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The definition of a fractal has been successfully deduced from constructing the Koch

curve and the Cantor set. Principles of seven methods (the ruler, box-counting, spectral,

structure function, intersection methods, cube-counting, and triangular prism methods) for

determining the fractal dimensions are illustrated and verified by the Koch curve, Cantor

set, and the simulated 1-dimensional and 2-dimensional ffim samples by comparing the

calculated with the theoretical D values of the theoretical fractal models. The application of

appropriate methods to self-similar or self-affme fractals is essential due to different

theoretical assumptions of the methodologies. The ruler dimension is different from the

spectral dimension. The application ofHanning window to the synthetic fBm samples

(Hanning window weighted) is important to obtain correct fractal dimensions for the

spectral method and structure function methods. The multi-scaling behaviour of a fractal

can be unveiled by revealing the difference between the 1st and 2nd order structure function

methods. The zeroset theory is used to relate the D values of 1-d contour set with 2-d

surface by analyzing the DEM data.

The results of fractal analysing 132 topographic contours digitized from different
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scales (1:200,000, 1:50,000, 1:20,000) ofmaps of the border area between Spain and

Portugal show that contours are self-similar, and have a fractal dimension of about D = 1.23

over length scales ranging from 30 m to 13 km scale (3 orders of magnitude). The thirteen

filed and map profiles from Dorset area of southern England has a D value of 1.03 derived

from the ruler method. The variations in D values are controlled by three geological factors:

erosive processes, lithologies, and fractures. The dominant control is the erosive process

and fractures, and lithologies can either result in significant difference or produce more

subtle variation in D values of coastlines and contours. For example, the river down-cutting

produces higher D value (1.1 ~ 1.5) than the wave action or cliff retreat erosive processes

(1.01-1.10).

The results of the fractal analysis ofthe five TM sub-image of Qatar have shown that

D values of the TM images range from 2.10 to 2.96. The variations in D values are

controlled by different types of surface, band variations, and methodologies. The study area

B of a single rock type has the lowest D value (D is about 2.25) and is significant different

from the other four study areas, whilst the urban area E yields the highest fractal dimension

(about D = 2.6). Band 3 yields the highest fractal dimensions, followed by bands 4, 5, 1,

and 6, and band 2 has the lowest D value. The difference between the D values derived

from the 2nd and 1st order structure function methods for all the six bands of five study areas

is D2s,(q=2) - D2s(q=l) = 0.16 0.13 (the uncertainty is the standard deviation), and suggests

that the TM imagery has a multi-scaling property.
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CHAPTER 1

INTRODUCTION TO THE FRACTAL CONCEPT

1. INTRODUCTION TO THE FRACTAL CONCEPT

1.1. INTRODUCTION

Traditionally, the Euclidean dimension is always integer. For example, the

Euclidean dimension of a point is zero, a line is one, a square is two, and a cube is three.

However, considering the dimensions of sets ofpoints, lines, squares, or cubes is often

beyond the capacity of Euclidean dimension theory, therefore the concept of fractional

dimensions has been developed.

The concept of a fractal set was introduced by Mandelbrot (1967) in his famous

article entitled "How long is the coast of Britain", following the earlier work ofRichardson

(1961). In his subsequent book of "The Fractal Geometry ofNature", Mandelbrot (1983)

refined and extended his fractal theory. Since then, it has been widely used in a range of

areas, from pure mathematics to engineering.

Many phenomena in nature are independent ofthe observation scale. For example, a

topographic contour of a 1:200,000 map maybe indistinguishable from that of a 1:50,000

map. Therefore, a contour needs either to be specified at a certain length scale or to be

generalized over all scale lengths. The fractal concept provides an essential tool to study

these scale-independent natural phenomena.

Many geological phenomena have been characterized by the fractal concept. Fractal

analysis, as well as methods for calculating the fractal dimension, has been reported in the
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disciplines of rock profiles and surfaces (Goodchild, 1980; Shelberg et. al, 1983; Mark

and Aronson, 1984; Brown and Scholz, 1985; Brown, 1987; Roy et. al, 1987; Turcotte,

1987; Dubuc et. al, 1989a, b; Gilbert, 1989; Aharonov and Rothman, 1996; Glover et. al,

1994; Kopaskamerkel, 1994; Poliakov and Herrmann, 1994), earthquake studies (Aki,

1984; Allegre et. al, 1982; Smalley et. al, 1987; Bak and Tang, 1989; Hirata, 1989b;

Huang and Turcotte, 1990a; Scholz, 1990; Arab et. al, 1994; Volant and Grasso, 1994;

Wang, 1993,1995,1996; Godano and Caruso, 1995; Khattri, 1995; Robertson et. al, 1995;

Turcotte, 1995; Yin andRanalli, 1995; Godano et. al, 1996; Srivastava e*. al 1996; Steacy
et. al, 1996; Varnes and Bufe, 1996; Wang and Lee, 1996), fault distributions (King,

1983; Aviles et. al, 1987; Sammis and Biegel, 1989; Hirata, 1989a; Jackson and Sanderson,

1992; Pickering et. al, 1994; An and Sammis, 1994; Carter and Winter, 1995; Lee and

Schwarcz, 1995; Idziak and Teper, 1996; Lee and Bruhn, 1996; Oncel et. al, 1996), rock

fractures (Byerlee, 1978; Madden, 1983; Brown and Scholz, 1986; Barton, 1986; Okubo

and Aki, 1987; Hirata et. al, 1987; Atkinson, 1987; Velde et. al, 1990; Gillespie et. al,

1993; Zhang and Sanderson, 1994; Xie and Sanderson, 1994,1995; Gillespie et. al, 1993;

Zhao et. al, 1993; Borodich, 1994; Caldarelli et. al, 1994; Hammad and Issa, 1994; Hao et.

al, 1994; Mishnaevsky, 1994; Odling, 1994; Weinstein and Majumdar, 1994; Lee et. al,

1994; Lyu et. al, 1994; Saouma and Barton, 1994; Silberschmidt, 1994; Zhang et. al, 1994;

Carpinteri and Chiaia, 1995; Frantziskonis, 1995; Djordjevic et. al, 1995; Hooke and

Iverson, 1995; Lu, 1995; Perfect and Kay, 1995; Pezzotti et. al, 1995; Thompson et. al

1995a; Kulatilake et. al, 1995; Podsiadlo and Stachowiak, 1995; Thompson et. al, 1995b;

Watanabe and Takahashi, 1995; Carpinteri and Chiaia, 1996), river networks (Gan et. al,

1992), landscape (Mandelbrot, 1975; Goodchild, 1980; Shelberg et. al, 1983; Mark and

Aronson, 1984; Brown and Scholz, 1985; Brown, 1987; Turcotte, 1987; Milne, 1988;

Gilbert, 1989; Mandelbrot, 1989; Devries et. al, 1994; Sun et. al, 1994; Beauvais and

Montgomery, 1996; Claps and Oliveto, 1996; Manna and Subramanian, 1996; Maritan et.

al, 1996), ocean-bottom relief (Berkson and Mathews, 1983; Barenblatt et. al, 1985; Fox

and Hayes, 1985; Gilbert and Malinverno, 1988; Goff and Jordan, 1988; Mareschal, 1989;

Raizer et. al, 1994; Magde et. al, 1995; Fox, 1996), lithology (Katz and Thompson, 1985;

Plotnick, 1986; Kronhn, 1988a, b; Velde et. al, 1991; Malinverno, 1989b; 1995; Leonardi

et. al, 1994; Ringrose, 1994), oil field (Hewett, 1986; Holliger and Levander, 1994; Dolan

et. al, 1998), seismicity (Anderson, 1986; Cao and Aki, 1984; 1986; Main and Burton,
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1986; Turcotte, 1989; Levander et. al, 1994; Saleure?. al, 1996; Costain and Bollinger,

1996), and image analysis (Kronhn, 1986; Yokoya et. al, 1989; Huang and Turcotte, 1989;

1990b; Lam, 1990; Polidori et. al, 1991; Sarkar and Chaudhuri, 1994; Vasselle and

Giraudon, 1994; Bandrivskii et. al, 1995; Bower et. al, 1995; Chan, 1995; Dejong and

Burrough, 1995; Donnelly et. al, 1995; Sarkar and Chaudhuri, 1995; Wu and Wu, 1995;

Carmichael et. al, 1996; Krueger et. al, 1996; Lawrence and Ripple, 1996; Soille and

Rivest, 1996).

In this Chapter, the definition of a fractal concept is deduced from demonstrating the

construction of the Koch curve and the Cantor set. Then the ruler and box-counting

methods are used to determinate the fractal dimension. After that, the self-similarity and

self-affinity of fractals are discussed and the concept of fractal dimensions and fractal limits,

introduced. Finally, the objectives and organization ofthe thesis are presented.
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1.2. DEFINITION OF A FRACTAL SET

The definition of a fractal can be deduced through using two traditional examples

called the 'Koch curve' and the 'Cantor set'. These two theoretical examples illustrate many

features of fractals and the methods needed to define the fractal dimension (D).

1.2.1. Koch curve

The Koch curve was introduced by Hedge von Koch in 1904. Fig. 1.1(a) illustrates

the first four steps of the construction of the Koch curve. In the diagrams of (b), (c), and

(d), r stands for the length of line segment(s), N is the number of the line segments, and L is

the total length of the curve. The construction of the Koch curve starts with a line ofunit

length (r=1) which is called the initiator. Firstly, the initiator is divided into three equal

parts and the middle part is replaced by two sides of an equilateral triangle. Therefore the

line ofunit length becomes a curve consisting of four straight lines, and this curve is called

the generator or motif. Then each of the four line segments is taken as the base and replaced

by the corresponding scaled-down generator. Recursion of this process leads to the Koch

curve at a certain order. Thus at each step, a line is replaced by four lines of each of length
1/3. Generally, each part of the 4 line segments in the k' step is a scaled-down version, by

a factor of 3, of the entire curve in the previous (k-1)1 step.

The Koch curve has some significant features as described in Fig. 1.1(a) and (b).

Firstly, the total length, L, and the number of the line segments, N, of the curve

consistently increases as the length of the line segments (r) decreases at higher order.

The recursion itself is infinite, but the area which the curve covers is finite. Thus, the

Koch curve has an infinite length (L) in a finite area (S) of the plane without intersecting

itself, i.e., as r 0, then L - oo, and S = V3 / 20. They can be given by,

A

V3 1 4 (aY (aY
1+9+9+l9 20
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Secondly, any part of the curve, when magnified isotropically with a proper scale factor,

is identical to the whole curve, i.e. its geometry is self-similar or scale invariant.

Thirdly, there is a power-law relationship between the number of line segments N (or the

total length L) of the curve and the length of the line segments r as shown in Fig. 1.1(c)
and (d).

The relationship between N and r can be revealed by their log-log plot as shown in

Fig. 1.1(c) for the first 10 orders. The points fall on a straight line of slope $x =

Log(4)/Log(3) =1.261858.... This indicates that there is a power-law relationship between

N and r. The line can be mathematically given by,

Log(N) = -1.261518 Log(r)

More generally,

Log(N) = Log(Q-DLog(r)

Therefore,

N = Cr'D (1.1)

where N is the number of objects (i.e. fragments) with a characteristic length r, C is a

constant ofproportionality, and D is termed the FRACTAL DIMENSION. For the Koch

curve D = Log(4)/Log(3) = 1.261858 and C = 1.

As shown in Fig. 1.1(d), the power-law relationship between the length of the Koch

curve (L) and r can be easily obtained since L = N r and from equation (1.1),

L = Crl~D (1.2)

1.2.2. Cantor set

The Cantor set was first published by Georg Cantor in 1883. It is constructed by the
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Initiator

Generator

STEPO:

STEP 1:

STEP 2:

STEP 3:

STEP 4:

r

1

fry*

N

l

42

44

L

1

4/3

(4/3)2

(4/3)

(4/3)4

N

lE+06

lE+04

100

1

ßl = -Log(4)/Log(3)

\ D = -ßx =

!\
4i \

i
! 3

= -1.26

1.26

(a); (b)

(c)! (d)

lE+06

lE+04

100

,= -Log(4/3)/Log(3) = -0.26

D = 1 - ß2= 1.26

lE-06 lE-04 0.01
r

lE-06 lE-04 0.01

Fig. 1.1. Construction of the Koch curve and illustration of the fractal concept derived from the curve, where

ß is the slope of the fitted lines, (a) Construction of the Koch curve for the first 4 orders, (b) A list of length

(r) and the number (N) of the line segments, and the total length of the curve (L) at different orders, (c)

Double logarithm diagram ofN against r shows a power-law relationship of the form N = Cr ', where the

fractal dimension of the Koch curve D = -ß, = 1.26. (d) The perfect fitted line of Log-log plot of L against r

also leads to a power-law relationship of the form L = Cr
, i.e., the fractal dimension of the Koch curve

D = 1 - ß2 = 1.26. Therefore, the Koch curve has a fractal dimension D = 1.26 and a proportional constant C

= 1.

sequential removal ofthe middle one-third of a line segment based on a unit length line as

shown in Fig. 1.2(a).

In Fig. 1.2(a), the unit length line, r0 = 1, is firstly divided into three equal parts so
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STEPO:

STEPl:

STEP 2:

STEP 3:

r

1

Vb

0Ä)2

0/3)3

N

1

2

22

23

L

1

%

e*

C5

1000

lE-04 0.01

(a) (b)

N

(C)

1000

STEPO: -

STEPl:

STEP 2:

STEP 3:

%x(%)2

V2x(%)3

(d) (e)

Fig. 1.2. Construction of the Cantor set and its derived fractal concept as shown in (a), (b), and (c).

Construction of a fractal set from those removed parts during the construction of the Cantor set and its derived

fractal concept as shown in (d), (e), and (f). (a) The first three orders in the construction of the Cantor set. (b)
A list of lengths (r) and numbers (N) of the line segments, and the length of the Cantor set (L) at different

orders, (c) Log-log plot of N against r where the plotted points link a perfect power-law of the form

N=Cr?l. Hence the fractal dimension of the Cantor set is D = Log(2) / Log(3) = 0.630929 and the

proportional constant is C = 1. (d) All those removed line segments during the construction of the Cantor set

as shown in (a) leads to another fractal structure, (e) A list of lengths (r) and numbers (N) of the line

segments, and the length of the new-formed fractal set (L) at different orders, (f) Log-log plot of N against r

for the construction of fractal shown in (d). Its fractal dimension is D = Log(2) / Log(3) = 0.630929 and the

proportional constant is C = 0.5

that the length of each line segment is rx = 1/3. The two end-line segments of the same

length 1/3 are retained so that the number of line segments Nt = 2. Subsequently, these two

retained line segments are each further divided into three equal parts so that the length of

every line segment r2 = (1/3)2. The four end-line segments of the same length of (1/3)2 are

retained so that the number of line segments is N2 = 22. This recursion, theoretically, is

endless and as the number of recursion goes to infinity, the Cantor set comprises an infinite

number ofpoints (or a infinite number of lines which have infinitesimal lengths). The

length (r), number (N), and total length (L) of retained line segments for the first three

orders of the construction of the Cantor set are shown in Fig. 1.2(b).
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To reveal the relationship for the number (N) and length (r) of retained line

segments, the first ten orders in the construction of the Cantor set is taken as an example.

As the recursion process is repeated ten times, then a set of lines (210 line segments, (1/3)10
in length at order 10) is obtained. The log-log plot ofN against r, as shown in Fig. 1.2(c),

reveals their power-law relationship. All the plotted points fall on a straight line where,

Log(N) = - 0.630929 Log(r)

The equation, again, can be written as,

-DN = Cr

where N is the number of objects (i.e. line segments here) with a characteristic criteria r

(here r is the length of line segments), C is a constant ofproportionality, and D is the fractal

(fractional) dimension (Turcotte, 1992). For the Cantor set D = 0.630929, and C = 1.

Let us investigate the fractal behaviour of the removed parts during the procedure of

construction ofthe Cantor set, they form another fractal structure as shown in Fig. 1.2(b).

There is a power-law relationship between N and r as shown in Fig. 1.2(e), and (f), where,

Log(N) = Log(0S) - 0.630929 Log(r)

It has the same fractal dimension D = Log(2)/Log(3) = 0.630929 as the Cantor set, but with

c = 0.5.

1.2.3. Extension to the higher dimensions

The fractal concept could be extended to 2-dimensions, 3-dimensions, and even

higher dimensions. The Koch curve and the Cantor set are both examples of fractals

generated from 1-dimensional lines. The Koch curve is constructed by removing less, but

adding more line segments to the initiator, hence the Koch curve has fractal dimension ofD

= 1.26 rather than a simply integer D =1 of initiator. The Cantor set, however, is the result

of constantly removal of line segments, and has a fractal dimension ofD =0.63. The

principles of removing line segments could be easily extended to higher dimensional
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l"! - 1, Ni = 1, Pi = 100%

(a)
r2 - %, N2 - 4, P2 - 4/32 x 100%

(b)
r3 = (1/3)2, N3 = 42, P3 = (4/32)2 x 100

(c)
%

Fig. 1.3. Construction of a 2-dimensional Cantor set for the first two orders, (a) A square of a unit side-

length ri = 1, hence the number of boxes is N, = 1 and percentage of retained boxes is P, = 100%. (b) The

square is firstly divided into nine equal small boxes and the four corner boxes are retained so that the side-

length of the small boxes r2 = 1/3, the number of retained boxes is N2 = 4, and percentage of retained boxes is

P2 = 4/9 x 100%. (c) The four retained boxes are further equally divided into nine boxes respectively, and

from which four corner boxes are retained so that r3 = (1/3)2, N3 = 42, and P3 = (4/9)2 x 100%. This procedure
can be carried out to any finer resolution required

geometry. For example, 2-dimensional boxes and 3-dimensional cubes can be removed

from a square or a cube initiators to construct 2-dimensional or 3-dimensional fractals.

Fig. 1.3 demonstrates a 2-dimensional fractal construction procedure. This fractal

could be termed the "2-dimensional Cantor set" because its construction procedure is similar

to a Cantor set. A square of unit area, which has a side-length of rt - 1, is initially divided

into nine small squares with a side length of r2 = 1/3, and the four corner small squares are

retained and the others are discarded. Recursion of this procedure (e.g. Fig. 13(c)) can be

performed so forth on the remaining boxes until a satisfied resolution is reached.

A log-log plot of the number of the retained squares (N) against their side-length (r)

at each step is exactly the same as Fig. 1.1(c). This is because the numbers of the retained

squares of the 2-dimensional Cantor set (Fig. 1.3) are same as those of line segments of the

Koch curve. Therefore, Fig. 1.1(c) could be used to demonstrate the power-law relationship

between N and r for the 2-dimensional Cantor set. The slope of fitted line is ß = -

Log(4)/Log(3) = -1.261858, and hence the fractal dimension D = 1.261858 and C = 1.

Similarly, the log-log plot of the percentage of the retained boxes (P) against the side-length

of the retained boxes (r) also shows a perfect fitted line which also results in the same fractal
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dimension D = 1.261858.

Notice that, the fractal dimension of 1-dimensional Cantor set, T>x = 0.63, is the half

ofthat of the 2-dimensional Cantor set, D2 = 1.26. This is because the number of the

retained boxes of the 2-dimensional Cantor set (M2) increases along both x- and in¬

direction, whereas the number ofthe remained line segments of the 1-dimensional Cantor

set (M^) only increases along one direction. Actually, M2 = Mx , i.e., the slopes of fitted

lines on the plots ofLog(M2) against Log(r) (ß2) and ofLog(Mj) against Log(r) (ßj) have a

relationship of ß2 - 2ßl5 hence, D2 = 2D].

Also notice that the 2-dimensional Cantor set has the same fractal dimension as the

Koch curve, both are D = 1.26. The 2-dimensional Cantor can be regarded as an infinite set

of infinite small areas or points in the unit area between (0, 0) and (1, 1). Therefore, a set of

points could have same fractal dimension as a curve if the quantitative power-law

relationship between the number of objects (N) with a characteristic size (r) is the same.

1.2.4. Summary

The Koch curve and the Cantor set illustrate the fractal concept applied to sets of

line segments, points, areas, curves; similar constructions can also be extended to higher
dimensions. In summary, the dimension of a set ofpoints, lines, curves, areas, or volumes

is not always an integer, but a fractional value, such sets are termed FRACTAL and the

fractal dimension is defined by equation (1.1).

Generally speaking, a set ofpoints on a line (e.g., Cantor set) has a fractal dimension

between 0 (point) < D < 1 (line); a set ofpoints in a plane (e.g., 2-d Cantor) has a fractal

dimension between 0 (point) < D < 2(plane); a set of lines (Koch curve) on a plane has a

fractal dimension between 1 (line) < D < 2(plane); and a surface should have a fractal

dimension of 2 < D < 3.
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1.3. DETERMINATION OF FRACTAL DIMENSIONS

The definition of a fractal concept, as demonstrated by the Koch curve and the

Cantor set, leads to a power-law equation (1.1) as,

-DN = Cr

where N is the number of objects (i.e. fragments) with a characteristic length r, C is a

constant ofproportionality, and D is termed the fractal dimension. It is from this power-law

relationship that the fractal dimensions of natural phenomena can be determined. The ruler

and box-counting methods are two of the simplest methods for determining fractal

dimensions using equation (1.1). All the other methods for determining fractal dimensions

are more or less derived from this equation. A brief discussion of the ruler and box-

counting methods is introduced here.

1.3.1. The ruler method

The ruler method is also called the divider method or the compass method. The

Koch curve may be used as an appropriate mathematical model on which to illustrate the

determination ofthe fractal dimension by the ruler method.

The power-law relationship between the number of line segments (N) and the ruler

length (r) of the Koch curve, as shown in Section 1.2.1, is given by equation 1.1. If the

Koch curve (Fig. 1.4a) is measured using two different yardsticks (ruler length) xx and r2

from the left-hand side as shown in Fig. 1.4(b) and (c), we have,

^ Crx-D

Then,

Thus the fractal dimension D can be given directly by,
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(a)

(b)

A.

ri=i, ?

Measured

r2/r

Koch

^
by a ruler length Tj

= 1/3 ; N2 /Ni =

curve

\ A

= 1

4; D

(0

Ay^A
r2= Vs.

y x a / \

N2=4, L2=4/3

Measured by a ruler length r2 =

= -Log(N2/Ni)/Log(r2/ri) == Log(4)/Log(3) = 1.26

A

Va

Fig. 1.4. Illustrations of the principles of the ruler method. The Koch curve has different lengths (L) and

different numbers (N) of rulers when it is measured using different ruler lengths (r). (a) Koch curve at order

3. As the Koch curve is measured by a ruler ^ = 1, then one measurement is needed (Nt = 1), and the curve

has a length L, = 1 as shown in Fig. 1.4(b). As the Koch curve is measured by a ruler r2 = 1/3, then N2 = 4

and L2 = 4/3 as shown in Fig. 1.4(c).

The Koch curve has a fractal dimension ofD = Log(4)/Log(3) = 1.26 and C = 1 (Fig. 1.4).

The fractal dimension can also be derived from the power-law relationship between

the length (L) and the ruler length (r) of the Koch curve by,

L = Cr\-D

since L = N r, then,

Log(L)
Log(r)
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For the different yardsticks rx and r2, we have,

Thus a plot of Log(L) against Log(r) as shown in Fig. 1.2(c) should be a straight line of

slope 1 - D. For the Koch curve, D = 1.261858 and C = 1.

1.3.2. The box-counting method

The Cantor set is an infinite set ofpoints in the unit interval [0,1]. It is an "ideal

fractal", which forms a suitable basis for discussion of the interval counting method. When

extended to 2-dimensions it becomes the widely used box-counting method for determining

the fractal dimension.

Supposed that Nj and N2 are the numbers ofboxes, of side lengths of rj and r2

respectively, needed to cover the retained squares in Fig. 1.3b, then N! and N2 are, from

equation (1.1), given by,

Thus,

(
Ni U

or,

(1.3)

To cover four retained corner squares, one square of side length r} - 1 is needed,
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hence Nj = 1; four boxes of side length r2 = 1/3, however, are needed, hence N2 = 4.

Therefore, the fractal dimension can be easily determined; D = Log(4)/Log(l/3) - 1.261858.

Alternatively, the box-counting dimension can be determined by revealing the

power-law relationship between P and r, where P is the ratio of the number (N) ofboxes

needed to cover the retained squares and the total number of squares (Nt = (1/r)2), and r is

the side length of each square. For box sizes of rj and r2, Fx and P2 are given by,

P- =-\r) r2

flV N2
2
~ 1 v 2 I ~

_
2

Thus,

(
Nj\r

or,

Combining the equation with (1.2) gives,

D = 2 rr^- (1.4)

For the example shown in Fig. 1.3, D = 2 - Log(4/9) /Log(l/3) = Log(4)/Log(3) = 1.261858,

which is equal to the fractal dimension of the Koch curve.



