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ABSTRACT 

We propose a modified diffusion-limited aggregation (DLA) model for the evolution of fluvial drainage networks. 
Random walkers are introduced randomly on a grid, and each two-dimensional random walk proceeds until the walker finds 
a drainage network on which to accrete. This model for headward growth of drainage networks generates drainage patterns 
remarkably similar to actual drainages. The model also predicts statistical features which agree with actual networks, 
including the frequency-order (bifurcation) ratio (R b = 3.98) and the stream length-order (R r = 2.09). Using the definition 
of network fractal dimension D = log Rb/lOg R r, we find that our DLA model gives D = 1.87, near the observed range of 
D = 1.80-1.85. 

I.  Introduct ion 

At short and intermediate length scales, the 
topography of the earth is dominated by ero- 
sional features. While crustal and lithospheric 
processes generate large-scale mountain belts, e- 
rosional dissection generates relief over smaller 
length scales. One of the remarkable features of 
this process is the self-organization of topography 
into a scale-invariant (fractal) form, such that the 
aspect ratio of topography is roughly constant 
regardless of amplitude [1]. The fact that topogra- 
phy worldwide exhibits the same fractal dimen- 
sion regardless of climate, tectonic setting or 
bedrock lithology suggests that this self-organiza- 
tion reflects the most fundamental mechanics of 
erosion. 

The evolution of drainage networks is inti- 
mately tied to the erosion of landforms. While 
hillslopes and interfluves (with length scales of 
less than 1-10 km) represent sites of relatively 
slow diffusional mass transfer (i.e., mass wasting), 
channels represent sites where the water flux 
becomes sufficient to promote a more efficient, 
advective mass transfer [2]. It follows that the 
generation of erosional relief is dominated by 
mass transfer in channels. Therefore,  to under- 

stand the self-organization of topography, one 
must understand the spatial and temporal evolu- 
tion of drainage networks. The statistics of these 
networks satisfy a variety of power laws [3,4], 
including frequency-length statistics and drainage 
area- length statistics. Thus, it is likely that the 
fundamental processes responsible for generating 
fractal stream networks are also responsible for 
generating fractal landforms. 

In this paper we first discuss fractal networks 
in general, and drainage networks in particular. 
We then present a modification of the diffusion- 
limited aggregation (DLA) approach to drainage 
network generation. This results in networks that 
are qualitatively and quantitatively similar to ac- 
tual networks. 

2. Fractal  trees and river networks  

Drainage networks are now recognized as clas- 
sic examples of fractal trees [5]. Three examples 
of fractal trees are given in Fig. 1. In order to 
specify the geometries, three quantities must be 
given: the branching ratio N n / N  n + ~ where Nn is 
the number of branches of order n, the length 
ratio r n + 1 / r ,  where r~ is the length of the branch 
of order n, and the angle of divergence 0. For the 
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Fig.  1. T h r e e  e x a m p l e s  o f  f r a c t a l  t r ee s .  ( a )  N n / N , ,  + 1 = 3, r n + l / rn = 3, 0 = 30 °, D = 1. (b )  N n / N ,  + 1 = 2, r n + 1 / r ,  = 2, 0 = 60 °, 

D = 1. (c)  N n / N , +  I = 2, rn+ 1 / r .  =V/2 - ,  0 = 9 0  ° , D =  2. 

example given in Fig. la,  N n / N , +  1 = 3, r n + l / r  n 
= 3, and 0 = 30 °. Taking the definit ion of  the 
fractal d imension D to be 

In( N . / N  n + 1  ) 
D = (1) 

In( r.  + 1 / r . )  

we find D = 1 for this network.  For  the example 
given in Fig. lb  N . / N . +  1 = 2 ,  r . + l / r n  = 2 and 
0 = 60 °, and again D = 1. A n d  for the example in 
Fig. lc, N n / N n +  1 = 2, r n + i / r  n = V/2  a n d  0 = 9 0  ° ,  

and D = 2. In  all cases the construct ions can be 
extended to infinite order  wi thout  overlap. If  the 
construct ion in Fig. lc  is extended to infinite 
o rder  the plane is entirely covered by the con- 
struction, but  with no overlap. Thus,  this con- 
struction is an example of  a self-similar (identical 
at all scales), determinist ic ne twork  that  can drain 
every point  on a surface at as small a scale as is 
specified. This is the implication of  D = 2, the 
dimension of  a plane. 

