  A o = 3w2/4. It can  be e s t i m a t e d  that  the  d i m e n s i o n s  o f  the  p e r i m e t e r  and  
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Figure 5. Example 4. Construction of set with fractal dimension D t = 

D.~ = 1. Initiator is triangle. In each generation, triangles are divided 
into 16 same-shaped triangles; generator eliminates 12 and leaves four 
triangles connected with one at center. Five generations of prefractal sets 
are shown. 

the area are the same and D L = D 4 = 1. From Equat ion (9), DAL = 2, hence 

DAL -4= DL. 
Example 5. Figure 6 shows the construct ion of  a set of  an init iator that 

is a triangle.  First, 36 subtr iangles  with one-s ix th- length  sides are formed.  The 

generator  e l iminates  those 27 tr iangles so that the remain ing  nine tr iangles are 

not connected  each other.  The  first generat ion consis ts  of  nine d isconnected  

triangles.  Each new generat ion is obta ined by applying the genera tor  to all 

remaining triangles.  The  second and third generat ions are shown in Figure 6. 
The length of  yardst ick of  the nth generat ion is 
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V 

v 

Figure  6. Example 5. Construction of set 

with fractal dimension D, = D 4 = 1.2226. 
Initiator is triangle. In each generation, tri- 
angles are divided into 36 same-shaped tri- 

angles; generator eliminates 25 and leaves 
nine triangles disconnected each other. 
Second and third generations of prefvactal 
sets are shown. 

V A VAV 
V A V V 

V 

dV V A 
V d V V 

Vn V 

V A ~ V A V  V 
V A V& V A r A V A 

V V ~VA ~ ~V~ V AV~vA 

6, ,  = (~,)" 
The Length and area of  the nth generation prefractal are given by 

L(6,,) = 3(9)"8,, (24) 

A(8,,)  = Au9"8~, (25) 

where A o = 3 I/2/4. It can be estimated that the dimensions of  the perimeter and 

the area are the same, and D L = D.4 = 1.2263, D.~ L = 2 and D m :1: De. 
The preceding examples show that the exponent (O.4l.) from the perimeter- 

area analysis is not necessarily the same as those of  the perimeter and the area. 

Only if D A = 2 (example 2), D4 r = D L and in this situation the exponent D.u. 
can be used as an unbiased estimate of  the fractal dimension of  the perimeter. 

Generally, for D~ < 2 (Examples 1, 3, 4, 5), the estimated exponent (D..,t) is 
greater than the fractal dimension of  the perimeter (DM. > DD. The examples 
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3, 4, and 5 show that different sets with dimension D, 0 < D < 2 can be 

constructed from a triangle set by a generator which eliminates a portion of  the 
remaining subtriangles in each generation. For  example,  the initial triangle can 

be divided into n 2 small same shaped triangles; in each generation, the generator 
eliminates n 2 - n D small triangle and the remaining n ~ triangles comprise the 

prefractal set. The fractal set constructed in this way has fractal dimension of  
D. Examples 3, 4, and 5 also show that these fractal sets consist of  separate 
points with dimensions D = 0.6309, D = 1, and D = 1.2263, respectively. 
Therefore,  the fractal set (example 4) also can have integer dimension. 

P E R I M E T E R - A R E A  A N A L Y S I S  F O R  AU A S S O C I A T E D  
G E O C H E M I C A L  A N O M A L I E S  

Geochemical  data (primarily Au) for rock samples collected from an area 

of  120 km 2 in the Mitchell-Sulphurets district, northwestern British Columbia,  

can be used to illustrate perimeter-area analysis. This district is considered to 
have high potential for Au, A u - A g ,  and porphyry C u - M o  mineral resources. 

Concentration values for Au, Cu, Ag, and As as well as other elements and 
oxides were used for delineating anomalous areas in Au mineral exploration 
(Cheng, Agterberg, and Ballantyne, 1994). Figure 7A shows the contour map 

with geochemical  isopleths used for Au, and Figure 7B is the log- log  plot 

Figure 7. Geochemical anomaly in MitchelI-Sulphurets mineral district, northwestern British Co- 
lumbia. A, Successive binary panems for separate contours of Au concentration values from 1033 
rock samples. Contours were created by SPANS-GIS potential mapping technique; B, Log-log. 
plot shows perimeter-area relation for successive contours in Figure 7A. Dots represent values of 
perimeters and areas of contours with values greater than threshold of 200 ppb and some of these 
contours are not displayed in Figure 7A. Exponent is estimated to be D4~ = 1.48. 
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showing the relationship between perimeters and enclosed areas [Eq. (10)] for 
separate contours with concentration values greater than the threshold value (Au 
= 200 ppb) derived for delineating the anomalous areas. The exponent estimated 

from Figure 7B is DAL = 1.48. The outlines of  the anomalous areas gave D L 
= 1.24 (Cheng, Agterberg,  and Ballantyne, 1994, fig. 8). From DA~ = 2DL/ 

D A it followed that D A = 1.68 which is less than 2. It also was estimated that 

D A = 2 for the dimensions of  both Cu and As. These results indicate that the 
distribution o f  Au in the Mitchell-Sulphurets area is more irregular than that of  

Cu or  As. 

C O N C L U S I O N S  

A new model for the relationships between perimeters, areas and volumes 
of  similarly shaped fractal geometries is proposed. It has been shown theoreti- 

cally and by examples that the fractal dimension estimated from the perimeter- 
area relation is not necessarily the same as the fractal dimensions of  the perimeter 
and the area. Only if DA = 2, can the exponent (DAD estimated from the 

perimeter-area relation be used as unbiased estimate of  the fractal dimension of  
the perimeter. For  D• < 2, this exponent is greater than the fractaI dimension 
of  the perimeter by the factor 2/DA > 1. The perimeter-area model discussed 
in this paper was used for characterizing anomalous areas of  Au, Cu, and As 
in the Mitchell-Sulphurets area, northwestern British Columbia (Cheng, Agter- 
berg, and Ballantyne, 1994). Gold is more irregularly distributed than Cu and 

As in this area and the estimated fractal dimensions DA of  anomalous areas for 
Au, Cu, and As were 1.68, 2, and 2, respectively. 
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