Chapter 1 Introduction To The Fractal Concept 16

1.4. SELF-SIMILARITY AND SELF-AFFINITY

Theoretically, a fractal is defined as self-similar if any small portion is similar to the

entire object when the portion is magnified isotropically by any factor r. For a self-affine

fractal, however, similarity exists only when the portion is magnified by different scales

along x- and y- axes.

Natural fractals can be characterized by these two fractal concepts, self-similarity

and self-affinity in a statistical sense, as defined by Mandelbrot (1983). The term

"statistical sense" ofnatural fractals implies:

The similarity between the portion and its magnified one is statistically similar, not

exactly the same. The Koch curve and the Cantor set discussed above are pure

mathematical fractal models - theoretical fractals. Its magnified portion is exactly as

same as the entire curve.

The theoretical fractals can be generated at all scales, from 0 to oo, however, the natural

phenomena are usually only fractal within a certain range which is termed the fractal

limits. This will be discussed in the Section 1.5.

1.4.1. Self-similarity

The self-similar fractal is illustrated by the Koch curve (Fig. 1.5(a)) and an example
contour (Fig. 1.5(b)). When the portion in the smaller ellipse is magnified isotropically, the

enlarged one (in the bigger ellipse) is similar to the entire object. In general, if a profile or a

surface is statistically self-similar, a portion ofthe profile will appear similar to the entire

profile when it is magnified isotropically. A formal definition of a self-similar fractal, in a

two-dimensional (xy) space, is that f(rx, ry) is statistically similar to f(x, y), where r is a

scale factor (Turcotte, 1992).

1.4.2. Self-affinity

The self-affinity of a profile is shown in Fig. 1.5(c). If a profile is a statistical self-

affine fractal then any portion of the profile appears similar to the entire profile, only if

different scaling factors are used for the directions parallel and perpendicular to the surface.

A formal definition of a self-affine fractal, in a two-dimensional xy-space, is that f(rx, rHy)
is statistically similar to f(x, y), where r is a scaling factor and H is known as the
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(a) Koch curve

/' xx3, yx3

xx3, yx3

(b) self-similar contour ; (c) self-affine profile

Fig. 1.5. Illustrations of the self-similarity and the self-affinity. Three bold curves in small ellipses are

isotropically magnified by a factor of 3 in (a) the Koch curve, the pure mathematical fractal model and in (b)

a topographic contour; (c) is a topographic profile. Two pieces of isotropically magnified portion shown in

(a) and (b) are similar to the original curves. This is called statistically self-similar fractal. However, the

isotropically magnified portion (lower part in c) by a factor of 3 has much more vertical variation than the

original curve. In order to preserve the statistical characters, different scaling factor along x- and y- directions

are needed (middle portion of c). This curve is a statistically self-affine fractal.

Hausdorffmeasure. Clearly, the self-similar fractal is one specific case of the more general
self-affine fractal where H = 1.

Topography is a good example ofboth self-similar and self-affine fractals and can be

used to illustrate the differences between them. The topographic contours are usually self-

similar fractals, since the two horizontal coordinates (x, y) involved in a contour are

statistically indistinguishable if the erosive processes do not vary with directions of (x, y).

A vertical cross-section (a profile) of topography, however, is more likely a self-affine

fractal. This kind ofprofile involves two coordinates, horizontal distance and vertical

height, and has different magnitudes along the two coordinates. The processes modifying

topography general lead to different scaling in the horizontal and vertical (height) direction,

hence the two coordinates are statistically distinguishable.
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1.5. FRACTAL LIMITS

Theoretical fractal models, such as the Koch curve and Cantor set, can be generated

at all scales, essentially from 0 to oo. Natural phenomena, on the other hand, are usually

only fractal between a certain range in a statistical sense (Mandelbrot 1977); the upper and

lower fractal limits. The range between these fractal limits is termed the fractal range.

Considering topography, the lower fractal limit may be imposed by grain size, bed

thickness, joint spacing etc. The upper fractal limit may be imposed by local limits to the

size of the study area.

A number of studies have noted that the upper fractal limit plays an important role in

characterizing surfaces' geography, and it can not be imposed to any scales observed on the

Earth. For example, Nye (1973) noted sea ice spectra for wavelengths longer than 100 m

tends to be flat, i.e., sea ice is smooth over the large scale. Bell (1975, 1979) shown the

spectra for abyssal hills seem to flatten over a wavelength longer than 40 km because of a

lack of large scale hills; later he pointed out that a profile length should not be longer than a

few tens ofkilometres since the size of abyssal hills are usually less than 10 km.

Malinverno (1989b) studied the spectra of abyssal hills over the ranges of 300 m and 50 km,

and found that the spectra over long wavelengths had to flatten because his extrapolating

power spectra at longer wavelength (>50 km) gave unrealistic amplitude (4 km for a

wavelength of 1000 km). Similar results also concluded by Gilbert (1989) and Malinverno

(1988), and Gilbert and Courtillot (1987).

Whilst the lower fractal limit maybe deformed by process, it is often controlled by
the resolution of measurement, such as map scales, sampling intervals, the digitizing steps

etc. This will be discussed in more detail in Chapter 3.
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1.6. OBJECTIVES AND ORGANIZATION OF THE THESIS

1.6.1. Objectives of the thesis

The objectives of the study are:

1. To examine the fractal properties of topographic contours in a statistical sense by the

ruler and box-counting methods; to reveal the relationships between fractal limits and

contour lengths (and digitizing steps); to investigate whether contours from different

methodologies, different maps, different rock types, and different contour elevations

have distinct fractal dimensions. 132 topographic contours digitized from different

scales ofmaps (1:20,000,1:50,000, and 1:200,000) of the border areas between Spain
and Portugal are involved in this study.

2. To study the fractal behaviours of the map and field profiles from kilometre scales

(map profiles) down to centimetre (field profiles) scales by the ruler, spectral, and first

order structure function methods; to discuss the different D values resulting from the

ruler method and the spectral (and/or the 1st order structure function) methods; to link the

variations ofD values with the geological factors, such as rock types and erosive

processes. Ten field profiles measured at different intervals and three digitized map
profiles from Dorset area of southern England are used in the discussion.

3. To investigate the effects on the variation in D values of topographic contours and

coastlines caused by different erosive processes, rock types, and fracture

orientations. The ruler method is deployed to determine the fractal dimensions ofparts

of the coastlines of Great Britain and Ireland. The determined D values are compared
with those obtained from worldwide literature and from the Chapters 3 and 4.

4. To analyze and compare the fractal dimensions of the DEM and Qatar TM data by
the spectral, 1st and 2nd order structure function methods; to examine the roles of different

methodologies, different land types, and different bands played in fractal dimensions.

The DEM is digitized from the 1:20,000 map of the boarder area between Spain and

Portugal, and also analyzed by the cube-counting and triangular method. Five study

areas which covers different rock types and geographical features (such as coast and

urban areas) from the TM quadrant of Qatar, which lacks thermal band and thus covers

six bands, are selected in the study.
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1.6.2. Organization of the thesis

The thesis covers seven chapters.

1. Chapter 1 is devoted to the deduction of the definition ofthe fractal concept by

constructing the Koch curve and the Cantor set.

2. Chapter 2 illustrates the principles of seven methodologies for determining the fractal

dimensions of spatial 1-dimensional curves and 2-dimensional surfaces data. The

programs for the calculation are developed and verified by calculating the fractal

dimensions ofthe simulated data which have known theoretical D values.

3. Chapter 3 analyzes the fractal behaviour of topographic contours digitized from different

scales ofmaps by the ruler and box-counting methods.

4. Chapter 4 studies the fractal behaviours of the map and filed profiles from kilometre

scales (map profiles) down to centimetre (field profiles) scales.

5. Chapter 5 investigates the effects on the variation in D values of topographic contours

and coastal lines caused by different erosive processes, different rock types, and different

fracture orientations.

6. Chapter 6 is the fractal analysis ofthe DEM and Qatar TM data by the spectral, 1st and

2nd order structure function methods.

7. Chapter 7 is about the conclusions drawn from the whole study.
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CHAPTER 2

METHODOLOGY FOR DETERMINING FRACTAL DIMENSIONS

2. METHODOLOGY FOR DETERMINING FRACTAL DIMENSIONS

2.1. INTRODUCTION

The fractal dimension has been computed in a variety ways. The methods used to

calculate the fractal dimensions of lines and surfaces can be categorised into 1-dimensional

and 2-dimensional (abbreviated as 1-d and 2-d respectively in the later discussion) methods.

1-d methods are used to determine the fractal dimensions of lines. These methods include

the ruler, box-counting, 1-d spectral, 1-d structure function, and 1-d intersection methods.

2-d methods are used to determine the fractal dimensions of surfaces which are equally

sampled as regular grid data. These methods include the 2-d spectral, 2-d structure function,

2-d intersection, cube-counting, and triangular prism methods.

In general, methods for calculating the fractal dimensions of lines can be easily
extended to handle surfaces, such as the box-counting, spectral, structure function, and

intersection methods. However, there is no direct equivalent of the ruler method for

determining fractal dimensions of surfaces. The fractal dimension of a surface can be

related with that of a profile or a contour set, which is resulted from the intersection of the

surface with a plane. This approach is based on the zeroset theory (Goodchild, 1982;

Burrough, 1981; Barnsley et. al, 1988), for which the dimensions of surfaces (or curves) are

reduced by 1 after they are intersected by a plane.

Self-similarity or self-affinity seriously affect the suitability of applying a method.
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For example, some care should be taken when applying the ruler method to self-affine

fractals (Mandelbrot, 1985; Brown, 1987; Wong, 1987). It will lead the D values of the

self-affine fractals to be very close to 1 (self-affine curves) or 2 (self-affine surfaces for the

box-counting method).

In Chapter 1, the concept of a fractal set has been originated from the construction of

the Koch curve and the Cantor set. The objectives of this chapter are;

To generate theoretical fractals, such as the Koch curve, Cantor set, simulated 1-d and 2-

d fBm profiles and surfaces, which have known theoretical D values. The 1-d and 2-d

fßm are generated by the midpoint displacement and interpolation techniques with H =

0.8, 0.5, and 0.2;

To develop programs (in VISUAL BASIC and FORTRAN codes) for determining the

fractal dimensions of the generated theoretical fractals;

To verify the programs developed and the implementation of the methods by comparing
the calculated D values with the theoretical D values;

To discuss the analysis results of applying the ruler, box-counting, spectral, structure

function, and intersection methods on the generated theoretical fractals.

Chapter 2 covers ten sections. Sections 2.2 and 2.3 demonstrate the principles of the

ruler and box-counting methods using a topographic contour. The methods and programs

are verified by determining the fractal dimensions of the self-similar Koch curve of level 5.

The 1-d and 2-d fBm self-affine profiles and surfaces are generated by the midpoint-

displacement and interpolation methods using H = 0.8, 0.5, and 0.2 in Section 2.4. The

principles of the spectral and structure function are demonstrated and verified by applying
the methods on the simulated fBm fractals, and are shown in Sections 2.5 and 2.6. Section

2.7 deals with the intersection method which is based on the zeroset theory, and links the D

values of 1-d fractals with those of 2-d fractals. Sections 2.8 and 2.9 demonstrate the

principles of the cube-counting and triangular prism methods. Some discussion of the

methodology for determining the fractal dimensions is shown in Section 10. Section 11 is a

list ofprograms developed {VISUAL BASIC and FORTRAN code) to calculate the fractal

dimensions and to draw nearly all the diagrams ofthe thesis.
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2.2. THE RULER METHOD

The ruler method is also known as the compass method, or (walking) divider

method. Its basis has been demonstrated in Chapter 1.2.1 using the Koch curve. In this

section, the ruler method (RULERMprogram written in VISUAL BASIC code) will be used

to analyse a Koch curve of a recursion level of 5. Thus the RULERM can be verified by

comparing the theoretical and calculated D values of the Koch curve. The section also

demonstrates the principles of the method as it is applied to a topographic contour PC2031,

and discusses some fractal features derived from the methodology.

2.2.1. Verification of the ruler method

Prior to application of the ruler method to topographic contours, it is necessary to

verify the suitability and accuracy of the method (RULERM program). This can be achieved

by applying RULERM to a theoretical curve whose fractal dimension is known, and

comparing the theoretical fractal dimension and the calculated fractal dimension of the

curve. The Koch curve, which has much of the complexity of a coast line or topographical

contour, is one of the ideal fractal curves to verify the method.

A Koch curve of level 5 was produced by the program Koch.bas as shown in Fig.

2.1(a). Thus the Koch curve has a number of 1025 (45+l) points, each single line segment

was assigned to be a length of 1, and the curve has a nominal length (the horizontal length
in which the profile spans over) of 243 (35), and a total curve length of 1024. Theoretically,
the curve has a fractal dimension D = 1.262 and the intercept C = 3.01 (i.e. C - Log(1024)
=3.01 since the curve has a length of 1024 as it is measured by a unit length of 1).

Fig. 2.1(b) shows the log-log plot of the curve length ofL against the ruler step r as

the produced Koch curve of level 5 is input into the program RULERM. The slope of the

regression line (ß) between the ranges of the ruler step r = [2, 50] is ß = -0.262 0.015, and

the intercept C = 2.912 + 0.016. This shows the curve has a fractal dimension of 1.262 over

a range between the lower fractal limit rL = 2 and the upper fractal limit % = 50. For r < rL

and r > rv, the slopes of the regression lines are near to 0, and D 1.0. This is because that

the length of the curve tends to be the same (constant) with the variations of the ruler length
r outside the fractal limits range of [rL, ru].

Compared with the theoretical log-log plot of the Koch curve (solid circles), the
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(a) The Kock curve at order 5, total length = 1024; horizontal length = 243 (3A5).
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(b) The ruler method j (c) The box-counting method

Fig. 2.1 Fractal analysis of a Koch curve by the ruler and box-counting methods, (a) A Koch curve of a

recursion level of 5. The curve has a number of points of 1025, a nominal length of 243, a total curve length
of 1024, and each line segment has a length of 1. (b) Log-log plot of the curve length (L) against the ruler

length (r) used to measure the curve, (c) Log-log plot of the number of filled boxes (N) against the box size

(r). Both plots of (a) and (b) show that the curve has a fractal dimension of 1.26 which is as same as the

theoretical fractal dimension of the Koch curve.

practical log-log plot pattern (grey circles) differs in three ways (Fig. 2.1b):

1) The plotted points are scattered in the practical model. This is because the fractional

numbers are used to deduce the theoretical length of the Koch curve at different ruler

steps, hence the plotted points fit a perfect straight line. However, the Koch curve is

practically recorded as a series of coordinates of decimal numbers in the practical model

by the Koch.bas. Therefore, the lengths of the curve calculated based on these decimal

numbers differ from the theoretical length at different ruler steps.

2) The power-law relationship between L and r only occurs over the fractal limits (rL = 2, ru
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= 50) in the practical model, features beyond this range is out of statistical interests. In

theoretical model, however, the length of the Koch curve has a perfect power-law

relationship over a range between xx = 1 and r2 243 (rx = 1 is the finest resolution of the

curve, i.e., the length of each line segment; while r2 = 243 is the nominal length, i.e., the

longest distance between any two points of the Koch curve). Theoretically, xx (or r2) can

be any infinite small (or large) number.

3) Notice that the practical pattern is generally lower than the theoretical one. The intercept
C = 2.912 for the practical model is lower than the theoretical intercept 3.01. This

indicates, in practical term, the curve has a total length of lO2'912 = 816.6, not a length of

10 = 1024. This can also be explained by the fact that the decimal digits of a certain

length are used in the calculation of the practical model, whereas fractional numbers are

used in the theoretical one.

Table 2.1 summarises the theoretical fractal dimension and the determined fractal

dimension of the Koch curve by the ruler and the box-counting methods, it clearly shows

that the fractal dimension of the Koch curve derived from the RULERMprogram within

fractal limits between r = 2 and r = 50 is as same as the theoretical one, D = 1.26.

D

C

u

Table 2 1 Comparison of the theoretical and determined fractal features

Theoretical

1.262 0.00

3.010 0.00

1

243

i RULERM D AD

i 1.262 0.015

i 2.912 0.016

I 50

i BOXCM D AC

i 1.268 0.029

i 3.085 0.032

Xl
! 50

Basic information of the curve: Recursion level = 5; Number of points = 1025 (45 + 1); Length of each
line segments = 1; Total length of the curve = 1024; Nominal length of the curve = 243

In Table 2.1, the notations rL and rv stand for the lower and upper fractal limits, and

AD and AC are the error values for estimating the values ofD and C by the least square

method during fitting the regression line. Suppose there are K pairs of data points (xj5 y;) to

be used to fit the regression line, and the regression line has a slope of ß and the intercept C,

then the estimate errors in slope Aß and the intercept AC are determined by (Bevington,

- I K

1969; Press et. al. 1986) by equation (2.1), where x = Y x.. Therefore, the estimate

error in the fractal dimension AD = Aß based on the equation (2.2). For the box-counting,
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the spectral, and the 1st order structure function methods, AD and AC will be determined in

the same way except AD = Aß/2 for the 1-d and 2-d spectral and the 2n order structure

function methods as deployed in later discussions.

AC =

i=1

(2.1)

1

K

V

(c)

y(x
!=i

_-\2

l *

" ^
i = 1

2.2.2. Illustration of applying the ruler method to contours

To illustrate the application of the ruler method to contours, a topographic contour

PC2031 was taken as an example to demonstrate the principles of the methodology (Fig.

2.2). The contour was digitized from a 1:50,000 map of Spain by the DIGICONprogram,

and further analyzed by RULERM. The digitized contour has a digitized length of Lo =

28814.7 m, the number of digitized points is 1277, and has an average digitized interval of

22.6 m (=28814.7/1276). Refer to Chapter 3.2.2 for more details about the procedure of

digitizing contours from maps. The digitized length of a curve Lo is given by,

Af-l

i=1

where [x{, y{\, i = 1, 2,..., N, are a series of coordinates recorded for a topographic contour.

Firstly, the contour is displayed in a scaled down square [Fig. 2.2(a)]. The initial

box size is Rq = 6709 m, which is equal to the longest distance along x- or y-direction.

Secondly, a fixed ruler (or yardstick) of a length r is stepped out along the digitized

contour from the first point of the line segment (the top of the box) [Fig. 2.2(b)].

Thirdly, different lengths of longer ruler (r) are used to repeat measuring the contour

length (L) which is taken as the sum of ruler steps (r) plus any length remaining between the
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Original square size Ro - 6709 m

Original contour name PC2031

Digitized contour length. - 28814.7 m
Number of digitized points - 1277
Average digitized separation s = 28814/1276 = 22.6 m.

r = 500 m, Lr = 16556.23 m, Nr = 33.11

(c) I (d)

r = 3,000 m, Lr = 12183.67 m, Nr - 4.06 r - 5,000 m, Lt - 7644.93 m, Nr - 1.53

Fig. 2.2. Illustration of the principles of the ruler method. Measuring from the first point (the top-most point
of the box) on the digitized contour, PC2031, using different ruler lengths leads to different measured lengths
of the contour, (a) The original contour is scaled down and displayed in a square box, which has a side length
of Ro = 6709 m. (b) When the ruler length r = 100 m is employed to measure the contour then the length of

the contour L = 16.56 km, and the number of the rulers N = 33.11. (c) L = 12.8 km and N = 4.06 when the

contour is measured by a r = 3000 m. (d) If the contour is measured by a r = 5000 m, then L = 7.65 km and N

= 1.53.

last step and the end of the digitized line [Fig. 2.2(c) and (d)]. On increasing the length of

the ruler (r), the measured length of the contour decreases [Fig. 2.2(b) to (d)]. Refer to

Table 2.2 for more details. The left side of Table 2.2 shows the results of applying the ruler

method to the example contour PC2031. Typically, decreasing the ruler length (r) results in

increasing the number of the rulers (N), as well as the length of the contour (L).
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Table 2.2. Processed results of the contour PC2031 from using
the RULERM and BOXCMprograms

The ruler method

r: ruler length (m);
N: Number of rulers used for r;

L: Total length of the contour;

r(m)
6000

5000

4000

3500

3000

2500

2000

1750

1500

1250

1000

900

800

700

600

500

400

350

300

250

200

175

150

125

.100

90

80

70

60

50

40

30

20

15

10

5

N

1.16

1.53

2.41

2.55

4.06

4.67

6.19

6.32

9.23

10.25

15.06

15.95

18.61

23.05

26.20

33.11

44.38

52.10

63.48

79.55

106.95

124.88

149.93

187.11

243.79

276.84

319.91

375.71

438.03

537.06

687.72

928.61

1408.9

1890.6

2852.8

5730.1

L(m)
6966.05

7644.93

9626.86

8932.29

12183.67

11682.95

12373.37

11057.24

13843.57

12808.44

15060.78

14354.10

14885.03

16133.10

15719.72

16556.23

17751.79

18233.48

19044.07

19886.29

21390.80

21853.38

22489.37

23388.30

24379.15

24915.78

25593.19

26299.73

26281.62

26852.90

27508.69

27858.37

28178.94

28358.36

28527.95

28650.69

Demo. Figs

Fig. 2.2(d)

Fig. 2.2(c)

Fig. 2.2(b)

The box-counting method

r: side length of the box (m)
Nt: total number of boxes;

;

N: number of the filled boxes;
P: percentage of the

r(m)

52.82

55.91

60.99

67.09

74.54

83.86

95.84

111.81

134.18

167.72

223.63

335.44

419.30

559.06

670.88

745.42

838.59

958.39

1118.1

1341.7

1677.2

2236.3

3354.4

6708.8

NOTE:

N,

1272

1202

HO2

lOO2

902

802

702

602

502

402

302

202

162

122

lO2

92

82

72

62

52

42

32

22

I2

Inputfile name:

Outputfile name:

Map scale:

Contour level:

filled boxes (%).

N

690

636

587

528

474

408

350

293

237

183

129

75

58

39

29

28

24

19

16

13

11

8

4

1

Number ofdigitizedpoints

Digitized length:
Average digitized interval:

P (%)

4.28

4.42

4.85

5.28

5.85

6.38

7.14

8.14

9.48

11.44

14.33

18.75

22.66

27.08

29.00

34.57

37.50

38.78

44.44

52.00

68.75

88.89

100.0

100.0

Demo. Figs

Fig. 2.4(f)

Fig. 2.4(e)

Fig. 2.4(d)

Fig. 2.4(c)

Fig. 2.4(b)

Fig. 2.4(a)

PC2031.CON;

PC2031.DAT;

1:50000;
320 (m);
1277;

28814.7 (m);
22.6 (m).
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Fig. 2.3. Log-log plots of the ruler method to determine the fractal dimension of a contour, (a) shows a

power-law relationship between the number of rulers (N) and the ruler length r, where ß! = -1.24 is the slope
of the regression line. Therefore, the contour is statistically a fractal over fractal limits between rL = 50 m and

rv = 4 km with a fractal dimension Dr = -ßt = 1.24. (b) shows a log-log plot of the contour length (L) against

the ruler length (r), where ß2 = -0.24 is the slope of fitted regression line. The power-law relationship between

L and r again reveals that the contour has a fractal dimension Dr = 1 - ß2 = 1.24 over the fractal limits between

rL = 50 m and ru - 4 km.

Fourthly, the length of the contour (L) and the ruler length (r) are plotted on a log-

log scale paper [Fig. 2.3(a)]. The plotted points over a range between 50 m and 4 km can be

fitted by a regression line. This range is the fractal limits termed lower fractal limit (rL) and

upper fractal limit (rv) respectively. This regression line shows a power-law relationship
between L and r, and has a slope of ß! = -1.24.

Finally, recalling the definition of a fractal set described in Chapter 1, equation (1.1)

can be rewritten as,

(2.2)

where Dr is defined as the fractal dimension. Hence the fractal dimension of the contour

PC2031 is Dr = -ßi = 1.24.

Alternatively, the fractal dimension of the contour can be derived from the plot of

Log(L) against Log(r) as shown in Fig. 2.3(b). Based on equation (1.2), the power-law
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relationship between L and r can be rewritten as,

L = Cr

since the length ofthe curve L = N r. The slope ofthe fitted regression line (ß2), over the

fractal limits between 50 m and 4 km, is -0.24, therefore, the fractal dimension of the

contour is Dr = 1 - ß2 = 1.24. Refer to the left side of Table 2.2 for more details about the

variations of the lengths of the contour (L) with changing the ruler length r

The power-law relationships between (N) and (L) against (r) in the range of about rL

= 50 m and rö = 4 km as shown in Fig. 2.3(a) and (b) satisfy the definition of a fractal set.