It is s tandard  practice to use the Strahler  [6] 
s t ream-order ing system outl ined in Fig. 2 to order  
actual drainage networks.  W h e n  two l ike-order 

1 1 

"x 
Fig.  2. I l l u s t r a t i o n  o f  t h e  S t r a h l e r  [5] s t r e a m  o r d e r i n g  s y s t e m .  

s t ream segments  combine,  they form a down- 
s t ream segment  one  order  higher than the origi- 
nal. Thus,  two first-order s treams combine  to 
form a second-order  stream, two second-order  
s treams combine  to form a th i rd-order  stream, 
and so forth. The  bifurcation ratio R b was de- 
fined in [7] as: 

N. 
= - -  ( 2 )  

N n +  l 

where  N .  represents  the the number  of  s treams 
of  order  n. The  l e n g t h - o r d e r  ratio R r is def ined 
by: 

rn+l  
Rr = (3) 

r n 

where  r ,  represents  the mean  length of  s t ream of  
order  n. Empirically, both  R b and R r are found 
to be nearly constant  for a range o f  s t ream orders  
in any given drainage basin. These  are known as 
Hor ton ' s  laws. Combining (1), (2) and (3) gives: 

In R b 
D = - -  (4) 

In R r 

S tandard  s t ream-order ing parameters  are directly 
related to the fractal d imension of  the network 
[81. 

A n  actual example of  a drainage network is 
given in Fig. 3, f rom the Volfe and Bell Canyons  
in the San Gabriel  Mounta ins  near  Glendora ,  
California [9]. The  smallest s treams appear ing on 
this map are one o rder  lower than the smallest 
s treams on the published topographic  map [9]; we 
refer to these as 0 order  streams. The  n u m b e r -  
length statistics for this ne twork are given in Fig. 
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Fig. 3. The drainage network in the Voile and Bell Canyons, 
San Gabriel Mountains, near Glendora, California obtained 

from field mapping [8]. 

4 a, with the number  and mean lengths presented 
for streams of order 0 to 4. It is seen that the 
results correlate well with (1) taking D = 1.81. 
Shown in Fig. 4b are the applicable statistics for 
the entire United States [3], and the correspond- 
ing fractal dimension is D = 1.83. It is seen that 
stream networks are, to a good approximation, 

fractal and have fractal dimensions near  1.80, 
clearly somewhat less than the space filling D = 2. 
This is consistent with the example illustrated in 
Fig. 3. Two processes may be responsible for the 
network fractal dimension being less than 2. First, 
sparseness may be a property of the network 
itself, much as the fractal trees in Fig. 1 give 
varying fractal dimensions if the constructions are 
extended to infinite order. In addition, real net- 
works are not truly space filling; there is always a 
characteristic smallest stream. Over short dis- 
tances, small fluxes of water  act diffusively, flow- 
ing over the surface or through the near-surface 
without incising channels (streams) [2]. Neverthe- 
less, the fractal dimension given in (4) is derived 
from the entire spectrum of observed stream or- 
ders. Thus, the diffusional effects of short-range 
transport  should only truncate the spectrum at 
the lowest order, not change its fractal dimen- 
sion. 

3. Previous models 

A variety of models have been proposed to 
describe the statistics and origins of drainage 
networks [10]. Descriptive models were intro- 
duced by Shreve [11,12] and Scheidegger [13], in 
which drainage networks were considered as infi- 
nite topologically random networks (i.e., no one 
distribution of network links preferred over any 
other). They showed that the statistics of real 
drainage networks matched the most probable 
n u m b e r - o r d e r  distribution of a topologically ran- 
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Fig. 4. Dependence of the number of streams of various orders on their mean length for (a) the example illustrated in Fig. 2 and (b) 
for the entire United States [2]. 
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dom network. Although these models have proven 
useful as a way of describing fluvial networks, 
they contain little information on the dynamical 
processes that form them. 