The example contour, PC2031, has a fractal dimension Dr = 1.24 in the fractal limits of

about rL = 50 m and rv = 4 km, i.e., about three orders of magnitude.

2.2.3. Discussion of the log-log plot pattern of the ruler method

Both plots shown in Fig. 2.3 share similar features, the patterns of the plotted points

can be categorized into three groups based on the r ranges. The distribution pattern between

rL and rö reveals the scaling behaviours of the topographic contour, whilst for r range

beyond [rL, %] the distribution patterns unveil little. Fig. 2.3(b) is taken as an example to

demonstrate the general patterns of the log-log plots for the ruler and box-counting methods.

For r < 50 m, the plotted points fit a straight line which has a slope of about 0. Thus, the

fractal dimension ofthe contour over this range is Dr = 1. The average digitized interval

of the contour is 22.6 m, as shown in Table 2.2. Based on the Nyquist theory, the

information retained in a contour should not be less than twice the average sampling

(digitized) interval ( 50 m) when the contour is digitized from a map.

For r>4 km, the plotted points again fit a straight line of a slope of about 0, implying Dr
= 1. This is because the length of the contour reaches a constant value when the ruler

length exceeds a maximum length which is the maximum distance between the start and

any other points of the digitized contour.

The ruler range between 50 m and 4 km reveals most details of the contour. The slope of

the fitted line (ß2), which is determined by the least squares regression method is -0.24,

i.e., Dr=l-ß2 = 1.24 (Fig. 2.3b).
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2.3. THE BOX-COUNTING METHOD

The box-counting method, as well as the ruler method, is suitable for determining
the fractal dimensions of 1-d self-similar fractals, such as topographic contours. Its concept

has also been deduced and illustrated in Chapter 1.2.3. In this section, the box-counting

method (program BOXCMcode written in VISUAL BASIC) is verified by comparing the

calculated and theoretical fractal dimensions of the Koch curve generated in Section 2.2.1,

and the principles of the methodology is demonstrated by applying the method to the

example topographic contour PC2031.

2.3.1. Verification of the box-counting method

The box-counting method (BOXCMprogram) can also be tested by applying the

method to the Koch curve generated in Section 2.2.1. Fig. 2.1(c) shows the log-log plot of

the number of the filled boxes (N) against the box size (r). The slope of the regression line

(ß) over r ranges between rL = 2 and rv = 50 is ß = -1.268 0.029, and the intercept C =

3.085 + 0.032 (i.e., the number ofboxes of size r = 1 to cover the Koch curve is lO3 85
=

1216). It indicates that the curve has a fractal dimension of 1.268 over a range of [2, 50].
This indicates that the D value ofthe Koch curve (of 5 level recursion) derived from the

box-counting method is roughly the same as that determined by the ruler method, and both

are consistent with the theoretical D value of the Koch curve (Table 2.1).

2.3.2. Illustration of applying the box-counting method to contours

Similarly, the example contour PC2031 is taken as an example to illustrate the

principles of the box-counting method (Fig. 2.4).

Firstly, the contour PC2031 is displayed in a scaled down square box of size R$

=6,709 m as shown in Fig. 2.4(a), i.e., the contour is contained in an initial box of a side

length of r = 6709 m [Fig. 2.4(a)]..

Secondly, the initial box is subdivided into 22 equal-sized square boxes of side

length r = Rq/2 [Fig. 2.4(b)]. Those boxes in which any portion of the contour occurs are

named as filled boxes (shaded), and the number of filled boxes is recorded as N. The ratio

ofN and the total number ofboxes (NJ is recorded P as percentage ofthe filled boxes. At

this stage, r = 3354 m, N = 4, and P = 100%.
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227

453 587
Original box size Ro " 6709 m
Original contour name PC2031 i

(a) r - 6709 m, N - 1, P - 100% (b) r = 3354 m, N = 4, P = 100%

587

(c) r- 1677 m, N = 11,

453 597 542

r = 1118 m, N = 16, P = 44.4%
(d)

253

227-1iiiiif-mfiffmiI : 227
587 453 479 506 533 560 587 : 453 480 520 560 587

i r = 671 m, N = 29, P = 29.0% r = 335 m, N = 75, P = 18.8%
(e) (f)

Fig. 2.4. Illustration of the principles of the box-counting method. The curve is the topographic contour

PC2031. Those boxes in which any portion of the contour occurs are named as filled boxes, the number of

filled boxes is recorded as N, and the ratio ofN and the total number of boxes (N,) as percentage of the filled

boxes P. Refer to Table 2.2 for more details, (a) shows the original contour scaled down and displayed in the

square box of a side length Rq = 6.7 km. If the contour is measured by a box sized r = 6.7 km, then the

number of filled boxes N = 1, and the proportion of filled boxes P = 100%. (b) If the contour is covered by 4

smaller boxes of size r = 3.35 km, then N = 4 and P = 100%. (c) When 16 boxes sized r = 1.68 km are used to

cover the contour, then N = 11 and P = 68.8%. (d) When r = 1.12 km, then N = 16 and P = 44.4%. (e) For r =

0.671 km, then N = 29 and P = 29.00%. (f) when r = 0.34 km, then N = 75 and P = 18.8%

Thirdly, the initial box can be divided into smaller and smaller boxes, such as r =

n, where n2 is the total number ofboxes divided from the initial square box. Therefore, a

series of the number (N) and proportion (P) of filled boxes are obtained for different box

sizes (r), and are listed in the right column of Table 2.2.

Fourthly, the number of the filled boxes (N) and the side length of the box (r) are

plotted on a log-log scale paper as shown in Fig. 2.5(a). For these plotted points over the r

range between 75 m and 3.4 km, a regression can be obtained. This regression line reveals
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Fig. 2.5. Log-log plots of the box-counting method to determine the fractal dimension of a contour, (a)

shows a power-law relationship between the number of the filled boxes (N) and the side length of the box (r),

p! = 1.24 is the slope of the regression line. Therefore, the contour has a fractal dimension D^ = -ß[ =1.24

over fractal limits between r = 75 m and r = 3.4 km. (b) shows a log-log plot of the proportion of the filled

boxes (P) against the side length ofbox (r), and the slope of fitted regression line is ß2 = 0.76. The power-law

relationship between P and r again reveals that the contour has a fractal dimension Dlb = 2 - ß2 =1.24 over a

fractal range between 75 m and 3.4 km.

a power-law relationship between N and r, and has a slope of ßj = -1.24.

Finally, the fractal dimension of the contour is derived from the definition of a

fractal set described in equation (1.1) as Dlb = -ßj = 1.24 over a fractal range 75 m < r < 3.4

km. Alternatively, the log-log plot of the proportion ofthe filled boxes (P) against the side

length ofbox (r) [Fig. 2.5(b)] reveals that the contour has a fractal dimension of Dlb = 2 - ß2
= 1.24 over a fractal range from r = 75 m to r = 3.4 km based on the equation (1.4). The

fractal dimension is the same as that derived from Fig. 2.5(a) using N and r.

For the side length ofbox r < 75 m and r > 3.4 km, the power-law relationship of the

log-log plot deduce the fractal dimension ofthe contour Dlb = 1, and 2, respectively. This is

because the contour is initially a line if the contour is observed at a fine scale of resolution

(< 75 m) hence Dlb = 1, or fills an area if the contour is observed at a coarse resolution (>

3.4 km) hence Dlb = 2.
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2.4. SIMULATION OF RANDOM FRACTALS - fBm

In this Section, six 1-d (mpl2, mpl5, mpl8; intl2, intl5, intl8) and six 2-d (mp22,

mp25, mp28; int22, int25, int28) random fractals ofknown fractal dimensions are generated

by using midpoint displacement and interpolation techniques using H = 0.8, 0.5, and 0.2.

The generation of the random fractals are for the purpose of verifying the spectral and

structure function methods. By comparing the calculated with the theoretical D values of

these random fractals, the applicability of the spectral and structure function methods can

then be verified when they are applied to the natural profiles or surfaces in the world.

The generation ofrandom fractals relies on the integration ofBrownian motion with

the fractal concept (thus termed fractional Brownian motion, fBm). Barnsley et. al. (1988)

provided a lot of methods to generate the random fractals, the midpoint displacement and

the interpolation methods are used in the study (Refer to Appendix 1 for more details).

2.4.1. The midpoint displacement technique

The midpoint displacement method was firstly used to approximate the normal

Brownian motion in 192O's by N. Wiener. Promoted by Carpenter, Fournier, and Fussell

(Carpenter, 1980; Fournier et. al., 1982), it has become widely popular in areas of surfaces

simulation and computer graphics (Hearn and Baker, 1986; Harrington, 1987). Fig. A1.2

demonstrates the principle of the midpoint displacement method for the first two levels.

Briefly, the method is a recursive generating, or midpoint interpolating technique with a

scaling factor of r = 0.5. Given a time interval [0, 1], a parameter 1 > H > 0, and VH(0) = 0

and VH(1) a sample of Gaussian random variable of zero mean and variance of a
.
At a

recursive level n, the values of midpoints are averaged by their nearby two points plus a

random Gaussian offset Dn, i.e.,

The offset Dn has a zero mean and variance A,,2 which is given by,

c2
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where a2 is the initial variance. Thus the length scale has decreased to 2"n.

The principles of 1-d midpoint displacement method can be easily extended to 2-

dimension as shown in Section Al .4.3.1 and Fig. A1.6. Suppose a unit square has four

corner points (x0, y0), (xb y0), (xh y^, and (x0, y{), and their corresponding values are given

as random Gaussian samples V(x0, y0), V(xb y0), V(xj, yj), and V(x0, yx) with zero mean

and an initial variance of a2. Then, at recursion level n, the value of a displaced point at a

scale factor r= 1 / V2~ is averaged by its nearby 3 (for the displaced points located at the

edges of the unit square) or 4 (for the displaced points located in the unit square) data points

plus a random Gaussian offset Dn, of a variance A,,2 is given by,

1

7l
a2= - a2

nH

In this study, the midpoint displacement was used to generate 1-d ffim profiles as mpl2 (H
= 0.8, D = 1.2), mpl5 (H = 0.5, D = 1.5), and mpl8 (H = 0.2, D = 1.8) and 2-d ffim surfaces

as mp22 (H = 0.8, D = 2.2), mp25 (H = 0.5, D = 2.5), and mp28 (H = 0.2, D = 2.8). They
have non-stationary increments characteristics when H * 1 (Refer to Section Al.3.3.1 of

Appendix 1). In later discussion, they are abbreviated as mp profiles and mp surfaces

respectively.

2.4.2. The interpolation technique

The midpoint displacement is a special case of the interpolation method, where

interpolated midpoints at each level have the same interpolating ratio of r = !/2, i.e., the

resolution is improved by a factor of r = lA each time further. The interpolation method

deals with the situations that different interpolating ratios 0 < r < 1 are evoked. If there are

Nn points with a resolution of At at level n, then there will be Nn+1 = Nn / r new points with a

new resolution of rAt at level (n + 1). The values of these new points are set through using

the linear interpolation which is a kind of distance weighted average method as shown in

Fig. A1.5(a). If the weighted index to the end point xl5 say u, is defined as,

u =
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then the value of the interpolated point at x, VH(x), is determined by,

VH(x)=(l-u)VH(x0)+uVH(Xl)+Dn

2A random offset Dn of Gaussian random variable with variance of An is added to all points,

including the original and new interpolated points for the purpose of stationary increments.

A2 is given by,

where r is a scaling factor (0 < r < 1). Different r values will change the appearance of the

generated fractals, but not the D value which is only controlled by H (0 < H < 1).

The scaling factor discussed in the 2-d displacement method is r = 1 / a/2
,
it can be

easily extended to approximate a 2-d fßm using different scaling factors 0 < r < 1. Suppose
a unit square has random values of its four corners selected from a Gaussian distribution

with variance a2. In order to interpolate the data size to be N2, then the final resolution is to

be 1/(N-1). As can be deduced easily that there will be [(r)"n + 1] - 4 new points to be

generated at stage n. The values of these new points are firstly bilinearly interpolated from

their nearby four corner points, then an offset Dn is added to ALL the new generated points.

Dn is, again, a Gaussian random variable with a variance crn2 which is given by,

Aj=-(rn) (l-r2-2H) a2

The bilinear interpolation method is demonstrated in Fig. A1.8 ( Press et. ah, 1986). The

unit square has four corner points (x0, y0), (xl5 y0), (x^ yx), and (x0, y{), and their values are

given as V(x0, y0), V(xl5 y0), V(xl5 y{), and V(x0, yt) respectively. Supposing that a new

point V(x, y) falls in the grid square, then the bilinear interpolation gives its value as,

v(x,y)=(l - xi -

+ (l-u)vV(xo,yl)+uvV(xl,y1)+Dn
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as u and v are defined as,

and v

where 0 < u, v < 1. A random offset Dn with a variance of A,,2 is added ALL points to

maintain the property of stationary increments.

The interpolation method is deployed in this study to generate six 1-d and 2-d with

H = 0.8, 0.5, and 0.2. They are 1-d fßm profiles intl2 (H = 0.8, D = 1.2), intl5 (H = 0.5, D

= 1.5), and intl8 (H = 0.2, D = 1.8); and 2-d fßm surfaces int22 (H = 0.8, D = 2.2), int25 (H
= 0.5, D = 2.5), and int28 (H = 0.2, D = 2.8). In later discussion, they are abbreviated as int

profiles and int surfaces respectively.
It is worthwhile pointing out that the variation of scaling factor r (0 < r < 1) used for

generating fßm by the interpolation technique will change the appearance ofthe generated
int profiles and surfaces, but not the D values which are only controlled by the parameter H

(0 < H < 1). The variation in fractal appearance caused by the changes of r is termed

lacunarity (refer to sections AI.3.3 and AI.4.3.2 of appendix 1 for more details).
The int profiles and surfaces have stationary increments, whereas mp profiles and

surfaces have non-stationary increments. The profiles and surfaces of different fractal

dimensions D are characterized by the parameter H (also known as Hausdoffmeasure, 0 < H

< 1). The relationship between the fractal dimension D and the parameter H is given by

(Bamsley et. al., 1988),

D = E-H

where E = 2 for 1-d fßm profiles, and E =3 for 2-d fßm surfaces.

The programs for generating 1-d ffim, 2-d fiBm were written both in FORTRAN 77

and VISUAL BASIC codes. The programs for plotting figures and diagrams in the study was

written in VISUAL BASIC code.

2.4.3. Generation of one-dimensional fBm profiles

Fig. 2.6(a) and (c) show the generated 1-d fßm of the parameter values ofH = 0.8,
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1-d ffim profiles generated by the midpoint displacement method
Original profiles Linear trend removed profile

mpl2, H=0.8, d=1.2

mpl5, H=0.5

mpl2, H=0.8, d=1.2

mpl5, H=0.5, d=1.5

mpl8, H=0.2, d=1.8

1 1024 (a) i(b) i

1-d fßm profiles generated by the interpolation method
Original profiles Linear trend removed profile

8

intl2, H=0.8, d=1.2

intl5, H=0.5, D-1.5

intl8, H=0.2, d=1.8

intl2, H=0.8, d=1.2

intl5, H=0.5, d=1.5

intl8, H=0.2, d=1.8

l24 (C) (d)

1024

1024

Fig. 2.6. 1-d fBm original and detrended mp and int profiles of H = 0.8, 0.5 and 0.2. All profiles have the

same nominal length of 210 - 1. The trend of the profile is marked by the solid line crossing the curve, (a)
shows the original profiles of H = 0.8, 0.5 and 0.2 (hence D = 1.2,. 1.5, and D = 1.8) generated by the

midpoint displacement method. Their trends removed profiles are shown in (b) respectively, (c) shows the

original profiles of H = 0.8, 0.5 and 0.2 (hence D = 1.2,. 1.5, and D = 1.8) generated by the interpolation
method. Their trends removed profiles are shown in (d) respectively.

0.5, and 0.2 by the midpoint displacement (MPID program) and interpolation (INTID

program) methods, hence D = 1.2,1.5, and 1.8 respectively. The generated profile is

recorded as [x{, y{ = g(Xj)] where xi5 i = 1,2,..., 210, hence the profiles have the same

nominal length of Ln = x^-xl = 1023 (210 -1). The initial variance for generating the

simulated 1-d fBm profiles and 2-d fBm surfaces was taken as a2 =1, the seed value for

random generator was taken as 4, and the scaling factor r = 0.6 was used for the

interpolation technique. Some of the statistics information of the vertical variation y; = g(Xj)
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for the different profiles named in the Fig. 2.6(a) and (c) is shown in Table 2.3. Fig. 2.6(b)
and (d) are linearly detrended (linear trend removed) profiles of the original profiles as

shown in Fig. 2.6(a) and (c). The detrending procedure includes fitting a best-fit line yT to

the original profile by a robust line-fitting algorithm (Press et. ah, 1986), and the detrended

(residual) profile yR is obtained by subtracting the linear trend line from the original profile

y, i.e.,

yR=y-yT

The original and detrended profiles have the same nominal length of Ln = 1023. The linear

trend line can written as,

yT =ax

where a is the slope and b is the intercept of the linear trend line.

File name

mpl2(H =

mpl5 (H =

mpl8(H =

intl2 (H =

intl5(H =

intl8(H =

.8)

5)

2)

.8)

5)

2)

Table 2.3 Statistics of simulated

Trend line information yT =

a

0.038

0.056

0.102

0.006

0.011

0.018

b

-0.033

-0.120

-0.411

-0.100

-0.211

-0.341

%RSS

67.2

42.4

34.4

41.3

19.1

4.0

ax + b

r

0.86

0.73

0.60

0.60

0.42

0.20

1-dlBm

Original profile [x,

Lo

1023.0

1023.5

1055.5

1023.0

1023.4

1049.5

avg

0.33

0.44

0.54

-0.05

-0.10

-0.15

profiles

y] information

std

0.01

0.01

0.03

0.00

0.00

0.01

min

-0.05

-0.39

-1.46

-0.15

-0.45

-1.54

max

0.71

1.31

2.86

0.13

0.29

1.19

Rq/Ra
1.22

1.20

1.19

1.26

1.21

1.19

In Table 2.3, the nominal length of all profiles is the same, Ln = 1023, the total

length ofthe original profile Lo is determined by,

N-l

Z
i=1

where [xi5 y; = g(Xj)], i = 1,2,..., N, are a series of coordinates ofthe profile. The notations

of avg, std, min, and max are the average value, the standard deviation, the minimum, and
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maximum values of the original profile [xi5 y{\. Rq and R^ are the root mean square and the

centre line average values, which will be discussed in Chapter 4.3.4. The traditional

description of the trend for a profile is the trend line angle degree, which very much depends
on the amplitude of the profile. It is not a proper descriptor for the simulated profiles since

their amplitudes can be magnified by any factor without changing the H value, hence

without changing the D value. Suppose that

and

then %RSS (Residual Sum of Squares) is defined as the ratio of RSST and RSSO, which are

the sums of squares ofthe trend line [xi; yTi] and the original profile [xi5 yj, i.e.,

RssT y*}
%RSS =f x 100% = -^ x 100%

RbSRSSO
i=1

%RSS is a parameter to quantify the trend of the linear trend line (Chatfield, 1983), it is the

ratio of the explained variance and the total variance of the profile, the higher the %RSS is,

the more marked trend the profile has. Generally,

as %RSS < 4% slight, almost negligible trend;
as %RSS 4 -16% low, definite but small trend;
as %RSS 17 - 49% moderate-substantial trend;
as %RSS 50 - 80% high, marked trend;
as %RSS 81 -100% very marked trend.

The coefficient value r (1 > r > 0) as shown in Tables 2.3 is a parameter to describe how
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well the trend line fits the data, it is determined by,

r =
i=1

where y = y,-. As r = 1, all data points should fall on the fitted line, whereas r = 0

indicates that y is independent on x. As shown in Table 2.3, intl2 profile has higher trend

than intl5 and intl8, although it looks so smooth. In fact, if the scale ofy is magnified, its

moderate-substantial trend will be disclose more clearly.

2.4.4. Generation of two-dimensional fBm surfaces

Fig. 2.7(a) and (c) show the generated 2-d fBm of the parameter values ofH = 0.8,

0.5, and 0.2 by the midpoint displacement (MP2D program) and interpolation (INT2D

program) methods, hence D = 2.2, 2.5, and 2.8 respectively. Each generated surface is

recorded as [xi5 yi5 Zj = g(xj5 ys)] where i, x{, y{ =1,2,..., 64, hence the data size is 64 by 64.

The initial variance for generating the simulated 1-d fBm profiles and 2-d fBm surfaces was

taken as a2 =1, the seed value for random generator was taken as 4, and the scaling factor r

= 0.6 was used for the interpolation technique. Some ofthe statistics information of the

vertical variation z{ for the different profiles named in the Fig. 2.7(a) and (c) is shown in

Table 2.4.

File name

mp22(H =

mp25(H =

mp28 (H =

int22 (H =

int25 (H =

int28 (H =

.8)

.5)

2)

.8)

.5)

.2)

Table 2.4. Statistics of simulated 2-d

Trend plane zT = mx + ny + c

in

0.017

-0.010

0.005

-0.005

-0.004

-0.003

n

-0.0008

-0.003

-0.009

-0.004

-0.002

0.0003

c

-0.932

1.669

-0.280

0.018

-0.072

-0.136

%RSS

55.4

18.1

5.7

61.1

10.9

1.4

Original

fBm surfaces

surface [x, y,

data size

64*

64*

64*

64*

64*

64*

64

64

64

64

64

64

avg

-0.41

1.23

-0.43

-0.25

-0.24

-0.23

z] information

std

0.42

0.47

0.79

0.14

0.22

0.48

min

-1.65

-0.29

-2.98

-0.80

-0.97

-1.89

max

0.95

3.20

2.11

0.27

0.53

1.43

To clarify the perspective views of these surfaces, only the upper half (those z values
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are greater than the average value of the whole data set, refer to Table 2.4) of the surface is

plotted. Fig. 2.7(b) and (d) are linearly detrending (linear trend removed) surfaces of (a) and

(c). The detrending procedure includes: Firstly, a best-fit linear plane zT was fitted to the

original surface by a robust fitting algorithm (Press et. ah, 1986), which is written as,

zT = mx + ny

where m and n are the slopes of the trend plane intersected with x and y coordinates, and c

is the intercept of the trend plane intersected with z coordinate, i.e., c = zT(x = 0, y = 0).

Secondly, the detrended (residual) surface, zR, is obtained by subtracting the linear trend

plane from the original surface z, i.e.,

zR =z-zT

In Tables 2.4, the abbreviations of avg, std, min, max, and %RSS are the same as

those ofTable 2.3, but they are the values of the 2-d fßm surfaces z. %RSS is the ratio of

the sum squares of the trend plane and the original surface, given by,

N N

RSS
%RSS = -f- x 100% = ^tt^ x 100%

i JV N
_

1 N N

where zT = T^l!iLjziy an(^ z = rSS2// The higher the value of %RSS, the more

significant trend the surface has. As shown in Table 2.4, the int22 and mp22 surfaces have

most marked trends.



Chapter 2. Methodoloev For Determining Fractal Dimensions 44

Original
2-d fBm surfaces generated by the midpoint displacement method
cs^^/^. Linear trend removed surfaces

mp22, H = 0.8, D = 2p

mp25, H = 0.5, D - 2.5

mp28, H f 0.2, D - 2

Original surfaces

(a) (b)

2-d fBm surfaces generated; by the interpolation method
Hb. i Linear trend removed surfaces

int22, H = 0.8, D = 2.2
-- "'""".:" .'

int25, H = 0.5, D = 2.5

int28, H = 0.2, D

(C) (d)

Fig. 2.7. Perspective views of 2-d fBm original and detrended surfaces generated by the midpoint

displacement and interpolation techniques using H = 0.8, 0.5 and 0.2. Therefore, their D values are 2.2,. 2.5,

and 2.8). The surface variation is recorded as z = g(x, y), where x, y = 1, 2, ...,
64. (a) and (b) show the

original surfaces generated by the midpoint displacement method and their trends removed surfaces, (c) and

(d) show the original surfaces generated by the interpolation method and their trends removed surfaces.
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2.5. THE SPECTRAL METHOD

2.5.1. The spectral method

The spectral method relies on the theory of time series analysis, which is a well

established technique in applied mathematics, and a number of studies (e.g., Priestley, 1981;

Pfeifer, 1984; Pentland, 1984; Voss, 1985a; Bendat andPiersol, 1986; Bracewell, 1986;

Turcotte, 1987) have been devoted to the spectral approach. The underlying theory of the

spectral method involves the Fourier transform. The idea of the Fourier transform is that

any function in the physical domain g(x) can be transformed into a series ofharmonic

components (sine and cosine waves) in the frequency domain G(f) or G(k) where f is the

frequency and X is the wavelength which is equal to 1/f. Theoretically, the physical
function g(x) is required to be either periodical or of infinite length (in this case, the

function can be said to be of a infinite length ofperiod). In practice, the discrete Fourier

transform is deployed to estimate the power spectral density. In this study, the Fast Fourier

Transform (FFT) is used. The fractal dimension of a profile or a surface then can be derived

from the distribution pattern of the power spectral density.
Because the spectral techniques have been developed primary for the application of

stationary data which are sampled at equal-intervals, cautions must be taken when applied to

non-stationary profiles or surface data (Fox, 1989; Hough, 1989). Furthermore, the

theoretical assumption ofperiodical or infinite length of a profile can hardly be reached in

practice. Therefore, some processes, such as detrending and applying window functions, are

needed to be taken before a FFT can be applied on the simulated fractals, and their effects

on the fractal dimensions will be discussed. Based on the Nyquist theory, the variations of

the power spectral density between the length ofthe profile and twice the sampling interval

will be discussed in this study.

2.5.2. The one-dimensional spectral method

The 1-d spectral method was carried out by the program SPID written in VISUAL

BASIC codes. It is described as follows.

Firstly, the original profile was linearly resampled at 2n equal intervals if the profile
data were not sampled at equal intervals and/or had not 2" data points. The simulated

profiles have a equal sample interval of 1, and N = 1024 = 210 data points as shown in Fig.
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2.6a and c. A best-fit line was fitted to the original profile by a robust line-fitting algorithm

(Press et. al, 1986), and the deviation ofthe profile from the fitted line forms the trend

removed profile (Fig. 2.6b and d).

Secondly, the Harming window was used to weight the simulated 1-d fßm profiles
in order to reduce the truncation effect (i.e., the Gibbs phenomena). As mentioned in

Section 2.5.1, the calculation of the FFT is based on the theoretical assumption of a infinite

length of a profile, whereas the simulated 1-d fßm profiles have the same length of 210.

This truncation of the profile length from the infinite to a limited length (here is 1024) will

inevitably cause some error and this error is termed truncation effect or Gibbs phenomena.
The Harming window is given by Press et. al. (1992),

i = \,2,.:N

where N is the number of data points of the profile. Therefore, the variation of the profile y{

- g(Xj) is filtered by multiplying the Harming window function Wh(i), and a new profile y{'
= g'(Xj) is obtained. That is, the Harming window weighted profile is given by,

l-COi
(
T iV-l

Whereas X; remains unchanged. The further processes will be applied on the four types of

profiles: the original, the detrended, without Harming window applied, and Harming
window applied profiles.

Thirdly, the FFT was applied to the profile data which were processed by the first

step, and the power spectral density at different frequency (or wavelength) were calculated.

Suppose that the profile data are recorded as [x, y = g(x)], where x = 0,1,2,... N-l, then the

FFT transform and the power spectral density (time-integral squared amplitude) of a profile,
in this study, are estimated by,

N-\ 2nifx

x=0
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and

where N is the number ofthe profile data points, f is the frequency, g(x) and G(f) are

functions of the profile in the physical and frequency domain respectively. The profile has a

nominal length of Ln and Ln / (N -1) is the sampling interval.

Fourthly, the power spectral density ofthe profile P(A,) and their corresponding

wavelength (A,) were plotted on a log-log scale paper as shown in Fig. 2.8. The power-law

dependence of P(A,) on X follows the form of,

P(X ) = ClfXfi (2.3)

where X is the wavelength, f is the frequency (X = 1/f), and ß is the slope ofthe regression
fitted line over a certain wavelength range (fractal limits). Because the wavelength

progression is arithmetic (i.e. adjacent wavelengths are L/i, i = 1, 2, 3,...), many more

estimates of the total power were made at the smaller than longer wavelengths on a log-log

plot of T?(X) against X. The longest and shortest wavelengths, which are considered to be

useful for determining the value of ß, were equal to the nominal length of a profile (Ln) and

twice the sampling interval (the reciprocal of the "Nyquist" wavelength) respectively.

Fifthly, the fractal dimension ofthe profile was determined for ß. Some studies

[Mandelbrot, 1986; Voss, 1985a, b, 1988; Berry and Lewis, 1980] have shown that the

relationship between the fractal dimension Dlf of a profile and the slope of the spectral
distribution (the power spectra against frequency) ß, which is given by,

The fractal dimension of a profile is expected to lie in the range of 2 > Dlf > 1; and the

corresponding range of ß is 1 < ß < 3. Based on equation (2.1) the estimate error Aß is the

twice ofthe estimate error ADlf, i.e.,
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1-d spectral method of the midpoint displacement profiles
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Fig. 2.8. Illustration of the 1-d spectral method. The spectral method is applied on the original and trend

removed (Harming window weighted) 1-d ffim profiles (mpl2, mpl5, mpl8; intl2, intl5 and intl8) generated
by the midpoint displacement and interpolation method, (a) and (b) Log-log plots of the power spectral
density P(X) against the wavelength X for the 1-d spectral method applied on the original and trend removed

profiles generated by the midpoint displacement method, (c) and (d) Log-log plots of the power spectral

density P(A.) against the wavelength X for the 1-d spectral method applied on the original and trend removed

profiles generated by the interpolation method.

2

where the estimate errors of the spectral exponent Aß and the intercept AClf was determined

by equation (2.1).
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In order to illustrate the physical meaning of the parameters Clf and Dlf, if (X) is

substituted by its amplitude A(k) in equation (2.3), then,

X ß
= C

'

A, 2

Thus Cjf is a simple scaling factor for roughness. Its value does not necessarily

correspond to any particular feature ofthe profile, but only to the amplitude ofthe spectral

components at wavelength (X = 1), i.e., Clf' = A(1).

The interpretation ofthe exponent ß is less intuitive. If the ratio of amplitude to

wavelength is termed 'aspect ratio '
as suggested by Fox and Hayes (1985), then for ß = 2

(for which Dlf = 1.5), the profile is the well-known Brownian noise. The aspect ratio is a

constant over all wavelengths, and the magnitude of this ratio depends on the scaling factor

Clf' only. In all other cases, the aspect ratio changes as a function ofwavelength. For

values of 1 < ß < 2 (then 1.5 < Dlf < 2.0), the aspect ratio increases with decreasing

wavelength. This means that the profile appears to be rougher at finer scales. For values of

2 < ß < 3 (then 1.0 < Dlf < 1.5), however, the aspect ratio decreases with decreasing

wavelength, causing the profile to be relatively smoother at smaller scales.

2.5.3. The two-dimensional spectral method

The combination of the 1-d Fourier transform approach and fractal analysis for 1-d

profiles can be easily extended to 2-d data analysis (Dubuc et. ah, 1989b). Suppose that a

surface of a size ofN by N is presented by the variations [x, y, z = g(x, y)] where x = 0, 1,

..., N-l, and y = 0, 1,..., N-l denote the positions of a data point in the x-y coordinates

system. The grid data are equally spaced a plane, therefore the grid size is L by L (L = N -

1) and the grid data points are discrete at an interval of 1. The determination of the fractal

dimension of a fractal surface by the 2-d spectral method (program SP2D was written in

VISUAL BASIC codes) is illustrated as follows.

Firstly, the simulated 2-d fBm surfaces of equally spaced grid data of (64, 64),

which were generated by the midpoint displacement and interpolation techniques, were

filtered by the 2-d Harming window. The Harming window Wh(x, y) is given by Subba Rao,

(1991),
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Wh(x,y) = Wh(x) . Wh(y) Wh{xy)

where Wh(x), Wh(y), and Wh(xy) are given by,

Wh(x) = -

Wh(y) =

1

1-CO

1-co

1-co

(X - 1)71
N-l

N-l

(x - y)n
N-l x,y =

where N is the number of data points ofthe surface. Therefore, the variation of the surface

z = g(x, y) is filtered by multiplying the Hanning window function Wh(x, y), and the new

variation of the surface z' = g'(x, y) is obtained, i.e.,

Secondly, both the original (Fig. 2.7a and c) and the detrended surfaces (Fig. 2.7b

and d) were prepared for FFT in order to observe the spectral effects caused by longer wave

lengths (lower frequencies). The linear trend plane was fitted to the original surface by the

robust fitting algorithm (Press et. al, 1986), and the detrended surface is the subtraction of

the original surface and this trend plane.

Thirdly, the 2-d discrete FFT was carried out on the surface of a N by N data set.

Therefore, a N by N array ofcomplex coefficients G(s, t) was obtained by,

2m , x

where s and t respectively denote the positions along the x and y directions of the complex
coefficients G(s, t), s = 0,1,..., N -1, and t = 0,1,..., N -1, and g(x, y) and G(s, t) are
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Fig. 2.9. The transformation of the coordinate systems, (a) Euclidean x-y coordinate system. The variations

of the surface are presented as [x, y, z = g(x, y)] and their Fourier transform complex coefficients are

presented as G(s, t). (b) radial coordinate system. The Fourier transform coefficients G(s, t) are transformed

into G(r) where r = y/s2+t2 (Huang and Turcotte, 1990b).

functions of the trend-removed surface in physical and frequency domain respectively. L/N

is actually the sampling interval. Then the complex coefficients G(s, t) in x-y coordinates

(Fig. 2.9a) were assigned to those in a radial system (Fig. 2.9b) by,

The transformation of the x-y coordinate system to a radial system is shown in Fig. 2.9

(Huang and Turcotte, 1990b).

Fourthly, supposed that Nj is the number ofthose complex coefficients G(s, t) which

satisfy j < r < j + 1 for each radial number j, then the 2-d mean power spectral density P2j for

the radial wave number kj, where kj = 2tt Tj/L, is given by,

where L is the side length ofthe grid data. The relationship between the wave number k and
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Fig. 2.10. Illustration of the 2-d spectral method. The method is applied on the original and trend removed 2-

d ffim surfaces (with Harming window weighted) simulated by the midpoint displacement and the

interpolation techniques using parameter H = 0.2, 0.5, 0.8. Their surfaces are shown in Fig. 2.7. (a) and (b)
are log-log plots of the power spectral density P(k) against the radius wave number k for the original and trend

removed surfaces generated by the midpoint displacement method, (c) and (d) are log-log plots of the power

spectral density P(k) against the radius wave number k for the original and trend removed surfaces generated

by the interpolation method.

the wavelength X is k = 2n/X (Turcotte, 1992).

Finally, the 2-d mean power spectral density P2j was plotted against the radial wave

number kj on log-log scale paper as shown in Fig. 2.10(c). The slope of the regression line

ß over a certain range ofwave number was obtained.
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The relationship between the fractal dimension (D2f) and the slope of the spectral

density distribution (power spectra against frequency) ß given by (Berry and Lewis, 1980;

Voss, 1985a, b, 1988; Mandelbrot, 1986; Turcotte, 1992),

(7 HP I)V '
(2-5)2

where ß is the slope of the fitted line of the mean power spectral density (P) against wave

number k on log-log scale. The estimate error AD2f is given by,

where the estimate errors of the spectral exponent Aß and the intercept AC2f was determined

by equation (2.1).

Therefore, the fractal dimension of a surface can be derived from equation (2.5)
based on the power-law relationship between the power-relationship between P(X) and k.

2.5.4. Verification of the spectral method

In order to verify the suitability and accuracy of the 1-d and 2-d spectral methods for

determining the fractal dimension ofrandom fractals, six 1-d fßm profiles (mpl2, mpl5,

mpl8; intl2, intl5, and intl8) and six 2-d ffim surfaces (mp22, mp25, mp28; int22, int25,
and int28) generated by the midpoint displacement and the interpolation methods using H =

0.8, 0.5, 0.2 as shown in Fig. 2.6 and Fig. 2.7 are taken as examples. Their log-log plots are

shown in Figs. 2.8 and 2.10.

2.5.4.1. Verification of the 1-d spectral method

Table 2.5 summarizes the fractal dimensions of these original (without removing

trend), trend removed, without Harming window weighted, and Harming window weighted

profiles determined by the 1-d spectral method over the wavelengths range between X = 2

andA, = 28. The estimated errors ADlf and ACifWere determined by equation (2.1). Fig.
2.8 is the log-log plots ofthe 1-d spectral method for the generated 1-d fBm weighted by the
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Harming window. The first several points of the right-hand side of the power spectra

(longer wave lengths) have not been taken into account during the determination of the

fractal dimensions ofthe trend removed profiles (Fig. 2.8b and c), this flattening spectral
behaviour is caused by the trend removing procedure. This explains that D values of the

trend removed profiles (intl2, intl5, and intl8) are roughly the same as those of the original
profiles, whereas their spectra look so different for the longer wavelengths.

Table 2.5. Fractal dimensions of 1-d

Without Hanning window weighted

mpl2

mpl5

mpl8

intl2

intl5

intl8

Theoretical values

H

0.80

0.50

0.20

0.80

0.50

0.20

D

1.20

1.50

1.80

1.20

1.50

1.80

ffim determined by

Original (not removing trend) profiles

DlfADlf

1.52 0.02

1.55 0.04

1.80 0.04

1.56 0.03

1.53 0.04

1.82 0.04

ClfAClf

-2.29 0.04

-1.65 0.10

0.46 0.09

-2.85 0.06

-1.74 0.08

0.47 0.08

With Hanning window weighted Wh(i) = 0.5 {1 - cosßTtfl-lHN-l)]}

mpl2

mpl5

mpl8

intl2

intl5

intl8

Theoretical values

H

0.80

0.50

0.20

0.80

0.50

0.20

D

1.20

1.50

1.80

1.20

1.50

1.80

Original (not removing trend) profiles

DlfAD,f

1.22 0.05

1.50 0.04

1.79 0.05

1.21 0.05

1.52 0.05

1.80 0.05

C,fAClf

-4.56 0.10

-2.22 0.10

0.03 0.10

-4.78 0.10

-2.33 0.11

-0.08 0.10

the 1-d spectral method

Trend removed profiles

DlfADlf

1.50 0.03

1.50 0.04

1.76 0.04

1.40 0.04

1.56 0.04

1.84 0.04

ClfAClf
-2.72 0.06

-1.69 0.08

0.41 0.08

-3.63 0.09

-1.72 0.08

0.51 0.08

Trend removed profiles

DlfADlf

1.25 0.05

1.51 0.04

1.79 0.05

1.21 0.05

1.52 0.05

1.80 0.05

C,f+AClf

-4.51+0.10

-2.19 0.10

0.03 0.10

-4.78 0.10

-2.33 0.11

-0.08 0.10

The verification of the 1-d spectral method covers three factors: the power spectral

density distribution patterns; the fractal dimensions; and the effects of applying the Hanning
window.

1. The power spectral density distribution patterns: The detrending process has little

effects on the spectral patterns within observation scales of the short wavelength,

however, the power spectra within the several points of longest wavelengths are flattened

after detrending (by the comparison between Figs. 2.8a and 2.8b; and between Figs. 2.8c

and 2.8d). This is because the relief of the trend line rapidly approaches that of the data

at larger scales. Furthermore, within the longer wavelengths the flattening behaviours
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are more obvious as H decreases from 0.8 to 0.2 as shown in Fig. 2.8(d), this can be

explained by the fact that the trend line (H = 1) has a fractal dimension ofD = 1 (i.e., D =

2 - H = 1 for the trend line), and the profile ofH = 0.2 (hence the profile has D = 2 - 0.2 =

1.8) is more significant different from the trend line than the profile ofH = 0.8 (hence the

profile has D = 2 - 0.8 = 1.2). Therefore, the trend removal procedure disproportionately
affects the profile relief at larger length scales, and the scaling behaviours of the original

profile at the longer wavelength is distorted more than that at the short wavelength. This

is consistent with the results obtained by Weissei et. al. (1994).
2. The fractal dimensions: The coincidence ofD values of the original and detrended

profiles strongly suggests that the procedure of detrending a profile need not to be

necessary for the spectral method (compare the middle and right parts of Table 2.5). At

least, this is true for the simulated 1-d fßm profiles discussed. For the determination of

the fractal dimension of a detrended profile, some care should be taken into account for

the flattening behaviours of its power spectral distribution at longer wavelength scales,

i.e., the flattened points at the longer wavelength end should be excluded for fitting the

regression line. Brown (1987) suggested that for a profile of a small trend, the

detrending process applied on the profile affects little on its D value. The consistence of

D values between the original and detrended profiles is not because that the trends of all

the simulated 1-d fßm profiles are small, but the detrending process has little effect on

their fractal dimensions. As shown in Table 2.3, the values of%RSS (and the correlation

coefficient r) of the six profiles show that these profiles have different trends ranging
from slight to high trend.

3. The effects of applying the Hanning window: The application of the Harming window
to the simulated 2-d fßm surfaces is essential for the determination of their D values

especially as H > 1, but has little effects as H > 0 (compare between upper and lower

parts of Table 2.5). On one hand, the fractal dimensions ofthe profiles (mpl2 and intl2)
determined by the spectral method without applying Hanning window do not coincide

with the theoretical D value of 1.2, but are about D = 1.5. This is because the truncation

effect caused by applying the spectral method to the profiles of limited length (refer to

Section 2.5.2 for more details), whereas, the estimation of the power spectral density is

based on the theoretical assumption of a infinite length of a profile. The correct D values

can be derived from applying Hanning window to the profiles before the FFT was carried
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out. On the other hand, the effects of applying Hanning window decreases as H -> 0.

This might be explained that the simulated profiles ofH near to 0 show more and more

periodical properties than those ofH near to 1 as shown in Fig. 2.6, therefore, the

estimation of their power spectral density is much less affected by the truncation effect.

2.5.4.2. Verification of the 2-d spectral method

The fractal dimensions of the simulated 2-d fBm original (without removing linear

trend), trend removed, without Hanning window weighted, and Hanning window weighted
surfaces are determined by the 2-d spectral method and summarized in Table 2.6. The

fractal limits are between the wave numbers 2/64 and 16/64. Fig. 2.10 is the log-log plots of

the mean power spectral P(k) against the radius wave number k for the generated 2-d fBm

surfaces which were weighted by the Hanning window.

Table 2.6. Fractal dimensions of 2-d fBm determined by the 2-d spectral method

Without Hanning window weighted

mp22

mp25

mp28

int22

int25

int28

Theoretical values

H

0.80

0.50

0.20

0.80

0.50

0.20

D

2.20

2.50

2.80

2.20

2.50

2.80

Original profiles

D2fAD2f

2.43 0.02

2.51 0.03

2.81 0.03

2.42 0.02

2.54 0.04

2.79 0.04

With Hanning window weighted

Wh{iJ)

mp22

mp25

mp28

int22

int25

int28

1

2
1 C0Sl N-]

Theoretical values

H

0.80

0.50

0.20

0.80

0.50

0.20

D

2.20

2.50

2.80

2.20

2.50

2.80

"J 1

2
1 C(

C2f AC2f

-0.19 0.01

-0.13 0.03

0.58 0.03

-0.80 0.01

-0.65 0.03

0.19 0.03

f (7 1)7T ^
A N-l)_ *

Original profiles

D2fAD2f

2.41 0.02

2.51 0.07

2.81 0.11

2.20 0.03

2.51 0.05

2.81 0.05

C2f AC2f

-0.92 0.02

-0.25 0.07

0.12 0.12

-2.28 0.02

-1.73 0.03

-0.79 0.03

Trend removed profiles

D2f AD2f

2.42 0.03

2.53 0.03

2.82 0.03

2.38 0.03

2.56 0.05

2.80 0.04

1

2
1 .

1 v j

V TV-

C2f AC2f

-0.50 0.02

-0.23 0.02

0.57 0.02

-1.65 0.02

-0.73 0.03

0.19 0.03

-1 J
_

Trend removed profiles

D2f AD2f

2.41 0.04

2.54 0.04

2.83 0.03

2.34 0.03

2.52 0.05

2.80 0.05

C2f AC2f

-1.77 0.02

-1.15 0.03

-0.39 0.03

-2.30 + 0.02

-1.70 0.03

-0.76 0.03

Similar to that described in the Section 2.4.5.1, the verification of the 2-d spectral



Chapter 2. Methodology For Determining Fractal Dimensions 57

method can be achieved in three way: the power spectral density distribute patterns; the

fractal dimensions; and the effects of applying the Hanning window.

1. The power spectral density distribution patterns: The detrending process has little

effects on the spectral density distribute patterns within larger wave number (short

wavelength), whereas the flattening behaviour of spectra occurs within larger observation

scales (small wave number) still exists between the original and planar trend removed

surfaces (compare between Figs. 2.10a and 2.10b; and between Figs. 2.10c and 2.10d)

although it is not as obvious as that observed in 1-d fßm profiles. This is because the

relief of the trend line rapidly approaches that of the data. Weissei et. al. (1994) obtained

similar results.

2. The fractal dimensions: The consistent D values of the original and detrended profiles

strongly suggests that the procedure of detrending a profile need not to be necessary for

the spectral method (compare the middle and right parts of Table 2.6). The flattened

points at the longer wavelength end were excluded for the determination ofD values.

The consistence ofD values between the original and detrended profiles, again, is not

because of the small trends of all the simulated 2-d fßm, but the detrending process has

little effect on their fractal dimensions. Table 2.4 is the values of%RSS of the six

surfaces which have different trends ranging from slight to high trend.

3. The effects of applying the Hanning window: Table 2.6 shows that applying Hanning
window to the simulated 2-d fßm surfaces is essential for the determination of their D

values especially as H - 1, but has little effects as H -> 0. See the explanation shown
in 2.4.5.1.3.

After applying the Hanning window, the comparison of the D values ofmpl2 profile
(D = 1.22 in Table 2.5) and mp22 surface (D = 2.41 in Table 2.6) with their theoretical D

values shows that the non-stationary increments in mp22 are more severe than those in

mpl2.

In summary, the spectral method (1-d and 2-d) is a successful model for determining
the fractal dimensions of simulated 1-d fßm profiles and 2-d fßm surfaces weighted by the

Hanning window. The D values of the profiles or surfaces are consistent with the

theoretical D values which are given by H values as the fßm were generated (refer to

Appendix 1 for more details). Applying the Hanning window is essential for the

determination of the fractal dimension especially as H is near to 1. The application of
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detrending procedure, flattens the power spectral density at longer wavelength (short wave

number), but has little effects on the spectra at short wavelength, hence changes little in D

values as the flattened points were excluded. This is consistent with the results obtained by
Weissei et. al. (1994).

Previous studies (Mandelbrot, 1983; Barnsley, 1988; Scholz and Mandelbrot, 1989;

Turcotte, 1992) had not mentioned the effects of applying filters (e.g. Harming window) on

the 1-d profiles or 2-d surfaces. A variety ofprevious studies (Fox and Hayes, 1985; Power,

1987; Fox, 1989; Gilbert, 1989; Huang and Turcotte, 1989; Turcotte, 1992, Malinverno,

1995) have found D values near to 1.5 for the most profiles and D values near to 2.5 for

most surfaces they studied. This might indicate some of the fractal dimensions ofprofiles
or surfaces were over estimated by the spectral method without applying a Harming
window. For example, Turcotte (1992) collected and analyzed 24 latitude and longitude
profiles from three different parts of Oregon. The three regions cover different geomorphic
and tectonic settings: Willamette lowland is dominated by the sedimentary processes; the

Wallowa Mountains are associated with a major tectonic uplift; and the Klamath Falls area

belongs to the basin and range tectonic regime. The fractal dimensions of eight profiles of
each region were averaged and they are 1.47, 1.50, and 1.50.
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2.6. THE STRUCTURE FUNCTION METHOD

2.6.1. The structure function

The structure function is a statistical model concerned with the variety of a

regionalized variable, g(x), at a certain order q in space (and/or time, Olea, 1991). The qth
order structure function (i.e., qth moments) of a profile or a surface is generally defined as

(Monin and Yaglom, 1971; Parisi and Frisch, 1985),

where E{} denotes the expect and q is an exponent that is usually taken as positive integers.
Furthermore, if a study object possesses simple scaling properties describable by a single
scaling exponent, then the equation above could be linked with the parameter H by

(Mandelbrot and Wallis, 1969a, Weissei et. al, 1994),

Cqh"H

where coefficient Cq and exponent qH are independent on the lag h, but on the order q and

the parameter H. The structure function is a well-know method to directly measure the

fractal dimensions ofprofiles and surfaces (Mandelbrot, 1977,1982; Goodchild, 1980;

Mark and Aronson, 1984; Pentland, 1984; Voss, 1985a, b; Roy et. al, 1987; Journel &

Huijbregts, 1987; Weissei et. al, 1994).
The 1-d and 2-d structure function methods will be discussed in this study.