Other  workers have proposed random growth 
models to explain the planform organization of 
drainage networks. Leopold and Langbein [14] 
and Shenck [15] proposed models in which the 
streams themselves followed random walks. Thus 
the network was not headward growing, but prop- 
agated laterally from the most central ' trunk' 
stream. In addition, the network grew by the 
addition of entire stream segments, rather than 
by gradual expansion (accretion). Howard [16] 
and Stark [17] introduced accretionary headward 
growth models. In Howard's [16] model, a site 
adjacent to the existing network was chosen ran- 
domly and the network propagated to this site. 
Thus, all sites on the network had an equal 
probability for growth. Stark [17] used an invasion 
percolation technique, in which the growing net- 
work was superposed on a fixed random field 
(analogous to a substrate with variable erodibil- 
ity). At each time step, the network propagated 
to the adjacent site having the highest erodiblity 
value over the entire perimeter. Although all sites 
on the network had differing probabilities for 
growth, these probabilities did not change through 
time since the random field was fixed from the 
start. 

A number of workers have coupled the evolu- 
tion of drainage networks to the three-dimen- 
sional evolution of topography. Culling [18] initi- 
ated this approach, proposing that the downslope 
flux of eroded sediment is proportional to the 
topographic slope. Accordingly, the evolution of 
topography through time satisfies the diffusion 
equation. While solutions to the diffusion equa- 
tion give satisfactory results for small-scale fea- 
tures (e.g., fault scarps and alluvial fans), diffu- 
sion cannot yield self-similar landforms [19]. Thus, 
diffusion alone is not a satisfactory model for the 
evolution of topography. Chase [20,21] has com- 
bined a cellular-automata advection model with 
diffusion and has generated reasonably realistic 
topography with drainage networks. Meakin et al. 
[22] have applied a DLA approach and Willgoose 
et al. [23] an advective-diffusive model. Kramer 
and Marder  [24] have modeled the development 
of drainage networks on a water-covered land- 
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scape assuming that the erosion is proportional to 
the product of velocity and pressure. 

4. DLA model 

The model presented here is a modified ver- 
sion of the classical diffusion-limited aggregation 
(DLA) technique pioneered by Witten and Sander 
[25]. In general, DLA models generate fractal 
networks through iteration of random walks origi- 
nating at a fixed distance from the existing net- 
work. Whenever one of the random trajectories 
intersects the network an element is accreted, 
thus producing network growth. The method has 
proven particularly useful in studies of immiscible 
fluid flow, in which the replacement of a high- 
viscosity fluid by a low-viscosity fluid results in 
dendritic fingering of the interface [26]. Because 
the random walkers introduced at the boundaries 
are shielded from the interior of the network as it 
expands, the network is sparse and the fractal 
dimension is low. 

In our model the random walkers are intro- 
duced randomly over the entire grid and are 
allowed to walk until they either intersect the 
evolving network or are lost from the grid. We 
view the random walkers as unit water fluxes 
(rainfall and overland flow) which migrate over a 
relatively flat surface until they find a gully (net- 
work) in which to flow. When the flux joins the 
gully the latter erodes and expands the network. 
For spatially uniform 'rainfall' (i.e., initial place- 
ment of the walker), the probability for accretion 
at any given site on the network decreases with 
the degree of shielding near the site. Since this 
shielding changes through time as the network 
evolves, the probability for accretion at any site 
also changes through time. This relationship is 
not present in the planform models discussed 
above. 

Kondoh and Matsushita [27] used a more clas- 
sical DLA technique to model drainage forma- 
tion in which random walkers were introduced at 
a fixed radial distance from a single seed cell. We 
feel that if precipitation is uniformly distributed 
over real landscapes, random walkers should be 
uniformly distributed over the entire grid. In ad- 
dition, by using a single seed cell, Kondoh and 
Matsushita [27] neglect the inherent competition 
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between adjacent subnetworks that occurs in real 
landscapes. 

The exact mechanics of our model are illus- 
trated in Fig. 5. A square grid of 15 x 15 cells is 
used in this illustration. Five seed cells are intro- 
duced at random points on the lower boundary. 
The evolving network must grow from these seed 
cells. For the example shown, sixteen cells have 
been accreted to the seed cells. Cells are allowed 
to accrete if one (and only one) of the four 
nearest  neighbor cells is part  of the pre-existing 
network. Prohibited sites which already have two 
neighboring sites occupied are identified by stars. 
Sites available for accretion to the network are 
indicated by circles. A random walker is intro- 
duced at a random cell on the grid and the 
hypothetical path is traced by the solid line. After 
28 random walks it accretes to the network at the 
hatched cell. A random walk proceeds until ei- 
ther (1) the walker accretes to the network, (2) 
exits the grid, or (3) lands on a prohibited cell. In 
each case the walk is terminated and a new 
walker is introduced on a new, randomly selected 
site. The iteration of this basic procedure results 
in a branching network composed of linked 
drainage cells. This 'self-avoiding' algorithm pre- 
vents local clumping of drainage cells, and is 
similar to that used by Stark [17]. 