Obviously, the 1st order structure function method (# = 1) reveals the dependent relationship
between the absolute mean reliefM(h) and h, whereas, the 2nd order structure function

method (q = 2) reveals the dependent relationship between the variance 2y(h) and h, where

y(h) is usually termed the semivariogram (Journel and Huijbregts, 1978), which is the half

of the variance as the name implies. Given h (termed lag) is the spatial distance between

any pair data on the study object, then the absolute mean relief M(h) and the semivariance

y(h) are defined respectively by,
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M(h) = Agl(h) =

\\ Ag2 (h) = \ Var[g(x + h)- g(x)]

In this section, both the 1st order (absolute mean relief) and the 2nd order (the

semivariogram) structure functions will be used to analyze those synthetic 1-d fBm profiles
and 2-d fBm surfaces of different H values. Because ofthe sample sizes ofthe topographic
surfaces are finite, the 1-d and 2-d Hanning windows (shown in Sections 2.5.3 and 2.5.4

respectively) were applied on the simulated 1-d fBm profiles and 2-d fBm surfaces before

calculating the 1st and 2nd moments. See Section 2.5 for more explanation of the truncation

effect (Gibbs phenomena). The 1-d and 2-d Hanning windows are given by Press et. al,

(1992) and Subba Rao (1991). Therefore, on one hand, these two structure functions could

be compared, on the other side, the multi-scaling behaviours of 2-d fBm and TM imagery
can be investigated later.

2.6.2. The one-dimensional structure function method

Suppose that the discrete profile data set is presented as [xi5 g(Xj)] (i = 1,2,..., N),
the first order structure function M(h) can be written as,

oc hH =

h i=1

and the 1-d semivariogram can be given by,

h l=1

where M(h) is the absolute mean relief, y(h) is the semivariance of the profile, ordinal

number i = 1,2,..., Nh, and Nh is the number ofpaired data which have spatial distance of h,

Xj is the positions along the x-direction, and h is the lag which is the distance between any

pairs on the profile data, and D is the fractal dimension. The fractal dimension, Dls, of a
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Mean relieves (1st order) of the midpoint displacement profiles
Original profile (q=1) Trend removed profile (q=1)
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b,D= lJ49,e = -lv65

c, D = 134, C = -2.58

a,

b,
c.

sea

*****

d =

D-

D-

IF
BE

1.76, C

1.49.C
1.24, C

= -0.68

--1.65
- -2.58

Log(h)
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1-d semivariances (2nd order) of the midpoint displacement profiles
Original profile (q=2) Trend removed profile (q=2)

C - -1.45

i;50,C=-3.38
1.27, C = -5.20

= -1.45

= -3.38

c, D - 1,27, C = -5.20

Log(h) 3 (C) (d) 0 Log(h)

Fig. 2.11. The log-log plots of the 1st and 2nd order function structures of the 1-d ffini profiles weighted by
Hanning window, generated by the midpoint displacement method using parameter H = 0.2, 0.5, and 0.8, over

2 < h < 64. The original and trend removed 1-d fßm profiles are shown in Fig. 2.6(a) and (b). (a) and (b) are

the log-log plots of the absolute mean relief M(h) against the lag h for the original and trend removed profiles.

(c) and (d) are the log-log plots of the semivariance y(h) against the lag h for the original and trend removed

profiles.

profile can be determined by,

For q = 1 Z)u=2-P,;

For q = 2, Du=2-.
(2.6)



Chapter 2. Methodology For Determinins Fractal Dimensions 62

Mean relieves of (1st order) the interpolation profiles
Original profile (q-1) Trend removed profile (q-1)

a, D - 1.79, C - -0.65

b, D - 1.50, C * -1.59
c, D - 1.20, C - -2.52

a, D li.79, C - -0.65

b,D - i;50, C - -1.60
c, D - 1.20, C - -2.52

Log(h) (a) (b) Log(h)

1-d semivariances (2nd order) of the interpolation profiles
Original profile (q=2) Trend removed profile (q=2)

C - -1.42

b, D * 1151, C "-3;33

c, D - 131, C - -5.18

Log(h) (c) (d)

a, D - 1J80, C - -1.42

b, D " 1J51, C --3.32

c, D - 121, C - -5.17

Log(h)

Fig. 2.12. The log-log plots of the first and second order function structures of the 1-d fBm profiles weighted
by Harming window, generated by the interpolation method using parameter H = 0.2, 0.5, and 0.8, over 2 < h

< 64. The original and trend removed 1-d fBm profiles are shown in Fig. 2.6(c) and (d). (a) and (b) are the

log-log plots of the absolute mean relief M(h) against the lag h for the original and trend removed profiles, (c)
and (d) are the log-log plots of the semivariance y(h) against the lag h for the original and trend removed

profiles.

where ß! and ß2 are the slopes of the regression lines of the log-log plot of the mean relief

M(h) and the semivariance y(h) against the lag h. The range of lag h is usually taken

between the twice sample interval (based on the Nyquist theory) and the half of the nominal

profile length. From equation (2.6), the estimate error ADls for the 1st and 2n order

structure functions are respectively given by,
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For q = 1, ADIS=Aß;

For q = 2, ADU =~Aß

where the estimate errors of the exponent Aß and the intercept ACls was determined by

equation (2.1).

Six original 1-d fBm profiles (mpl2, mpl5, mpl8; intl2, intl5, and intl8), as well

as their trends removed profiles, generated by the midpoint displacement and the

interpolation methods as shown in Fig. 2.6 were taken as examples to illustrate the

principles of determining the fractal dimensions (carried out by the program SFID written

in VISUAL BASIC codes). These profiles have the same nominal length of Lo = 1023 and an

unit sample interval of 1. Therefore, the lag h was taken as h = 1, 2, 3, ...,29 = 512, and their

corresponding absolute mean relief M(h) and the semivariance y(h) were calculated. If a

profile is not equally sampled, either, the unequally sampled profile can be resampled and

be processed as the above; or the lag h can be taken as assigned values, for example, h

assigned to be 1 for 0 < x{ - Xj < 1, to be 2 for 1 < Xj - Xj < 2, and more generally to be h for

h-1 < Xj - Xj < h. Finally, the absolute mean reliefM(h) (or semivariance y(h)) was plotted

against h on log-log scales as shown in Fig 2.1 la, b; Fig. 2.12a, b (or Fig. 2.1 lc, d; Fig.
2.12c, d).

Fig. 2.11 is the log-log plots of the mean relief M(h) and the experimental

semivariance y(h) against the lag h for the original 1-d fBm profiles (a and c) and their trend

removed profiles (b and d) generated by the midpoint displacement method using H - 0.8,

0.5, and 0.2. Fig. 2.12 is the same plots for the original 1-d fBm profiles (a and c) and their

detrended profiles (b and d) generated by the interpolation method.

2.6.3. The two-dimensional structure function method

The concept ofthe 1-d structure function can be easily extended to the 2-d space to

construct the 2-d structure function except in the way that the lag h in 2-d space is assigned.
Suppose that an equally spaced discrete grid ofN by N size is recorded as [xi5 y-p z;j = g(xi;

Vj)], where X; and y- (i = 0,1,..., N -1, j = 0, 1,..., N -1) denote the positions of a data point
in the x-y coordinate system as shown in Fig. 2.9. Then the distance between any one pair

of the data points [g(xi5 yj)] and [g(Xj-, y^] in the grid can be given by,
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1st & 2nd order structure functions of the midpoint displacement surfaces
Original surfaces, q = 1 Trend removed surfaces, q

a; D = 2.80, C - -0.96

bl D - 2.49, C - -1.42

c> D - 2.36, C - -1.84

Log(h)

Original surfaces, q = 2

a,D=2,82,C* -1.64

b, D - 2.53, C - -2.57

c, D - 2.36, C - -3.47

Log(h)

-5

a> D < 2,80, C -0.96

b, D - 2.59, C - -1.45

c, D - 2.46, C - -1.90

(a) (b) Log(h)

Trend removed surfaces, q = 2

a, D 2,82, C -1.64

b, D - 2.60, C -2.60

2.39, C = -3.56

(c) (d) Log(h)

Fig. 2.13. The log-log plots of the first and second order function structures of the 2-d ffim surfaces weighted
by Harming window, generated by the midpoint displacement method using parameter H = 0.2, 0.5, and 0.8,
over lag range 2 < h < 16. The original and trend removed 2-d ffim surfaces are shown in Fig. 2.7(a) and (b).
(a) and (b) are the log-log plots of the absolute mean relief M(h) against the lag h for the original and trend

removed surfaces, (c) and (d) are the log-log plots of the semivariance y(h) against the lag h for the original
and trend removed surfaces.

r =

Obviously, the spatial distance r will not be the integer in most cases (the maximum r value

could reach V2(iV -1)), but it can assigned to an integer in this way. The spatial distance
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1st & 2nd order structure function of the interpolation surfaces
Original surfaces, q = 1 Trend removed surfaces, q

-5

a, D 2.78, C - -1.16

b, D = 2.50, C = -1.75

c, X> = 2.20, C = -2.31

Log(h)

Original surfaces, q

a> D-2.80, G--1.98

i D = 2.51, C - -3.19
4 D = 2.21, C = -4.55

Log(h)
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a, D = 2.78, C -1.16

bi D - 2.58, C - -1.74

c, D - 2.25, C - -2.40

(a) (b) Log(h)

Trend removed surfaces, q = 2

(c) (d)

- 2.80, C = -1.98

I, D - 2.56, C - -3.19
I D - 2.22, C - ^.65

Log(h)

Fig. 2.14. The log-log plots of the first and second order function structures of the 2-d ffim surfaces weighted
by Harming window, generated by the interpolation method using parameter H = 0.2, 0.5, and 0.8, over lag
range 2 < h < 16. The original and trend removed 2-d ffim surfaces are shown in Fig. 2.7(c) and (d). (a) and

(b) are the log-log plots of the absolute mean relief M(h) against the lag h for the original and trend removed

surfaces, (c) and (d) are the log-log plots of the semivariance y(h) against the lag h for the original and trend

removed surfaces.

of any pairs of data points, which fall into a range between h and h + 1 (i.e., h <= r < h + 1),
is assigned to be h, where h = 1,2, 3,..., N -1. In practice, the range of lag h is taken

between 1 and N/2. The structure function for lags between N/2 and Jain -1), tends to be

a constant (a sill value), which is beyond the investigating interests. Therefore, the first

order structure function of a simulated 2-d fßm surface, [i.e., the absolute mean relief of the
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surface M(h)], can be given by (Mandelbrot and Wallis, 1969a, Weissei et. al, 1994),

1 N,

x Aff = h3~D

and the second order structure function (the 2-d semivariance), y(h), is given by,

where Nj is the number of the pairs of data points whose separation spatial distances, r, are

between the lags h and h + 1, M(h) and y(h) are the absolute mean relief and the

semivariance of the surface.

Based on either the Log[M(h)] or Log[y(h)] against lag h, the fractal dimension, D2s,
of a surface can be determined by,

Dls = 3 - ß,, as q = I, the first order structure function;

(2.7)

ß2
D2s = 3 - , as q = 2, the second order structure function.

where ßj and ß2 are the slopes ofthe regression lines of the log-log plot ofthe absolute

mean relief M(h) and the semivariance y(h) against the lag h. From equation (2.7), the

estimate error AD2s for the 1st and 2nd order structure functions are respectively given by,

For q = 1, AD2s = Aß ;

For q = 2, AD2s =-Aß

where the estimate errors of the exponent Aß and the intercept AC2s were determined by

equation (2.1). The calculation was made by the program SF2D in VISUAL BASIC codes.



Chapter 2. Methodology For Determining Fractal Dimensions 67

Fig. 2.13(a) and (b) are the log-log plots of the mean relief M(h) (g=1) and Fig.

2.13(c) and (d) are the experimental semivariance y(h) (q = 2) against the lag h for the

original 2-d fBm surfaces and their trend removed surfaces generated by the midpoint
displacement method using H - 0.8, 0.5, and 0.2 (refer to Fig. 2.7a and b). Fig. 2.14 has the

same structure as Fig. 2.13, however, the original 2-d fBm surfaces (Fig. 2.14a and b) and

their trends removed surfaces (c and d) are generated by the interpolation method using H =

0.8, 0.5, and 0.2 (refer to Fig. 2.7c and d).

2.6.4. Verification of the structure function method

The verification ofthe structure function method consists of the verifications of the

1-d and 2-d structure function methods and the comparison of the D values of fBm

determined by the spectral and the structure function methods.

2.6.4.1. Verification of the 1-d structure function method

Fig. 2.11 and Fig. 2.12 are the log-log plots of the 1-d fBm profiles derived from the

1st and 2nd order structure function methods, and Table 2.7 summarizes the determined D

Table 2.7. D values of 1-d fBm profiles determined by 1st and 2nd structure functions

Theoretical values

H "iD
Original profiles

DlsADls(ß) lClsACls

Trend removed profiles

DlsADls(ß) iClsACls
First order structure function (q = 1)

i-2.58 0.01
I
1-1.65 0.01
I

mpl2

mpl5

mpl8

11.20

11.50

0.20 11.80

0.80

0.50

1.24 0.01 (0.76)
1.49 0.01 (0.51)
1.77 0.01 (0.23)

I-2.58 0.01
I
i-1.65 0.01

i-0.68 0.01

1.24 0.01 (0.76)
1.49 0.01 (0.51)
1.76 0.01 (0.24) i-0.68 0.01

Second order structure function (q = 2)

i^5.20 0.01

i-3.38 0.01

1-1.45 0.01

mpl2

mpl5

mpl8

0.80

0.50

0.20

11.20

il.5O
!l.80

1.27 0.01 (1.46)
1.50 0.01 (1.00)
1.77 0.01 (0.46)

i-5.20 0.01

1-3.38 0.01

1.77 0.01 (0.46) i-1.45 0.01

1.27 0.01 (1.46)
1.50 0.01 (1.00)

First order structure function (q = 1)
intl2

in 5

in 8

0.80 11.20

0.50 ! 1.50
0.20 ! 1.80

1.20 0.01 (0.80)
1.50 0.01 (0.50)
1.79 0.01 (0.21)

-2.52 0.01

-1.59 0.01

-0.65 0.01

1.20 0.01 (0.80)
1.50 0.01 (0.50)
1.79 0.01 (0.21)

-2.52 0.01

-1.60 0.01

-0.65 0.01

Second order structure function (q - 2)

T5.I8 0.01

1-3.33 0.01

1-1.42 0.01

1.21 0.01 (1.58) 1-5.17 0.01

1.51 0.01 (0.98) 1-3.32 0.01

1.80 0.01 (0.40) 1-1.42 0.01

in 2

in 5

in 8

11.20

!l.50
0.20 ! 1.80

0.80

0.50

1.21 0.01 (1.58)

1.5110.01(0.98)
1.80 0.01 (0.40)
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values ofthe 1-d fßm original and trend removed profiles (Fig. 2.6) over the range between

about h = 2 and h = 64. (ß) in Table 2.7 is the slope of the regression line of the log-log plot
of Figs. 2.11 and 2.12.

There is very little difference between the 1st (or 2nd) order moment distribution

patterns, and very little difference between the calculated D values, ofthe original and the

trend removed fßm profiles. This can be seen from comparing between Fig. 2.11(a) and

(b), between Fig. 2.11(c) and (d), between Fig. 2.12(a) and (b), between Fig. 2.12(c) and (d),
and between the middle and right columns of Table 2.7. Therefore, the detrending process

for a profile need not to be necessary for both the 1st and 2nd order structure function

methods.

Suppose that ßt is the slope of the fitted regression line of the log-log plot of the

mean relief M(h) against the lag h and ß2 is the slope of the fitted regression line of the log-

log plot of the semivariance y(h) against the lag h. Then, we have ß2 2ßt (Table 2.7).

2.6.4.2. Verification of the 2-d structure function method

Fig. 2.13 and Fig. 2.14 are the log-log plots ofthe simulated 2-d fßm surfaces (refer

Table 2.8. D values of 2-d ffim surfaces determined by 1st and 2nd structure functions

Theoretical values

H TO
First order structure function

mp22

mp25

mp28

0.80 i2.20

0.50 i2.50

0.20 12.80

Original profiles

D2sAD2s(ß)

(f = 1)

2.36 0.01 (0.64)
2.49 0.01 (0.51)
2.80 0.01 (0.20)

Second order structure function (q = 2)

mp22

mp25

mp28

0.80 i2.20

0.50 12.50
0.20 12.80

2.36 0.01 (1.28)
2.53 0.01 (0.94)
2.82 0.02 (0.36)

First order structure function (q = 1)
int22

int25

int28

0.80 i2.20

0.50 12.50
0.20 12.80

2.20 0.02 (0.80)
2.50 0.01 (0.50)
2.78 0.01 (0.22)

Second order structure function (q = 2)
int22

int25

int28

0.80 i2.20

0.50 12.50
0.20 ! 2.80

2.21 0.03 (1.58)
2.51 0.02 (0.98)
2.80 0.01 (0.40)

C2sAC2s

-1.84 0.01

-1.42 0.01

-0.96 0.01

-3.47 0.01

-2.57 0.01

-1.64 0.02

-2.31 0.01

-1.75 0.01

i-l.1610.01

1-4.55 0.03

-3.19 0.01

-1.9810.01

Trend removed profiles

D2sAD2s(ß)

2.46 0.01 (0.54)
2.59 0.01 (0.41)
2.8010.01 (0.20)

2.39 0.03 (1.22)
2.6010.02 (0.80)
2.8210.02 (0.36)

2.25 10.02 (0.75)
2.58 10.01 (0.42)
2.78 10.01 (0.22)

2.2210.03(1.56)
2.56 0.02 (0.88)
2.80 0.01 (0.40)

C2sAC2s

-1.90 0.01

-1.45 0.01

-0.9610.01

-3.56 0.02

-2.60 + 0.01

-1.64 + 0.02

-2.40 0.01

-1.74 0.01

1-1.1610.01

T-4.65 10.03

-3.19 0.01

1-1.98 0.01
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to Fig. 2.7), and their determined D values over the range between about h = 2 and h=16

were summarized in Table 2.8.

Unlike the 1-d structure function method for which detrending process has very little

effects on determined D values (Figs. 4.11 and 4.12), the removal of the planar trend plane
from a 2-d ffim surface affects in two ways (Figs. 4.13 and 4.14): 1). The mean relieves or

the semivariograms are flattened at larger observation scales (larger lag h); 2) the detrending

process results in over estimated D value ofthe surface except as H is near to 0 (D is near to

3). The influence caused by detrending process ofmp data is more severe than that of int

data. This can be seen from comparing the middle column with the right column of Table

2.8. For example, the D value of the original surface int25 is 2.50, whereas that of

detrended surface is 2.58 for the 1st order structure function method.

The over estimated D values of the surfaces generated by the midpoint displacement
technique are due to the non-stationary increments in the data themselves. The nön-

stationary increments may also be used to explain the crossover phenomena ofM(h) and

y(h) distribution patterns ofmp22 and mp25 with those ofmp28 [Fig. 2.13(a) and (c)].
Similar relationship ß2 2ßj can be obtained from Table 2.8 (values in brackets are

ß), where ßj and ß2 are the slopes ofthe regression lines from the log-log plots ofthe mean

relief M(h) and the semivariance y(h) against the lag h.

2.6.4.3. Comparison of D values determined by the spectral and structure function

methods

The fractal dimensions of the Hanning windows filtered 1-d fBm profiles and 2-d

fBm surfaces derived from the structure function method are compared based on the

analysis results of Sections 2.5 and 2.6,

The comparison of the lower part of Table 2.5 and Table 2.7 shows that the D values

of the 1-d fBm profiles, generated by both the midpoint displacement and interpolation
techniques, are reasonably consistent as determined by the spectral and structure function

methods. The slightly higher D values ofmpl2 for both the methods are due to the non-

stationary increments of the simulated mp data.

The comparison of the lower part of Table 2.6 and Table 2.8 also shows that the D

values of the 2-d fBm surfaces, generated by both the midpoint displacement and

interpolation techniques, are reasonably consistent for the both methods. The much higher
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D values ofmp22 than that ofmpl2 resulted from applying both the methods may be

explained by the reasons that there are more non-stationary increments in the simulated 2-d

fßm surfaces data than those in the simulated 1-d fBm profiles.
The removal of the linear and planar trend of fßm for determining the D values by

the spectral and structure function methods are shown to be not necessary.

In summary, the fractal dimensions ofthe Harming windows filtered synthetic
profiles or surfaces derived from the structure function method are reasonable consistent

with the theoretical D values which were initially given by H values, and the

implementation of the methodologies and the programs developed are verified. The slope
of the Log[y(h)] against Log(h) is about the two times the slope ofLog [M(h)] against

Log(h). The 1st and 2nd order structure functions patterns are not affected by the detrending
process of the synthetic profiles (Figs. 4.11 and 4.12), but affected by the removal of the

planar trend plane from the synthetic surface (Figs. 4.13 and 4.14): 1). The detrending
process may not to be necessary for the determination ofD values of a fractal as the

structure function method is deployed. This is consistent with the results obtained by
Weissel (1994). Therefore, the 1st and 2nd order structure functions are successful fractal

models to describe the synthetic 1-d fBm profiles and 2-d fßm surfaces.
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2.7. THE INTERSECTION METHOD - THE ZEROSET THEORY

The intersection method is based on the zeroset theory. Its principle is that the

fractal dimension of a surface can be deduced from the fractal dimension of its intersected

profile plus 1, and the fractal dimension of a profile can be deduced from the fractal

dimension of its intersected points plus 1 (Goodchild, 1982; Burrough, 1981; Barnsley et.

ah, 1988).

2.7.1. The zeroset theory

The zeroset theory points out that dimensions of shapes are reduced by 1 after they
are intersected with a plane. For example, a cube has a dimension of 3, its intersection with

a plane gives a 2-d square. The intersection of this square with another plane produces a 1-d

straight line segment, and a 0-d point will be created if this segment is intersected with yet
another plane. This concept is true when applied to the fractals (Voss, 1988). Therefore,
the relationship between the fractal dimension D and parameter H is given by,

D = E-H (2.8)

where E is the Euclidean dimension in which the fractal takes. For example, E = 2 for a

profile, and E = 3 for a surface.

It is obvious that the zeroset of a self-similar fractal yields another self-similar

fractal, however, the zeroset of a self-affine fractal could become either a self-similar or a

self-affine fractal. For instance, the zeroset of a self-affine 1-d fßm is a set of disconnected

points obtained from intersecting 1-d fBm (VH(x), with a fractal dimension D^ with a plane
parallel to the x-axis. This zeroset is a self-similar fractal and has a topological dimension

of zero and a fractal dimension ofDo = T>x -1. The zerosets of a self-affine 2-d fBm (VH(x,
y), with a fractal dimension D2) however, could be either self-similar or self-affine since

two types of zerosets can be obtained. One is the intersection of 2-d fBm with a horizontal

plane which is parallel to x-y coordinates. This zeroset is a series of contours of the same

height, and is a self-similar fractal with a fractal dimension Dj = D2 -1. An other type of

zeroset is a vertical section as the surface is intersected with a plane that parallels to the x-

or y-axis. This zeroset (profile) may show mostly self-affinity and has a fractal dimension

again Dx = D2 -1. Generally, 0 < Do < 1,1 < Dx < 2, and 2 < D2 < 3. Most importantly, we
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have,

D0 + \ = Dl=D2-l (2.9)

Therefore, from intersecting the trend removed profile (or surface) with a horizontal

plane, a set of disconnected points (or contours of same elevation) can be obtained, and

from equation (2.9), the fractal dimension of a profile Dti (or a surface D2i) can be estimated

by calculating the fractal dimension of its set of intersected points Dintl (or intersected

contours Dint2) by the box counting method, i.e., DH = Dintl + 1 or D2i = Dint2 +1. The ways

of calculating the fractal dimension of a profiles is termed as 1-d intersection method, and of

a surface as 2-d intersection method. Six 1-d trend removed profiles (mpl2, mpl5, mpl8;
intl2, intl5, intl8) and six trend removed surfaces (mp22, mp25, mp28; int22, int25, int28),
which are generated by the interpolation method using H = 0.80, 0.50, and 0.20 (Fig. 2.6

and Fig. 2.7), are taken as examples to demonstrate the principles ofthe intersection

method.

2.7.2. The one-dimensional intersection method

The 1-d intersection method is defined as the estimation of the fractal dimension of

the set of the intersected points from intersecting a profile with a horizontal plane. From

intersecting the profile with a horizontal plane ofy = g(x) = avg, a set of disconnected

points can be obtained, where avg is termed the average value of the vertical variations of

g(x) for the profile data. Suppose that a profile has a very marked trend, there will be just a

couple of intersected points obtained from intersecting the original profiles with a horizontal

plane, and the intersection method will not be able to be applied on the set of intersected

points. To overcome this problem, the horizontal plane could be rotated so that the plane
contains the trend line. In other words, the set of the intersected points actually are from

intersecting the trend removed profiles with y = g(x) = avg = 0, and generally the maximum

number of intersected points are obtained. Then the box counting method is applied to the

set of the intersected (disconnected) points to determine its fractal dimension as Dintl, and
the fractal dimension of the profiles is DH = Dintl +1. The calculation and the log-log plots
were made by the programs ISID.

Fig. 2.15(a) and (b) are the log-log plots of the 1-d intersection method, where N is

the number of the filled boxes and r is the box size for the sets of the intersected points
from intersecting the 1-d fßm trend removed profiles, generated by the midpoint
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1-d intersection method applied on the 1-d fBm profiles
1-d midpoint displacement profiles 1-d interpolation profiles2 i J : : i , 2

a, D - 0.79; C - 2.49

{>, D - 0.51; C = 1.83
h, D = 0.25; C = 1.26

a, D - O.79: C - 2.64

i>, D = 0.521 C = 2.08

e, D = 0.24J C = 1.43

Log(r)
(a) (b) Log(r)

2-d intersection method applied on the 2-d fBm surfaces
2-d midpoint displacement surfaces 2-d interpolation surfaces

4 , , , 4

a

a,D
b,D
e,D

- 1.77, C
= 1.51, C
= 1.38, C

-3.33

= 3.09
= 2.74

^,D = 1.78,C = 3.35

b, D - 1.50, C - 3.08
b, D - 1.21, C - 2.43

Log(r) (C) (d) Log(r)

Fig. 2.15. Log-log plots of the box-counting method for determining the fractal dimensions of the sets of the

intersected points and contours. The 1-d fBm profiles and 2-d fBm surfaces are generated by the midpoint
displacement and interpolation methods using H = 0.2, 0.5, and 0.8. (a) and (b) are the log-log plots of the

number of the filled boxes (N) against the box size (r) as the box-counting method is applied on the sets of the

intersected points, which are the results from intersecting the 1-d ffim trend remove profiles (mpl2, mpl5,
mpl8) and (intl2, intl5, intl8) with a horizontal plane of g(x) = 0. (c) and (d) are the log-log plots of the

number of the filled boxes (N) against the box size (r) as the box-counting method is applied on the sets of

contours, which are the results of intersecting the 2-d fBm trend removed surfaces (mp22, mp25, mp28) and

(int22, int25, int28) with a horizontal plane of g(x, y) = 0.

displacement and interpolation methods using H = 0.8,0.5, and 0.2, with a horizontal plane
ofy = g(x) = 0. The fractal dimensions ofthese sets of intersected points Dintl are

determined by the box-counting method (refer to Section 2.3), and the fractal dimensions of
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their corresponding profiles DH = 1 + Dintl, and the results are shown in Table 2.9. The

estimate error ofD value of the intersected points ADintl Aß which is determined by

equation (2.1), where ß is the slope of the regression line for the plot of the box-counting
method applied on the set of the disconnected intersecting points (Fig. 2.15a and b).

Table 2.9. Fractal dimensions derived from the 1-d intersection method

mpl2

mpl5

mpl8

intl2

intl5

intl8

Theoretical values

H D

0.80 0.20

0.50 0.50

0.20 0.80

0.80 0.20

0.50 0.50

0.20 0.80

Number of

intersected points
21

48

116

33

67

176

D of intersected points i Di; of the profile

DWADW Tdh-D^ + I

0.25 0.07

0.51 0.03

0.79 0.04

0.24 0.05

0.52 0.02

0.79 0.03

ri.25
1.51

1.79

1.24

1.52

1.79

2.7.3. The two-dimensional intersection method

Similarly, from intersecting the original surface with a horizontal plane of g(x, y) =

avg, a set of contours ofthe elevation of avg were obtained (Fig. 2.16), where avg is the

average value of the vertical variations of g(x, y). These contours are self-similar because

of the equivalency ofx- and y- coordinates. The box counting method was deployed to

estimate the fractal dimensions of the set of contours Dint2. Fig. 2.15(c) and (d) are log-log
plots of the number of the filled boxes (N) against the box size (r) for the sets of contours

from the intersection of the trend removed surfaces, which are generated by the midpoint
displacement and interpolation using H = 0.8, 0.5, and 0.2, with a horizontal plane.
Therefore, the fractal dimensions ofthese surfaces D2i = Dint2 + 1. Table 2.10 shows the

fractal dimensions obtained from the log-log plots ofthe box-counting method for those

intersected sets of contours and their corresponding surfaces. The estimate error ofD value

of the intersected points ADim2 = Aß which is determined by equation (2.1), where ß is the

slope of the regression line for the plot of the box-counting method applied on the set of

contours (Fig. 2.15c and d). All the determination ofD values and log-log plots were

carried out by the VISUAL BASIC program IS2D.

It is worth pointing out that any a single contour from Fig. 2.16 (of a reasonable
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(a) Contours sets from intersecting 2-d ffim surfaces generated by the midpoint displacement
H = 0.8, D = 1.20 H = 0.5, D - 1.50 H = 02, D = 1.80

0
o
o

(b) Contours sets from intersecting 2-d fBm surfaces generated by the interpolation method
H = 0.8, D = 1.20 H = 0.5, D = 1.50 H = 02, D = 1.80

Fig. 5.16. The sets of intersection contours. They are the results of intersecting the original 2-d fBm surfaces

generated by the midpoint displacement and interpolation methods using H = 0.8, 0.5, and 0.2 with a

horizontal plane of g(x, y) = avg.

Table 2.10. Fractal dimensions derived from the 2-d intersection method

mp22

mp25

mp28

int22

int25

int28

Theoretical values

H D

0,80 1.20

0.50 1.50

0.20 1.80

0.80 1.20

0.50 1.50

0.20 1.80

Number of

intersected contours

20

82

139

6

78

156

D of intersected contours
"1

1.38 0.06

1.51 0.07

1.77 0.06

1.21 0.02

1.50 0.07

1.78 0.06

D2iof the surface

Da-DfcQ+l

2.38

2.51

2.77

2.21

2.50

2.78

contour length, of course), yields the roughly same fractal dimension ofD =1.24 as it is

determined by the box-counting method, i.e., the fractal dimension of a single contour does

not depend on H values of a surface. This shows that the relationship between D and H as
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shown in equation (2.9) does not exist. This does not contradict the zeroset theory as the

intersection of a surface with a plane yields a set of contours, not a single one. Thus, the

fractal dimension of a set of contours should be calculated and compared with those of a

surface.

2.7.4. Verification of the intersection method

From Table 2.9, the fractal dimensions ofthe synthetic profiles DH determined by
the 1-d intersection method are close to their theoretical D values. It is also consistent with

the D values obtained by the 1-d spectral and structure function methods (Tables 2.5 and

2.7), thus the 1-d intersection method is a successful method to estimate the fractal

dimension of a profile.

The fractal dimensions ofthe 2-d fßm surfaces generated by the interpolation
methods are consistent with their theoretical D values as the 2-d intersection method is

applied (Table 2.10). However, the application of the same method to the midpoint

displacement surface (mp22) leads to a greater fractal dimension (2.38) than the theoretical

values of 2.20. This difference also occurred when the surface was analyzed by the spectral
and structure function methods(refer to Tables 2.6 and 2.8), and maybe explained by the

non-stationary increments in the midpoint displacement technique deployed. In other

words, there are more non-stationary increments in 2-d mp series surfaces than those in 1-d

mp profiles. The difference also occur as the 2-d spectral and 2-d structure function

methods are used.

In summary, the fractal dimensions of 1-d fBm profiles and 2-d fßm surfaces by the

intersection method (D^, and D2i) are reasonably consistent with the theoretical D values.

The concepts of a set of disconnected points and a set of contours are introduced and used

for determining the fractal dimensions of their profiles and surfaces. Given a certain H

value, a set of disconnected points (or contours) has a fractal dimension of its profile's (or
surface's ) minus 1, it only depends on the value ofH. However, a single contour generally
has a fractal dimension of about 1.2 even if the single contour is taken from intersecting a 2-

d fBm surface ofH = 0.2 (D = 2.8) with a horizontal plane.
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2.8. THE CUBE-COUNTING METHOD

The cube-counting (or named 3-d box-counting) method for computing D values of

self-similar surfaces could be easily extended from the concept ofthe box-counting method.

Suppose there is an example surface, which is equally sampled raster grid of 65 by
65 (grid size has an unit length) and the height variation ranges from 0 to 64, then the data

can be presented as [x, y, z = g(x, y)], where x, y, z = 0,1,..., 64. The choice of such an

example surface and the number 64 is for the purposes of simplicity and of keeping the cube

side length to be a power of 2. Therefore, the largest size ofthe cube is 64 (initial cube).

Firstly, the initial cube (Fig. 2.17a) can be divided into (21)3 (Fig. 2.17b), (22)3 (Fig.
2.17c), (23)3, (24)3,..., and so on. Those cubes in which any portion of the surface occurs are

named 'filled cubes', and the number of the filled cubes is recorded as N. For each cube

size r, the number of filled cubes is recorded as Nr. Therefore, a series of the filled cubes

(Nr) is obtained for different cube sizes (r).
Then the series of data sets are plotted at the log-log scale as shown in Fig. 2.17(d).

The several points plotted at larger scales should be excluded since these points are usually
have a slope of 3; and the first point as r = 1 can either be omitted or retained. The rest

plotted points then are fitted by a straight line using least square technique. The slope of the

fitted line is ß = -2.34.

Finally, the fractal dimension of the surface, D2b, is determined by equation (2.2),

i.e., D2b = -ß = 2.34 over a range ofr values between 1 and 5.

The program CC3D was made both in FORTRAN 77 and VISUAL BASIC codes to

determine the fractal dimensions of surfaces and plot the log-log distribution patterns.
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Log(C2b)= 4.73
= -ß = 2.34

LogioöO

Fig. 2.17. Illustration of the principles of the cube-counting method, which is deployed for calculating the

fractal dimensions of self-similar surfaces. The example grid data are 65 by 65, and the variation of height [z
= g(x, y)] ranges from 0 to 64. The number of the filled cubes (N) increases as the size of the cube (r)
decreases, (a) A cube of a size of 64 is used to contain the example surface, thus as r = 64, then N = 1. (b) As
the initial cube is divided into (21)3 small equal cubes, then N = 8, and r = 32. (c) As the initial cube is divided

into (22)3 small equal cubes, then N = 59, and r=16. (d) Log-log plot of the number of the filled cubes

against the cube side length shows that the slope of the regression line over a range between 30 m and 150 m

is D2b = ß = 2.34.
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2.9. THE TRIANGULAR PRISM METHOD

The triangular prism method was presented by Clarke (1986). The method is used to

calculate the fractal dimensions of self-similar surfaces which have equally sampled grid
data format, based on the power-law relationship between the surface area and the resolution

area. The resolution area is the smallest area being used to calculate the whole surface area.

A single grid cell, which comprises four corners and is the basic element comprising
a raster surface, is taken to demonstrate the computation ofthe surface area as shown in Fig.
2.18. If the length of the grid cell side is s, then the locations of the four grid cell corners

can be assigned as (i, j), (i+s, j), (i, j+s), and (i+s, j+s). Let the four elevations of the corners

of the grid cell be a, b, c, d, and the average elevation, which is located in the centre of the

grid cell, be e. Therefore,

a = z(i,j), b = z(i + s, j), c = z(i, j +

(a+b + c + d)
e =

Four triangles, which connect the average elevation with the nearby elevations ofthe four

grid corners, represent the new surface of the grid. The side lengths of these triangles are

given by,

w = yj{a-b) +s2;

+s2;

rv2
2
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Fig. 2.18. Illustration of the principles of the triangular prism method. It demonstrates the way to calculate

the surface area of the single cell (i, j) with the resolution area of s . Refer to text for more details.

Using Heron's formula,

sa =

sd = (r + z + o\

Therefore the areas of the four triangles are give by,

A = ^sa(sa - o)(sa - pjUsa - w); B = - x)\sb - qj,

C = - qj(sc - yjüsc - r); D = yjsd(sd - r\sd - z%sd - 6).

Finally, the area of the single cell grid surface is equal to the sum of the areas of these four
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triangles, i.e.,

5(.7) = A + B + C+D

Aggregated over all grid cells in the study area, total area of the surface, S, can be computed
by,

where Ns is the number of grid cells along one direction of the x-y coordinate system for the

resolution square which has a side length of s and a resolution area of s x s.

The areas of the surface can be computed repeatedly whilst incrementally increasing
the size of the resolution square. As the size of the square increases, the total area of the

surface decreases. The side length ofthe resolution square increases in the form ofpower of

2, thus the a series of surfaces areas (S) can be obtained by measuring the surface using a

resolution areas of s2. Then the series of data are plotted at log-log scale, and the slope ß of

the regression line can be determined.

The fractal dimension, D, ofthe surface is calculated as (Clarke, 1986),

where ß is the slope of the regression line of the log-log plot of the surface area (S) against

the resolution area (s x s).

Fig. 2.19(a) shows a 3-d display of an example surface. Fig. 2.19(b) shows its log-

log plot ofthe surface area (S) against the resolution area (s x s). The power-law

relationship between S and s x s gives that the fractal dimension Dt = 2 - ß = 2.26, where ß

is the slope of fitted line over the range between lxl and 5x5. The triangular prism
method was carried out by TP2D program written in FORTRAN and VISUAL BASIC codes.
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(0,0)

I Log(Ct)-- 4.50 :

D,= 2-ß =2.26

i 1

>

0

o

(a) (b)
Log10(s x s)

Fig. 2.19. The application of the triangular prism method on an example surface. The surface is unit-length

equally sampled grid data of 65 by 65, and the height [z = (x, y)] varies from 0 to 64. (a) 3.-d perspective
view of the surface, (b) Log-log plot the surface area (S) against the resolution area s

.
The slope of the

regression fitted line ß = -0.26, and therefore the fractal dimension of the surface Dt = 2 - ß = 2.26.
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2.10. DISCUSSION OF THE METHODOLOGY

2.10.1. General discussion

As discussed in Sections 2.2 and 2.3, the fractal dimension of the Koch curve

determined by the ruler and box-counting methods is roughly the same as its theoretical one,

i.e., D = 1.26. The fractal dimensions of the simulated 1-d fßm profiles and 2-d fBm

surfaces determined by the spectral and structure function methods are consistent with their

theoretical ones after Harming windows were applied to the original synthetic profiles and

surfaces (Sections 2.5 and 2.6). The D values of 1-d profiles and 2-d surfaces are linked by
the intersection methods (zeroset theory). That is, the fractal dimension of a contour set,

resulted from intersected the surface with a horizontal plane, is equal to that of the surface

plus 1.

The fractal dimension of a fractal line and surface can be determined by a variety of

methods. Based on the self-similarity and self-affinity of a line or a surface, the methods

discussed above can be categorized into two groups. One is for determining the fractal

dimensions of self-similar fractals, such as the ruler, box-counting, cube-counting, and

triangular prism methods. The other is for determining the fractal dimensions of self-affine

fractals, such as the spectral and structure function methods.

These two groups ofmethods are measuring two different types ofpower-law

relationship. For example, the fractal dimensions derived from the ruler method represent

the changing degree of the power-law relationship between the curve length and the ruler

length used to measure the curve, which is a function of the variance of the profile

(Mandelbrot, 1985; Brown, 1987; Wong, 1987). For a topographic contour, its fractal

dimension characterizes the roughness of the contour, whereas the intercept is very much

dependent on the length ofthe contour observed. It, together with the box-counting method,

3-d box-counting and the triangular prism methods, measures the "areafilling" capacity of a

line or a surface. It is a roughness descriptor. However the fractal dimensions derived from

the 1-d spectral (and 1-d structure function) method reveal the changing degree of the

power-law relationship between the spatial energy [P(A,), y(h)] and the wavelength (k) or the

spatial lag (h). In other words, its fractal dimension D characterizes the property how the

roughness varies with length scales, whereas, the intercept is the amplitude parameter C

which describes the amplitude of the profile or surface roughness. By magnifying the
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vertical scale of a surface at any scale will not change the fractal dimension D for the

spectral and structure function methods, but change the amplitude parameter C. For

example, a contour set that results from intersecting the vertically magnified surface with a

horizontal plane is the same as the contour set resulted from intersecting the original surface

with the horizontal plane. Generally, both the two parameters, the fractal dimension D and

the intercept parameter C, are needed to describe the scaling behaviours of a self-affme

fractal. The determination of fractal dimensions of a surface (or a line) can be linked with a

set of lines (or a set ofpoints) through the intersection method.

Some care should be taken when applying the ruler or box-counting method to self-

affme fractals (Mandelbrot, 1985; Brown, 1987; Wong, 1987; Brown, 1987; Fox, 1989;

Hough, 1989). Table 2.11 shows the fractal dimensions of 1-d fBm profiles generated by
the midpoint displacement and the interpolation methods using H = 0.8, 0.5, and 0.2 as the

ruler and box-counting methods are deployed. All D values are very close to 1 no matter

how much H value varies. This is expectable because ofthe self-affinity of these generated

profiles whose horizontal and vertical coordinates are not equivalent. Their fractal

dimension should be determined by the spectral or the structure function methods. On the

other hand, as the spectral method is applied on a self-similar profile, the exponent of the

log-log plot will be -3 (Brown, 1987; Power and Tullis, 1991; Malinverno, 1995).

Table 2.11. Fractal dimensions of 1-d fBm determined

by the ruler and box-counting methods

mpl2

mpl5

mpl8

intl2

intl5

intl8

Theoretical H

H D

0.80 1.20

0.50 1.50

0.20 1.80

0.80 1.20

0.50 1.50

0.20 1.80

Ruler method

DrADr

1.001 0.001

1.003 0.003

1.010 0.007

1.001 0.001

1.002 0.001

1.007 0.005

Box-counting method

DlbADlb

1.001 0.002

1.008 0.014

1.011 0.070

1.001 0.002

1.006 0.004

1.009 0.050

Similarly, the fractal dimensions of 2-d self-affme fBm surfaces are very close to 2

as the cube-counting and triangular prism methods are deployed as shown Table 2.12. The

fractal dimensions obtained are independent on the parameter H values.

For the spectral method, the detrending procedure disproportionately affects relief at
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larger observation length scale, and therefore distorts the scaling behaviours of the original

profiles or surfaces (Weissel, 1994). The power spectral density within larger wavelengths
becomes flattened (Fig. 2.8). This distortion for a profile is more significant than that for a

surface. Therefore, some care is needed when determining the fractal dimension of a trend

removed profile (i.e., those several spectra of longest wavelengths should be excluded as

determining the spectral exponent ß). However, both the first M(h) and second y(h) order

structure functions are affected little by the trend removing procedure Figs. 2.11,12,13, and

14).

Table 2.12. Fractal dimensions of 2-d ffim determined

by the cube-counting and triangular prism methods

mpl2

mpl5

mpl8

intl2

intl5

intl8

Theoretical H

H D

0.80 2.20

0.50 2.50

0.20 2.80

0.80 2.20

0.50 2.50

0.20 2.80

Cube-counting method

D2b AD2b

2.001 0.001

2.003 0.004

2.007 0.008

2.001 0.001

2.002 0.001

2.005 0.004

Triangular prism method

Dt ADt

2.001 0.001

2.003 + 0.005

2.046 0.020

2.001 0.001

2.003 0.001

2.03610.010

2.10.2. Conclusions

1. The consistence between the calculated and theoretical fractal dimensions of the Koch

curve, simulated 1-d, and 2-d fBm fractals verified the implementation of the

methodologies and developed programs of the ruler, box, spectral, and structure function

methods.

2. The ruler and box-counting methods are successful fractal models to describe the self-

similar fractals, while the spectral and qth order structure function (i.e., qth moments)
methods are suitable to deal with self-affme fractals. Generally, the methods for

determining the fractal dimension of a self-similar fractal should not be used for

determining the fractal dimension of a self-affine fractal. Otherwise, meaningful results

would be hardly obtained. The ruler dimension (determined by the ruler or box counting

method) is different from the spectral dimension (determined by the spectral or structure

function method). The former is a roughness descriptor and focuses on the "areafilling
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capacity" of a curve in the space at certain range of observation scales; whereas the latter

is to describe how roughness varies within observation scales and the intercept
characterizes the amplitude of roughness.

3. The application ofHanning window to the synthetic fßm is essential in order to obtain

correct fractal dimensions for the spectral method and structure function methods. This

is because the principles of the methods were deduced from the theoretical assumption of

the infinite sample size, and the truncation phenomena (Gibbs effects) resulted from

applying the theory to the data of finite sample size in practice. Table 2.5 and 2.6 show

that the D values of 1-d and 2-d fBm can be correctly determined as the fBm were

Hanning window weighted for the spectral method. Comparisons between the lower part

of Table 2.5 and Table 2.7, and between the lower part of Table 2.6 and Table 2.8 show

the D values of the synthetic fßm are roughly the same as determined by the spectral and

structure function methods. They are consistent with the D values determined by the

intersection methods, as well as consistent with the theoretical D values which are given

byH.

4. Detrending procedure needs not to be necessary for determining the D values of synthetic
fBm for the spectral and structure function methods although trends of some samples are

reasonably high (refer to RSS% ofTables 2.3 and 2.4). In some cases, trend removal

process could over estimate the D value. For example, the D value of the original surface

int25 is 2.50, whereas that of detrended surface is 2.58 (Table 2.8) for the 1st order

structure function method.

5. The fractal dimensions of 1-d fBm are less influenced by the non-stationary increments

caused by the midpoint displacement method than those of 2-d fBm for the spectral,
structure function, and intersection methods. The D values of 2-d mp fBm surfaces

biased more form the theoretical D values than those of 1-d mp fBm profiles. This might
be due to that there are more non-stationary increments in 2-d surfaces than those in 1-d

profile caused by the midpoint displacement technique. For example, mp22 surface has a

D value of (= 2.35 ~ 2.5, Dtheoretical = 2.20), but mpl2 profile has a D = 1.25 derived from

the spectral, structure function, and intersection methods.

6. The intersection method is a powerful tool to link the D values of 1-d and 2-d fractals.

For example, the D value of a fßm surface (D2) could be obtained by calculating the D

value of its intersected contour set (D^ based on zeroset theory, i.e., D2 = Dj + 1.
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2.11. PROGRAMS USED

Programs used for calculating fractal dimension and plotting profiles and surfaces

are written in VISUAL BASIC code, some ofthem are also written in FORTRAN code. The

programs have been developed to carry out almost every calculation and analysis needed in

the thesis as shown in Table 2.13.

Table 2.13. A list of programs used in the thesis

N

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

Name

DIGICON

RULERM

BOXCM

SPID

SFID

ISID

CC3D

TR3D

SP2D

SF2D

IS2D

MPID

MPADID

INTID

MP2D

MPAD2D

INT2D

LOGP

PROFP

SURFP

CONTP

Functions

Digitizing map data

Digitize map data (such as contours, profiles, chips)
Fractal analysis for the 1-dimensional data

Ruler method, determine the fractal dimensions of curves.

Box-counting method, determine the fractal dimensions of curves.

1-dimensional spectral method, determine the fractal dimensions of

profiles.
1-dimensional structure function method, determine the fractal dimensions
of the curves.

1-dimensional intersection method, determine the fractal dimensions of the
set of intersected points.

Fractal analysis for the 2-dimensional data

The cube (3-dimensional box) counting method, determine the fractal
dimensions of self-similar fractal grid data.

Triangular prism method, determine the fractal dimensions of self-similar
fractals of grid data.

2-dimensional spectral method, determine the fractal dimensions of grid
data.

2-dimensional structure function method, determine the fractal dimensions
of grid data.

2-dimensional intersection method, determine the fractal dimensions of the
set of intersected contours.

Simulating 1-dimensional and 2-dimensional fractal data

Mid-point displacement method to simulate 1-dimensional fractals.

Mid-point addition method to simulate 1-dimensional fractals.

Interpolating method to simulate 1-dimensional fractals.

Mid-point displacement method to simulate 2-dimensional fractals.

Mid-point addition method to simulate 2-dimensional fractals.

Interpolating method to simulate 2-dimensional fractals.

Plot and save plot for the data and results

Log-log plot of x-y data sets.

Profile plot of x-y data sets.

Surface plot of grid data sets.

Contouring grid data sets and plot the set of the contours.