Although the model is highly schematic, the 
mechanics outlined here are analogous to the 
mechanics operating in real drainage systems. 
The accretionary nature of network growth pro- 
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duces a headward evolving drainage pat tern simi- 
lar to patterns of headward erosion seen in na- 
ture [28]. The accretion process itself is analogous 
to a flux of water (e.g., overland flow) intersecting 
an existing drainage, thereby initiating a new 
first-order channel. The self-avoiding algorithm 
prevents drainages from becoming locally space 
filling at the finest scales. In nature, this limit 
may be controlled by a threshold transition from 
diffusive slope processes to advective channeliza- 
tion processes [1]. The linear-stability analysis 
carried out by I_oewenherz [29] also argues for a 
finite spacing between channels at the finest 
scales. 

5. Results 

Our simulations have been carried out on a 
256 x 256 grid of cells with one-third of the bot- 
tom row tagged as seed cells. An evolutionary 
sequence for our drainage model is given in Fig. 
6; the grey-scale is defined by Strahler 's ordering 
system. Competit ion among the subnetworks re- 
sults in the dominance of a few major stream 
systems. Furthermore,  the major part  of this self 
organization takes place fairly quickly, relative to 
the total number  of iterations possible. By 30,000 
iterations, the maximum order of the system ( N  
= 7) has been established; subsequent events 
simply fill in the grid with lower order segments. 

The networks shown in Fig. 6 bear a striking 
qualitative resemblance to the actual drainage 
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[ ]  Newly Added Cell 

IlL'I, = Random Walk 

. ~B o * Prohibited Sites 
o * 
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Fig. 5. Illustration of the mechanism for network growth in our DLA model. A random walker is randomly introduced to an 
unoccupied cell. The random walk proceeds until a cell is encountered with one (and only one) of the four nearest neighbors 

occupied (hatched). The new cell is accreted to the drainage network. 
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Fig. 6. An evolutionary sequence showing the development of the drainage network after (from upper left) 10,000, 20,000, 40,000, 
and 60,000 iterations. Each image is grey-scaled with, darker shading representing higher Strahler orders. 
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Fig. 7. Statistical results from our model. (a) The log of the number of stream segments of a given order plotted against that order. 
(b) The log of the average length of stream segments of a given order plotted against that order. Horton's laws state that a natural 

drainage basin will yield a linear relation on each graph. 
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network illustrated in Fig. 3. Seeing as the proba- 
bility of accretion at a site increases with the 
amount of adjacent 'open'  (unshielded) space, the 
greatest probability for growth is always at the 
upstream edge of the network. Thus, like real 
networks, the synthetic networks grow headward 
through time and are naturally elongate. The 
elongation is aided by the competition between 
adjacent subnetworks. The dependencies of num- 
ber and mean length on order are given in Fig. 7 
for our DLA model after 50,000 iterations. Both 
results are in excellent agreement with Horton's 
laws, i.e. a constant value of the bifurcation ratio 
R b as defined in (2) and a constant value of the 
length-order  ratio R r as defined in (3). Using 
slopes derived from least-squares fits, we find 
R b = 3.98 and R r = 2.09. The corresponding value 
of the fractal dimension from (4) is D = 1.87. 
This is in good agreement with the values given in 
Fig. 4. 

As with real drainages, we believe that the 
fractal dimension less than 2.0 reflects the under- 
lying sparseness of the network at all orders, 
rather than the effects of the self-avoiding algo- 
rithm. Indeed, even if the self-avoiding algorithm 
were removed and the entire matrix was filled 
with drainage elements, the fractal dimension 
would not necessarily equal 2.0, since each cell of 
the matrix is considered to represent a unit length, 
not area. 

6. Conclusions 

The results of the modeling suggest that 
drainage networks represent a self-organized 
state, the formation of which may be described by 
a modified DLA technique. Specifically, the DLA 
technique produces planform drainage networks 
that bear a strong resemblance to real networks, 
evolve headward through time, and yield a 'sparse' 
fractal dimension of D = 1.87, slightly less than 
the space filling criterion of D = 2. This sparse- 
ness may reflect the dynamical interaction be- 
tween network growth and shielding that is incor- 
porated into the DLA model. 
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