Code

VB

VB

VB

VB,F

VB,F

VB,F

VB,F

VB,F

VB.F

VB,F

VB,F

VB,F

VB,F

VB,F

VB,F

VB,F

VB, F

VB

VB

VB

VB

VB: VISUAL BASIC code; F: FORTRAN 77 code.
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CHAPTER 3

APPLICATION OF THE FRACTAL CONCEPT TO CONTOURS

3. APPLICATION OF THE FRACTAL CONCEPT TO CONTOURS

3.1. INTRODUCTION

Followed the work done by Richardson (1961), the coast of Britain was the first

topographic contour (has a elevation level of 0 m) to be analyzed using the fractal concept

by Mandelbrot (1967), and the study has shown it is a self-similar fractal with a fractal

dimension of about D = 1.25 (Mandelbrot, 1967). Especially, the west coast has a higher
fractal dimension (D = 1.30) than the east coast (D = 1.20) (Kaye, 1989). Indeed, a

topographic contour is self-similar. As shown in Fig. 1.5(b), when the portion of the

topographic contour is magnified isotropically by a factor r =3, the enlargement is

statistically similar to the original one. A topographic contour is defined by a series of x-

and y- coordinates at a certain elevation level, and the two coordinates are equivalent. Thus,

rescaling a topographic contour isotropically does not change the scaling properties if they
have the same overall roughness. Notice that a topographic contour resembles the Koch

curve, and there might be more than one y-value(s) corresponding to a single x-value for a

contour. This excludes the applicability of some fractal analysis method, e.g. the spectral
method. Therefore, the ruler and box-counting methods are used to determine the fractal

dimensions and fractal limits of contours.

In this chapter, 132 contours were digitized from maps of regions near the border

between Spain and Portugal at different scales (1:200,000,1:50,000, and 1:20,000) and
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analyzed by the ruler and box-counting methods. Based on the analysis results of the 132

topographic contours, the general fractal features (fractal dimensions and fractal limits) of

topographic contours will be investigated and comparison made of:

the ruler and box-counting methods;

water shore lines and their nearby topographic contours;

contours determined at different map scales;

the upper fractal limits and the contour lengths;

contours of different elevations (i.e., adjacent contours); and

contours from different rock types.
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3.2. DATA SOURCE

Topographic contours ofmaps were digitized as a series of coordinates (x, y) using a

TDS digitizing table and corresponding digitizing programs (see Section 3.2.1). 132

contours, including topographical contours and shore lines to lakes, were taken from

geological maps of regions near the border between Spain and Portugal as shown in Fig. 3.1

(around areas ofN3918', W701'). These contours were digitized from maps of different

scales (1:200,000,1:50,000, and 1:20,000), and the contours from the 1:50,000 map cover

two rock groups of granite and metamorphic rocks. Table 3.1 shows more details about the

contours from the different map scales and lithological units.

Files

D2

G-M2

G22B

GP

Kl

K2

PC2

Dl

L2

LI

Total

Table 3.1. Digitized

i Map scales

! 1:200,000
! 1:50,000
! 1:50,000
11:50,000
! 1:50,000
11:50,000

11:50,000
! 1:50,000
il:50,000
! 1:20,000
i1
i

N

13

3

17

28

18

16

15

13

4

5

132

contours from maps of different scales and rock types

Lithological units

Quartzite, Phyllite
Muscovite granite
Mica granite

Porphyritic mica granite
Schist, slate

Quartzite, Schist, Phyllite,
Biotite schist, Phyllite (Pre
Quartzite, Phyllite

I Type of contours

i Topographic contours

I Topographic contours

I Topographic contours

; Topographic contours

! Topographic contours

Hornfels 1 Topographic contours

. C.) I Topographic contours

i Topographic contours

i Shore line and nearby
I topographic contours

All these contours were processed by the ruler and box-counting methods. The

contour details, together with their processed results in terms of fractal dimensions D and

fractal limits, are listed in Appendix 2.

3.2.1. Programs used

For the purposes of accuracy and efficiency, a digitizer and a PC have been used to

collect and analyze the contours and shore lines. Programs utilized were developed by

Professor David J Sanderson in QUICKBASIC for use with an IBM PC and TDS digitizing
table.

DIGICONprogram allows the digitizing of contours from maps as a series of



Chapters. Application OfThe Fractal Concept To Contours 92

0 100 200 300 400 km

W7

Fig. 3.1. Location of the sampling region.

(x, y, z) coordinates, where the z-value is the elevation value of the contour or other

identifier. Such data sets are stored in ASCII files with the extension of *.CON. RULERM

and BOXCMprograms accept and analyze digitized *. CON files. These two programs

count and store the contour lengths (L) for specific ruler lengths (r), and the number (N) and

the proportion (P) of 'filled' boxes for the specific box sizes (r) respectively. 'Filled' boxes

are those which contain part of a contour or curve.

3.2.2. Digitizing of contours

Since the resolution is usually 0.5 mm to 1.0 mm on map, the aim, during the

digitizing procedure, was to digitize one to two points per millimetre, i.e., digitizing step is

< 1.00 mm. This allows most of the information of a map contour to be retained in the

digitized file.

Table 3.2 compares the digitizing steps aimed at and those achieved (refer to

Appendix for more detail) and indicates that digitized contours retain most of the

information contained in the map contours.
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Map scale

1:200,000

1:50,000

1:20,000

Table 3.2.

N

5

114

13

A list of digitized step aimed

0.5-1.0 mm (100-200 m)
0.5-1.0 mm (25-50 m)
0.5-1.0 mm (10-20 m)

at and achieved

So

0.44 mm (88 m)
0.48 mm (24 m)
0.40 mm (8 m)

STD

0.01

0.07

0.07

N: Number of contours; sa: Digitized separation aimed at mm (m);
s0: Mean digitized separation achieved mm (m); STD: Standard deviation of s0

In order to record as much information of the topographic contours from maps as

possible, some specific features ofmap contours are also noticed.

A smaller digitizing step was used in regions of great curvature of contours since they are

more changeable and contain more information than that of straight parts of contours

For enclosed contours, the coordinates of start and end points of the digitized contours

are not necessary identical with the map contours since the errors in digitizing the start

and end points are always less than the map resolution. Therefore, enclosed and open

contours are treated similarly during further processing.

3.2.3. Some fractal characteristics of contours using the ruler and box-

counting methods

From the example contour PC2031 employed to introduce the ruler and box-

counting methods in Chapter 2, some common fractal characteristics of contours can be

outlined.

Firstly, a contour is a fractal only over certain range bounded by the lower fractal

limit and the upper fractal limit. In the study, r^ and rBL stand for the lower fractal limit

derived from the ruler and box-counting methods, whereas rRU and rBU stand for the upper

fractal limit derived from the ruler and box-counting method in later discussions.

Secondly, the plotted points of Log(Nr) (or Log(Nb), or Log(L), or Log(P)) against

Log(r) of a contour, within the fractal limits, do not fit a perfect line but are scattered such

that a topographic contour is a statistical fractal, where Nr and Nb are numbers of rulers and

filled boxes of the ruler and box-counting methods, L is the length of a contour as measured

by different rulers r and P is the percentage ofthe numbers of the rilled boxes (Nb) and the

total boxes (N), i.e., P = Nb / N * 100%. The regression line ofthese scattered points
characterizes the fractal properties of a contour, the regression correlation coefficient R2,
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therefore, is required to be sufficient high in determining the fractal dimensions, as well as

the fractal limits. For this study, R2 is > 0.85 in most cases.

Thirdly, a contour digitized from a map has a finite contour length, Lo, which is

determined by the separation of the digitized points, and the accuracy and resolution of the

map. If a digitized topographic contour is recorded as N pairs of coordinates (Xj, y;) where i

= 1,2,..., N, then the contour length Lo is given by,

N-\

-yt
i=1

Fourthly, the general features ofthe log-log plots ofN (or L) against r, as shown in

Fig. 2.2(a), and those ofN (or P) against r, as shown in Fig. 2.4(a), can be categorized into

three regions.

The situation of either r<^ (or rBL), or r > r^ (or rBL) is beyond the statistical validity
of the fractal technique.

For Trl (or rBL) < r < rRU (or rBU), 1 < D < 2 represents the fractal nature of a contour, and

appears to correlate closely with the variations in the contours caused by the topography
since a map contour neither represents a straight line (D = 1) nor completely fills the map

area (D = 2).
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3.3. COMPARISON OF THE RULER AND BOX-COUNTING METHODS

In order to compare the ruler and box-counting methods, the D values (Dr, Dlb),
lower (rRL, rBL), and upper (rRU, rBU) fractal limits of all these 132 contours derived from the

ruler and box-counting methods are plotted in Fig. 3.2. The x-axis represents the fractal

dimension of topographic contours derived from the ruler method, while on the y-axis are

those from the box-counting method.

The average fractal dimensions derived from the ruler and box-counting methods are

Dr = 1.23 0.06 and Dlb = 1.23 0.08 (refer to Appendix 2 for more details). Therefore,

the topographic contours have an average fractal dimension of about D = 1.23 over a fractal

range between 50 m and 14 km, i.e. about 2 orders of magnitude for both the ruler and box-

counting methods (Table 3.3).

The plot of Dlb against Dr on linear paper (Fig. 3.2a), shows that Dlb has a clear

linear trend with a gradient of about 1.0 with Dr, although the points are quite scattered.

The analysis ofregression shows that the correlation (correlation coefficient R2 = 0.50)
between Dlb and Dr can be mathematically presented as,

= l>, 0.15

with about 95% of the plotted points falling between these two lines.

The fractal limits (rBL and rBU) derived from the box-counting method are plotted

against those (r^ and rRU) derived from the ruler method in Fig. 3.2(b) and (c) respectively.
These two plots show a correlation with a gradient of about 1 between the two methods, i.e.,

rBL x rRL and rBU Ä rRU-

Two types of statistical analysis methods have been deployed to test if any

difference exists between the fractal dimensions derived from the ruler (Dr) and box

counting (Dlb) methods.

One is the "paired comparison t-test". Obviously, each contour has a pair of fractal

dimensions determined by the ruler method (Dr) and the box counting method (Dlb). Since

determined D values are independent on the map scales, the 132 pairs ofD values from

different map scales were analyzed by the t-test. The lower (rL) and upper (%) fractal limits

were analyzed by the t-test based on same map scales. The t-test was carried out at a
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Fig. 3.2. Comparison of the ruler and box-counting methods, in terms of the fractal dimension (Dr and Db);
the lower (r^ and rBL) and upper (rRU and rBU) fractal limits, (a) linear relationship between Dlb and Dr in the

range of (1.0, 1.5). Although Dr and Dlb are quite scattered, a clear linear trend with gradient of 1.0 shows

that about 95% of the plotted points, statistically, fall between the two trend lines ofDlb =Dr0.15. (b) and

(c) are linear plots of rBL against r^ and rBU against rRU. Both plots show a correlation of a gradient of about

1. That is, rBL = r^ and rBU = rRU. Therefore, there is no significant difference between these two methods in

terms of fractal dimensions and fractal limits.

confidence level of 95% (i.e., a = 0.05) for the hypothesized mean difference Ho = 0. The

statistic t were taken as the absolute values, whereas the critical t were theoretical values at a

confidence level of 95% and the responding df (degree of freedom).
The paired comparison t-test results show that there is no significant difference

between the ruler and box-counting methods in terms of fractal properties (including the D

value, lower and upper fractal limits) as shown in Table 3.3 (statistical t < critical t).



Chapter 3. Application OfThe Fractal Concept To Contours 97

Dr-Dlb

rRL " rBL

rRU " rBU

Table 3.3. Paired

Map scale

1:200,000;

1:50,000; 1:20,000

1:200,000

1:50,000

1:20,000

1:200,000

1:50,000

1:20,000

t-test comparison results

iN(df)
!l32(131)

13(12)

Tl4(113)

"6(5)

13(12)

114(113)

[6(5)
i
i

Individual

Dr

D,b

rRL(m)

rBL (m)
rRL(m)

Tbl (m)

>"RL(m)

rBL (m)

rRU (m)

rBu (m)

Tru (m)

%j (m)

rRU (m)

rBu (m)

of D values

iMean

11.23 0.006

11.23 0.008

|75

TÜ
763""""
|77

"i273
"I271

! 1,408
11,443
17,368
il,287
]8,250
16,900

and fractal limits

i Statistic

! 1.14
1
I

i0.71
1
1

Ti.82
i
i

"IÖ.09
I
i

!o.31
1
1

~[i.46
I
i

i
i

t i Critical t

11.98
1
i

12.18
I
i

jl.98
i
i

i2.57
I
i

12.18
i

11.98
I
i

J2.57
i
i

The other type is the "two-sample analysis". It is clear that all values of Dr and Dlb
of 132 contours can be categorized into two samples (variables) as ALL.Dr and ALL.Dlb,
which have the same number of objects of 132. The test result (Table 3.4) demonstrates that

there is no significant difference between Dr and Dlb at a confidence level of 95%.

Table 3.4. Two-sample

Sample statistics: Number of objects.
Average
Variance

Std. deviation

Median

Difference between means = 6.818E-3

(Equal vars.) Sample 1 - Sample 2

(Unequal vars.) Sample 1 - Sample 2

Ratio of variances = 0.739

Sample 1
, Sample 2 0.524

Hypothesis test for HO: Diff=0;

Sig. Level = 0.515 at a = 0.05

analysis results of ALL.Dr and ALL.Dlb

ALL.Dr
132

1.232

6.146E-3

0.078

1.24

Conf. interval for diff.

-0.0138

-0.0138

Conf. interval

1.042

ALL.Djb
132

1.225

8.318E-3

0.091

1.23

in means: 95%

0.0274

0.0274

for ratio of variances: 95%

131 df

Computed t statistic = 0.651 vs Alt: NE

SO DO NOT REJECT HO.

Pooled

264

1.228

7.23E-3

0.085

1.23

262 df

262 df

131 df

In summary, there is no significant difference, in terms of fractal dimension and

fractal limit, between the ruler and box-counting methods as they are applied to topographic

contours.
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3.4. COMPARISON OF SHORE LINES AND NEARBY CONTOURS

Generally, shore lines (such as lake or sea edges) may be more accurately mapped
than topographic contours because the latter are determined from interpolation of spot

heights, and subject to greater smoothing. This might lead the loss of some finer details of

the nearby topographic contours. Have shore lines the same fractal characteristics as their

nearby topographic contours?

To investigate this, the Caia lake area, at ground N3901', W0710', (Fig. 3.3), was

studied by analysing two lake shore lines (LI001 and L2001) and two nearby topographic
contours (LI002 and L2004). The shore lines and topographic contours have elevations of

240 m and 300 m. The shore lines LI 001 and L2001 are of the same feature - the same lake

shore margin digitized from different map scales(l :200,000 and 1:50,000). Both the shore

line and the topographic contour on Fig. 3.3(b) are distinctively 'rougher' than those on Fig.

3.3(a), representing the increased detail present on the 1:50,000 map.

The ruler and box-counting methods were implemented to calculate the fractal

dimensions and the fractal limits of the shore lines and their nearby topographic contours.

For the ruler method, the lengths of the contours (L) are plotted against the ruler lengths (r)
on a logarithm scale (Fig. 3.4a) over a range between r = 200 m and 10 km. For the box-

counting method, the proportions of filled boxes (P) are plotted against the side length of the

boxes (r) on a logarithm scale (Fig. 3.4b), which range between r = 100 m and 4 km.

The fractal dimensions and fractal limits are determined from the log-log plots of

Fig. 3.4, and their results are summarized in Table 3.5.

Table 3.5. Comparison of lake shore lines and nearby topographic contours

Map scale

1:200,000

1:50,000

Contours

LlOOl, water, Lo = 71,043

L1002, topo.(300m), Lo = 86,488

L2001, water, Lo= 104,951

L2004, topo.(300m) , Lo = 62,064

Dr
1.33

1.31

1.33

1.36

rRL " rRU (m)
200- 5,000

240-10,000

100- 4,000

100- 8,000

D,b
1.39

1.29

1.39

1.36

rBL-rBu(m)

177-3,548

267-7,112

109-4,003

111-3,318

avg. D

1.36

1.30

1.36

1.36

rRL " rRu (m): The lower and upper fractal limits in the ruler method in metres;
rBL - rBU (m): The lower and upper fractal limits in the box-counting method in metres.

Table 3.5 indicates that the fractal dimension ofthe shore line and its nearby
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Fig. 3.3. Display of the digitized shore lines and their nearby topographic contours from maps of different

scales, (a) compressed Caia lake shore (LI001, enclosed) of 240 m elevation and its nearby topographic
contour (L1002) of 300 metres elevation from the 1:200,000 map. (b) compressed Caia lake shore (L2001,

enclosed) of 240 m elevation and its nearby topographic contour (L2004) of 300 metres elevation from the

1:50,000 map. Intuitively, both the water shore line and topographic contour on (b) contain smaller scale

details and rougher than those on (a).

contour varies little as the ruler and box-counting methods are deployed, Dr being in the

range of 1.31 to 1.36 and Dlb in the range of 1.29 to 1.39. The average value ofD = 1.35

applies over fractal limits from 100 m up to 10 km. Compared with the average D-values

(D = 1.23) oftopographic contours, as discussed in Section 3.3, the D-values of the water

shore lines and their nearby contours (D = 1.35) are higher. Thus, there is no significant
difference between the shore lines and their nearby topographic contours in terms ofD-

values.

Table 3.5 also shows that there is no significant difference between the shore lines

and their nearby topographic contours in terms ofthe lower fractal limit. However, the

lower fractal limits of the contours from the 1:50,000 map are the half of those from the

1:200,000 map. This is because that the larger scales ofmaps preserve more information of

contours than smaller ones.

In summary, there is no significant difference between the shore lines and their

nearby topographic contours in terms of D-values and fractal limits.
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Fig. 3.4. Log-log plots for shore lines and nearby topographic contours of 300 m elevation when analyzed by
the ruler and box-counting methods, (a) and (b) are log-log plots, for the shore line LI001 and its nearby

topographic contour L1002 (of 300 m of elevation) from the 1:200,000 map, using the ruler and box-counting
methods respectively. LlOOl has a slightly higher D-value (Dr=1.33, Dlb=1.39) than L1002 (Dr=1.31,

Dlb=1.29). The shore line LlOOl has an average value D = 1.36 over fractal limits 200 m to 5 km,

topographic contour has an average value D = 1.30 over 200 m to 10 km. (c) and (d) are log-log plots, for the

shore line L2001 and its nearby 300 m topographic contour L2004 from the 1:50,000 map, using the ruler and

box-counting methods. The shore line L2001 and its nearby contour have roughly the same D value (D =

1.36) over fractal limit ranges between 100 m and 4 km.
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3.5. COMPARISON OF CONTOURS FROM MAPS OF DIFFERENT SCALE

Generally speaking, larger scales ofmaps preserve more details than smaller ones

given that they are surveyed and digitized at a same standard. Therefore, it is necessary to

find out if the fractal dimensions, as well as the fractal limits, relate to map scales. All the

132 topographic contours digitized from different scales ofmaps are analyized by the ruler

and box-counting methods. Table 3.6 lists the average D-values (Dr, Dlb), the lower fractal

limits (rRL, rBL), and their corresponding standard deviations. The upper fractal limits will

be discussed in Section 3.6.

Table 3.6. The average D values and lower fractal limits
of contours from different scales of maps

Map scale

1:200,000

1:50,000

1:20,000

N of files

5

114

13

avg. Dr

1.370.06

1.230.07

1.200.08

avg. I'm,

30882

6323

7526

avg. Dlb
1.370.06

1.220.09

1.210.09

avg. rBL

30378

7731

8348

avg. D

1.37

1.23

1.21

Fig. 3.5 is a plot ofD values (Dr, Dlb) of 132 contours of different map scales, and

shows the variation of fractal dimensions among the map scales.

Both Table 3.6 and Fig. 3.5 show that there is no systematic relationship between

map scales and D values, i.e., they are independent. The average D value of contours from

1:20,000 map (D = 1.21) is roughly the same as that of contours from 1:50,000 map (D =

1.23). However, the contours from 1:200,000 map (D = 1.37) seem to have higher D value

than those from 1:20,000 and 1:50,000 maps. This is because the paired contours

themselves (linked solid line) between 1:50,000 and 1:20,000 maps have higher D-value,

and thus the higher D-value ofthese contours are not the results of difference map scales.

In terms of the lower fractal limits, the variation among different map scales was

investigated. The lower fractal limits were determined and are plotted against map scales on

double logarithm paper as shown in Fig. 3.6. For 1:50,000 map, note that more data points

appeared in Fig. 3.6(b) for the box-counting method than those appeared in Fig. 3.6(a) for

the ruler method. This is because, firstly, there are 114 contours; and secondly a consistent

series of ruler lengths is used for the ruler method, whereas the box sizes are determined by
the sizes of contours for the box-counting method.
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Fig. 3.5. Linear plot of the fractal dimension D against map scales, where Dr and Dlb are D-values derived

from the ruler and box-counting methods. The two plots indicate that the fractal dimension and map scales

are independent. Solid lines tie the paired contours of equal height from different scale maps.

From Fig. 3.6, the lower fractal limit is observed to decrease as the map scales

increase from 1:200,000 to 1:50,000. This decreasing trend is also expected from map

scales from 1:50,000 to 1:20,000 theoretically. In other words, the lower fractal limit of

contours from the 1:200,000 map is expected to be higher than that from the 1:50,000 map,
and higher than that from 1:20,000 map. This is because the topographic contours from

well surveyed maps preserve more finer details of topographic variance than those from

poor surveyed ones. However, the lower fractal limits from the maps of 1:20,000 and

1:50,000 are roughly the same. This is because the map of 1:20,000 used here was not as

well surveyed as the map of 1:50,000, and leads the finer details of the topographic contours

from the 1:20,000 map were lost. Comparison of the lower fractal limits derived from the

topographic contours at different map scales reflects the quality (resolution) of topographic

maps. In other word, for the same map scale and standard of digitizing procedures, the

lower the lower fractal limit ofthe contour is, the better the topographic maps produced.
If the 1:20,000 map had the same quality as the 1:50,000 or 1:200,000 maps, the

lower fractal limit should be lower than it is, and it might be true that the lower fractal limits

have a power-law dependence on the map scales.
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Fig. 3.6. Log-Log plot of the lower fractal limit against the map scale, (a) The lower fractal limits are

derived from the ruler method, (b) The lower fractal limits are derived from using the box-counting method.

These plots both indicate that the lower fractal limit depends on the map scale.
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3.6. COMPARISON OF THE UPPER FRACTAL LIMITS AND THE CONTOUR

LENGTHS

The lower fractal limits of contours are controlled by the map scales and map

quality, but what controls the upper fractal limits? The plots ofupper fractal limits (rRU,

rBU) derived from the ruler and box-counting methods against lengths of contours (Lc) are

shown in Fig. 3.7. To clarify the correlation between the upper fractal limits and the lengths

of contours, the small portions marked by solid rectangles in Fig. 3.7(a) and (b) which

contain the bulk ofthe data are magnified in Fig. 3.7(c) and (d).

Fig. 3.7 indicates that the upper fractal limit is positively correlated with lengths of

contours which are defined in Section 3.2.3 for both the ruler (R2 = 0.58) and box-counting

(R =0.57) methods. Since more widely separated fractal limits will allow more accurate

determination of fractal dimensions, this result indicates that longer contours provide more

accurate fractal dimension.
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Fig. 3.7. Relationship between the upper fractal limits derived from the ruler and box-counting methods and

the contour lengths, (a) Upper fractal limits from the ruler method (rRU) against contour length (Lc). As

contour length increases, (rRU) increases. They are positively correlated, (b) Upper fractal limits of the box-

counting method (rBU) against contour length (Lc). The increasing linear trend with increasing contour

lengths shows their positive correlation, (c) and (d) are respectively expanded diagrams of those two small

portions delineated on (a), and (b).
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3.7. COMPARISON OF CONTOURS OF DIFFERENT ELEVATION

To investigate the relationship and variation between contours of different elevation

in terms of fractal dimension, the fractal dimensions of 123 contours digitized from

1:50,000 and 1:20,000 maps are plotted against the contour elevations (CE) as shown in Fig.
3.8. Refer to Appendix 2 for more details. As listed in Table 3.1, there are 75 contours

from metamorphic rocks areas, whereas 48 contours from granites areas for all the 123

topographic contours (except 9 shore lines).

Fig. 3.8(a) and (b) are linear plots of fractal dimensions derived from the ruler (Dr)
and box-counting (Dlb) methods against the CE for the topographic contours of

metamorphic rock areas, and Fig. 3.8(c) and (d) are linear plots of Dr and Dlb of the granite
contours against CE.

The fractal dimensions ofthese contours derived from the ruler (Dr) and box-

counting (Dlb) methods are averaged based on different CE as shown in Table 3.7, and Fig.

3.8(e) and (f) are the error bars plots ofDr and Dlb) at a confidence level 95%.

CE
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total N = 123

Dr, and D

Dr

1.22

1.24

1.20

1.12

1.23

1.19

1.19

1.2

avg Dr = 1

std = 0.05

j b of 132 contours

std

0.08

0.07

0.07

0.06

0.04

/

/

/

.22

Dlb

1.22

1.26

1.20

1.11

1.23

1.15

1.08

1.11

avgDIb =

std = 0.07

std

0.08

0.06

0.12

0.07

0.03

/

/

/

1.21

N: Number of contours being averaged; CE: Contour Elevation (m);
Total number of contours: 123; Dr: Fractal dimension derived from the ruler method;
Dib: Fractal dimension derived from the box-counting method.

For metamorphic and granite rock unit, the fractal dimensions (Dr and Dlb) of

contours of the same elevation are averaged and listed in Table 3.8 in order to eliminate the

effects caused by different rock units.
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Fig. 3.8. Comparison of contours of different elevation in terms of fractal dimensions D. Linear scatter

diagram of fractal dimensions derived from the ruler (Dr) and box-counting (Dlb) methods against the contour

elevation (CE). N denotes the number of contours at a certain elevation, (a) and (b) are the linear plots of Dr
and Dlb of 75 metamorphic contours derived from the ruler and box-counting methods against the contour

elevation (CE). (c) and (d) are the linear plots of Dr and Dlb of 48 granite contours against the contour

elevation (CE). (e) and (f) are the error bars plots of Dr and Dlb of all 123 topographic contours at a

confidence level of 95%.

As shown in Fig. 3.8(a), (b), (c), and (d), there is a gentle discernible trend in each

plot with the fractal dimensions of topographic contours tending to decrease as the contour
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elevations increase. The trend is not statistically significant since this vague trend is caused

by the small numbers of contours encountered among higher contour elevations. For

example, at CE = 420 m (Fig. 3.8c), Dr varies from 1.10 to 1.27 and yields a standard

deviation of 0.09. Suppose that the plot points of small numbers of contours (say N = 1,2

and 3) are removed from the plot, it would be much clear that both the D values derived

from the ruler and box-counting methods are independent of contours elevations. This can

be confirmed by the error bars shown in Fig. 3.8(e) and (f).

Table 3.8. Average D values (Dr, & Dtb) of different contour elevations

Metamorphic
CE
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0.07

/

0.06

0.03

0.04

0.10

/

CE: Contour elevation (m); N: Number of contours being averaged;
Total number of contours: 123; Dr: Fractal dimension derived from the ruler method;
Dlb: Fractal dimension derived from the box-counting method.

In summary, the fractal dimensions (Dr and Dlb) of topographic contours have no

significant correlation with the contour elevations in statistical terms. After analysing the

topographic contours from Sawtooth Mountains of Idaho, USA (the regions are underlain

by granite plutons), Norton and Sorenson (1989) concluded that the contours have D values

ranging from 1.11 to 1.26 as contour elevations vary from 7,400 to 9,800 feet. Turcotte

(1989) also shown that four topographic contours of different contour elevations (1,000;
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3,000; 5,400; and 10,000) from several mountain belts (the Cobblestone Mountain

Transverse ranges, California) have fractal dimensions D = 1.19,1.21,1.21, and 1.15.

Therefore, the previous studies also confirmed that the variation ofD values is independent

upon the contour elevations
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3.8. LITHOLOGICAL COMPARISON

In order to find out more details of the influences of different rock groups on the

fractal dimension, the 123 contours are categorized into two major rock groups - Igneous

(48 contours) and Metamorphic (75 contours), and further seven minor lithological units as

mapped on the ITGE geological maps of the border area of Spain and Portugal as shown in

Table 3.9.

Rock group

Granites

Metamorphic
rocks

Table

Files

G-M2

G22B

GP

Kl

K2

PC2

D1&D2

3.9. Comparison of D-value

Lithological units

Muscovite granite
Mica granite

Porphyritic mica granite
Schist, Slate

Quartzite, schist, Phyllite, hornfels

Biotite schist, Phyllite (Pre. C.)
Quartzite, Phyllite

and rock

Dr

1.24

1.26

1.25

1.21

1.18

1.23

1.19

types

Dlb

1.17

1.23

1.25

1.19

1.17

1.22

1.21

N of contours

3

17

28

18

16

15

26

Table 3.10 shows the results ofthe t-test at 95% confidence level. It indicates that

Dr (or Dlb) values of contours from granite area are significantly different from those of

contours from the metamorphic country rock area at a = 0.05. The contours from within

granite (and metamorphic) groups share the same D-value at a = 0.05 although the rock

type may vary. The exception of the G-M2.Dib vs G22B.Dlb pair may be caused by the

Sample 1 vs Sample 2

G-M2.DrvsG22B.Dr
G-M2.DrvsGP.Dr
G22B.DrvsGP.Dr
Kl.DrvsK2.Dr
Kl.DrvsPC2.Dr

Kl.DrvsDlD2.Dr

K2.DrvsPC2.Dr

K2.DrvsDlD2.Dr

PC2.DrvsDlD2.Dr

Igneous (Dr) vs Meta.

Table 3.10. Results

Ho: ^ = U2

/

/

.oft-test (a = 0.05)

Sample 1 vs Sample 2 Ho: l = 2

G-M2.DlbvsG22B.Dlb x

G-M2.Dlb vs GP.Dlb
G22B.DlbvsGP.Dlb
Kl.DlbvsK2.Dlb

Kl.DlbvsPC2.Dlb V

Kl.DlbvsDlD2.Dlb ^

K2.Dlb vs PC2.Dlb S

K2.Dlb vs DlD2.D,b ^

! PC2.Dlb vs DlD2.Dlb ^

rocks (Dr) x i Igneous (Dlb) vs Meta. rocks (Dlb) x
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Fig. 3.9. The mean plots of D-value against different rock types for the analysis of variance at the confidence

level of 95% (a = 0.05). All the contours are from the 1:50,000 map, and categorized into six rock units and

two major rock groups respectively, (a) and (b) plot the mean Dr and Dlb values derived from contours

grouped on the basis of six rock types, (c) and (d) plot mean of Dr and Dlb values derived from contours

categorized into two rock groups, granite and metamorphic country rocks, (e) is the sum of (c) and (d) This

shows a distinctive difference between the two different rock groups in Dr and Dlb.
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small number of samples from G-M2.

Fig. 3.9 illustrates the error bar plots of the D-value (Dr and Dlb) for the two major
different rock groups and seven rock units at a confidence level of 95% (a = 0.05).

From Tables 3.8, 3.9 and Fig. 3.9, it can be seen that the fractal dimensions of the

contours from the granite area are slightly higher than those from the metamorphic rock

area, and it shows that the topographic contours from granite areas are more rugged than

those from the metamorphic rock areas. This difference is small, but it is statistically

significant. It is not caused by the methods employed, but by the difference ofrock groups.

This difference is resulted from the different fracture joint control patterns, which

inevitably leads to different weathering procedures, in granite and metamorphic rock areas.

In granite areas, the larger scale fracture joints (1 m to 10 m) could form fracture zones of

100 m to 1 km scales and control drainage system of the areas. Thus, different weathering
produces rugged topographic contours and rougher surfaces of the areas. However, the

metamorphic rock in the study areas is dominated by fracture joints of< 1 m scale, and the

rock mass (soil) weathering procedure contributes the formation of smoother topographic
contours and surfaces, like the river meandery system. Norton and Sorenson (1989) also

have shown that small D values derived from contours where accumulation of screen

erosion has smoothed the surfaces, whereas larger D values derived from contours along
aretes terrain.

In summary, the major rock groups have different D values, but the lithological
changes within each major group can not be demonstrated to be significant. Topographic
contours from granite areas are rougher than those from metamorphic rock areas due to

different fracture control patterns and different weathering procedure, and this property is

characterized by D (granite) > D (metamorphic rocks) in the studied areas.
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3.9. CONCLUSIONS

The purpose of this Chapter was to examine how different data sources and fractal

analysis methods influence the fractal dimensions ofmap contours. Based on the fractal

analysis ofthe 132 topographic contours digitized from maps of the border areas between

Spain and Portugal at different scales (1:200,000; 1:50,000; and 1:20,000) by the ruler and

box-counting methods, the following conclusions can be reached.

1. The topographic contours are self-similar fractals in a statistical sense. In the study

areas, the contours have an average fractal dimension ofD = 1.23 (ranges from 1.01 to

1.47, standard deviation = 0.07 over 132 contours) over length scales ranging from 30 m

to 13 km.

2. The lake shore lines and nearby topographic contours from the same scale ofmaps share

roughly the same D-value over fractal limits ranging from about 100 m to 10 km.

3. D values derived from the ruler and the box-counting methods are the same at the 95%

confidential level (a = 0.05), i.e. Dr Dlb or Dlb =Dr 0.15.

4. The D values are not significantly different when measured at different map scales.

5. The lower fractal limit is controlled by the map scale (or map resolution) as well as the

map accuracy. The lower fractal limit of contours from small scales ofmaps is higher
than those from large scales of maps, and indicates that they might be used to quantify
the quality of surveyed map. In other words, the lower the lower fractal limit is, the more

detail the maps preserves of the topographic variance, i.e., the more accurate the map is.

6. The upper fractal limit depends largely upon the length ofthe contour. This is because

the longer contour, under the same conditions ofmap, digitizing, etc., shows fractal

properties in a wider range than the shorter one.

7. The D-value does not significant correlate with the contour elevation over a range scale

about from 300 m to 600 m.

8. The D values oftopographic contours of granites are higher than those ofnearby

metamorphic country rocks. This difference is small, but is statistically significant. D

for the granite is 1.25 0.02, and D for the metamorphic rock is 1.20 0.02. The

difference is caused by the different fracture joint control patterns and different

weathering procedures in granite (larger scale fracture joints, down cutting weathering)
and metamorphic rock (smaller scale fracture joints, rock mass weathering) areas.
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However, the contours ofminor rock units in a major rock group cannot be demonstrated

to have significant variance in fractal dimension.

An overall conclusion from this study is that a consistent, reproducible fractal

dimension can be estimated from a contour of any elevations on any maps providing care is

taken to define fractal limits. Better estimation of fractal dimension arise when analyzed
contour lengths are large. Similar fractal dimensions are obtained from the ruler and box-

counting methods. There is some evidence that contours from different rock types have

different fractal dimensions, therefore the method may have some geological applications.
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CHAPTER 4

FRACTAL ANALYSIS OF COASTAL AND CLIFF PROFILES

4. FRACTAL ANALYSIS OF COASTAL AND CLIFF PROFILES

4.1. INTRODUCTION

Natural profiles can be obtained by intersecting a surface with a horizontal or

vertical plane, they are irregular and contain a variety of shapes on a wide ranges of scales.

They can be compared using the concepts of self-similar and self-affine fractals (refer to

Chapter 1.4). As described in Chapter 3, there is little doubt that the horizontal profiles of

topographic surfaces, topographic contours, are self-similar fractals, because in general the

two coordinates characterized topographic contours are equivalent. The topographic
contours have a fractal dimension D = 1.24 over fractal limits ranging from 30 m to 13 km

(3 orders ofmagnitude). The D value is roughly the same as that of the coast of Britain D =

1.25 (Mandelbrot, 1967), and the same as the Earth's topography (Mandelbrot, 1975; 1983).
In the natural world, vertical profiles also possess characteristics which appear to be

independent of length scales of observation.

There are a number of studies of applying the fractal concept to profiles, either to

describe the earth's topography (Goodchild, 1980; Shelberg, 1983; Mark and Aronson, 1984;

Fox and Hayes, 1985; Goff et. al, 1988; Brown, 1985; 1987; Roy et. al, 1987; Turcotte,

1987; Dubuc et. al, 1989a, b; Gilbert, 1989) or to study the mechanism of crack or fracture

propagation (such as Nolte et. al, 1989; Pickering and Sanderson, 1994; Xie, 1993; Xie and

Sanderson, 1994,1995).
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To investigate the fractal behaviour of topography of southern England, thirteen cliff

profiles were analyzed by three methods (the ruler, the 1-d spectral, and the 1-d structure

function), and their fractal features were determined. These methods have been discussed in

Chapter 2, and each method provides two parameters; one is the fractal dimension D which

describes how the roughness changes with the scale of observation, and the other is the

intercept C which describes the steepness ofthe topography, or the total profile variance

(Power and Tullis, 1991). The average roughness measurement which is characterized by
the root mean square roughness (RMS or Rq) and the centre-line average roughness (CLA or

Rg) [Myers, 1962; Thomas, 1982] are also determined from these profiles.
The aims of the Chapter are

to examine the scaling properties ofhorizontal cliff profiles from the scales of kilometres

(digitized map profiles) down to centimetres (field measured profiles);
to compare the analytical results between the ruler and the 1-d spectral ^and 1-d structure

function) methods;

to discuss the characteristics and scaling properties of rock surfaces produced by the

different erosion processes;

to discuss the spectral distribution patterns as the 1-d spectral and structure function

methods applied to the coastal and cliff profiles; and

to compare the different fractal behaviours of lithology, using the profiles of dolostone
and shale units at the same locality.
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4.2. DATA SOURCES

Two types of data sources, map and field profiles of cliffs, from Dorset area (the
southern coast of England) were acquired for the fractal description ofprofiles. The study
area covers Kimmeridge Bay and Studland Bay and its location is shown in Fig. 4.1. These

areas were chosen because they represent parts of the coastal lines which are bounded by
cliffs with fairy restricted rock units and little incision by river networks.

There are three map profiles which were digitized from 1:10,000 maps, and ten field

profiles which were measured at intervals of 1 m, 0.5 m, 0.1 m and 0.01 m in the field of

Kimmeridge Bay and Studland Bay. The digitizing steps used for the map profiles and the

measuring intervals used in the field are termed the sample interval (s) in the later

discussion. Different sample intervals deployed for these profiles are needed in order to

investigate the variations of the fractal features, including the fractal dimension and the

fractal limits, with changing the measuring scales.

Table 4.1.

i location

Field i Kimmeridge
Bay

Studland

Bay

Studland

Kiimmeridge
Map i Studland

i profile

ikmgl
ikmgm

ikmgs
fkshl
!ksh2
jkdol
ikdo2

istdl

istdm

istds

imlw

imhw

icOOl

Statistical criteria of map

L0(m)
155.1

11.5

2.0

10.0

11.8

10.0

11.8

155.6

11.2

1.0

2130

2755

1078

L0(m)

169.8

14.3

2.9

10.8

14.4

12.0

15.1

165.4

11.7

1.1

3315

4288

1187

s(m)

0.50 (0.48*)
0.10(0.10)
0.01

o.io
n

0.10

0.10

0.10

1.00(0.97)

0.10(0.10)
0.01

2.74

3.59

5.47

and field profiles

avg std

28.77 0.981

1.40 0.078

0.13 0.008

0.71 0.025

0.75 0.026

0.58 0.027

0.63 0.029
r

19.02 0.959

-0.33 0.010

0.04 0.002

3886 12.69

i 5091 15.57

i 3082 2.34

max

54.72

3.22

0.40

1.20

1.32

1.24

1.24

46.30

0.01

0.07

4892

5716

3138

mini

1.21!
0.00!
0.00!
0.22T
0.04!
0.13!
0.04!
1.25T

-0.56!
0.001

3545!
4165 i
30211

lithology

clay, shale

clay, shale

clay, shale

Clay, shale

Clay, shale

Dolostone

Dolostone

chalk

chalk

chalk

??

??

??

0.50 (0.48) m: A profile was measured at 0.5 m intervals in the field for every trend, the value in the brackets
0.48 m is the overall sample interval after the coordinates transformation procedure as discussed later.

In order to quantify the outlines of these cliff profiles, Table 4.1 shows some of the

statistical criteria, such as the curve length (Lo), nominal length (Ln), sampling intervals (s),
maximum (max) and minimum (min) variations ofprofiles etc. Suppose a profile is
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0223'w

N

t
DORSET

stdl, stdm, stds

icOOl

kmgl, kmgm, kmgs

Swanage

^Studland Bay

5038'N

Kimmeridge Bay

THE ENGLISH CHANNEL 0200'w

Fig. 4.1. Location of the study area of south coast of England, where the field and map profiles were

obtained.

recorded as a series ofN numbers ofpaired coordinates [Xj, yj, where i =1,2,..., N, then

the nominal length (Ln) and the curve length (Lo) of a profile are defined as,

JV-l

1
i=1

4.2.1. Map profiles

Two coast lines and one topographic contour along the cliff from the 1:10,000 maps
ofKimmeridge Bay and Studland Bay were digitized. The digitizing procedure is the same

as that described in Chapter 2.2. These digitized profiles are mean low water (mlw), mean

high water (mhw) shore lines, and a contour (cOOl) profile of an elevation of 25 m. These

map profiles were chosen in such a way that they possess no overhangs along their trends,

therefore, they can be regarded as sub-horizontal profiles (special contours). Fig. 4.2 shows

these three digitized map profiles.

4.2.2. Field profiles

Ten sub-horizontal profiles of cliffs at Studland Bay and Kimmeridge Bay were
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Three profiles digitized from maps (1:10,000) of Dorset

Fig. 4.2. Three map profiles digitized from 1:10,000 maps of Dorset (south coast of England). Refer to Fig.
4.1 for their precise locations. File names ofmlw and mhw stand for the mean low and mean high water shore

lines; and cOOl the topographic contour of an elevation of 25 m along the cliff. The trend of the curve is

marked by the solid line crossing over the curve.

acquired by measuring the cliff variations (y = g(x)) from the general trend (x) ofthe cliff at

different sample intervals as shown in Table 4.1. Three of the profiles are from the

Studland Bay, and recorded as stdl, stdm, and stds. Seven ofthem are from the Kimmeridge
Bay, and first three letters ofthe profile names were recorded as kmg. Among these seven

profiles, two pairs were measured at an intervals of 0.1 m in both dolostone and shale. For

each pair, the Kimmeridge dolostone layer lies on top of the shale layer, and has the same

nominal length (Ln), i.e., kdol and kdo2 lie on the top ofkshl and ksh2 respectively. This

allows comparison of fractal features with changing the lithological units at the same

locality observational scale.

The principle ofthe measurement procedure made in the field is illustrated in Fig.
4.3. A stretched tape of a length 30 m was laid on ground as the base line for reference.

Suppose the selected curve line as shown in Fig. 4.3(a) was longer than the stretched tape

(30 m), then the curve needs to be measured by using two baselines (AB and BQ to record

the cliff variations. The measurement made on the baseline BC is the repetition ofthat
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y

A

cliff variation (profile)

cliff variation (profile)

-? x

Fig. 4.3. Illustrations of the procedure for measuring a profile in the field. The figure also shows principles
of the coordinates transformation (refer to the text for more details), (a) shows a measured cliff profile is

longer than 30 m. (b) illustrates the principles of the measurement made in the field and the principles of the

coordinate transformation.

made on the baseline AB, thus the circled part of the bottom-left of Fig. 4.3(a) is magnified
to demonstrate the principles of the measurement made on the base line AB as shown in Fig.

4.3(b). Firstly, the stretched tape (30 m long) was laid on the ground as a reference line

(AB), which parallels to the general trend of the cliff portion, and the orientation of the

baseline a was recorded. Then the orthogonal distances (k) between the stretched tape and
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60
Field profiles from the Kimmeridge Bay Field profiles from Studland Bay

-20

ktngl

40 80

x(m)
120 160

(a) (d)
40 80 120 160

. 180

x(m)

-2

0.6

kmgm

j. 0

I
-3

stdm I

4 8

x(m)
12

(b)
0 2 4 6 8 10 12

(e) x (m)

kmgs
0.3

0 0.2 0.4 0.6 0.8 1

stds

Fig. 4.4. Six field profiles obtained from the Kimmeridge Bay and Studland Bay. The coordinates of more

than two trends used to measure the profiles in the field have been transformed. Their precise location was

shown in Fig. 4.1, and their statistical criteria were listed in Table 4.1. The trend of the curve is marked by the

solid line crossing over the curve, (a), (b), and (c) are three field profiles measured at intervals of 0.5 m, 0.1

m, and 0.01 m in Kimmeridge bay. (d), (e), and (f) are three field profiles measured at intervals of 1.0 m, 0.1

m, and 0.01 m in Studland bay.

the cliffwere measured for a given sampling interval (1). Thus, the cliff variations were

recorded as a series of records (ixl, k) made along the base line AB, where i 1,2,..., n.

The same measurement procedure could be carried out in the same way for the second base

line BC, and so on, until a satisfactory observation scale ofthe cliffwas reached.

If a cliff length is shorter than the length of a single baseline (i.e., < 30 m), then the

series ofrecorded data (ixl, k) could be directly used to present the variation of the cliff,
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Field profiles from Kimmeridge Bay, sh = shale layer; do = dolostone layer

Fig. 4.5. Four field profiles of different lithology measured in Kimmeridge Bay. The trend of the curve is

marked by the solid line crossing over the curve, (a) and (c) were measured field profiles of shale (kshl and

ksh2), and (b) and (d) were measured field profiles of dolostone (kdol, and kdo2) at a measuring interval of

0.1 m. The shapes of dolostone profiles are more irregular than the shale profiles. This is because they
possess different weathering procedures, i.e., the dolostone profiles are the results of fracture controlled

weathering, whereas the shale profiles are more related with the wave weathering procedure.

and renamed as (x, y). However, in order to obtain a longer profile (>30 m), the cliff curve

was measured using two or more baselines (Fig. 4.3a). This also avoids the difficulties of

measuring long distance between the tape and cliff. It is obvious that the data sets collected

in this way would have different orientations for different baselines, and the data sets are

required to be transformed to a common orientation (i.e., they should have a single
coordinate system, say (x, y) in Fig. 4.3a. Supposed that the coordinates ofthe start point of

each baseline are assigned to be (x0, y0), then (x0, y0) is assigned to be (0,0) for the first

baseline AB. For the second and subsequent trends, the coordinates ofthe last point (xTp,
yTp) ofthe previous baseline are added to new transformed position (Fig. 4.3a). This

procedure is called the coordinate transform which can be, generally, given by,
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xi = xTp + ü sin(a) - k( cos(a)

y{ = yTp + /7cos(a) + kt sin(a)

where (xi5 yj) is the transformed coordinates, ix/ and kt are the original measurements of the

cliff variation, a is the orientation of the baseline.

The procedure of the coordinate transformation inevitably led a sample of the profile
at unequally subdivided value of x. Therefore, the profiles were resampled at equal
intervals to meet the theoretical backgrounds of some fractal analysis methods, such as the

spectral method (see Section 4.3.2).

Various intervals of/ = 1 m, 0.5 m, 0.1 m, and 0.01 m were deployed for the

measurements carried out in the areas of Studland Bay and Kimmeridge Bay. Fig. 4.4

shows six of the field profiles obtained from the Kimmeridge Bay and Studland Bay, the

coordinates of the profiles measured by two or more trends were transformed. In Fig. 4.4

the profiles at Kimmeridge Bay (kmgl, kmgm, and kmgs) were measured at intervals of 0.5

m, 0.1 m, and 0.01 m respectively, whereas the field profiles at Studland Bay (stdl, stdm,
and stds) were measured at intervals of 1.0 m, 0.1 m, and 0.01 m, respectively.

Fig. 4.5 shows two pairs of field profiles, which were measured by a single baseline,
of different lithology (shale and dolostone) measured in Kimmeridge Bay at a measuring
interval of 0.1 m. One pair ofprofiles are kshl and kdol, which have the same nominal

length of 10 m. The other pair is ksh2 and kdo2 which have a nominal length of 11.80 m.

The shapes of the dolostone profiles are more irregular than the shale profiles (see Section

4.6).
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4.3. METHODOLOGY

The ruler, 1-d spectral, 1-d structure function, and the average measurement for the

roughness ofprofiles, were used for the description and comparison of the scaling
behaviours of the profiles mentioned in Section 4.2. The principles of the first three

methods have already been discussed in Chapter 2, and only a brief outline is given here,

whereas the average measures ofroughness ofprofiles [the root mean square (RMS or Rq)
and the centre-line average deviation (CLA or RJ] are more fully discussed in this section.

4.3.1. The ruler method

The ruler method, as described in Chapter 1.3, reveals the power-law relationship
between either the number of rulers (Nr) or the length of the curve (Lr) as a ruler length r is

used measure the curve. The variation ofNr (or Lr) with r is characterized by the fractal

dimension Dr;

Nr=Cr~Dlb

(4.1)

Lr=Crl~D'b

where C is the intercept which is a constant ofproportionality. It has been commonly

accepted that the higher the D-value, the rougher the curve is.

Fig. 4.6 shows the log-log plots ofthe profile length Lr against ruler length r as the

ruler method was applied on the 13 profiles. The determination of the fractal dimensions of

the profiles depends very much on the fractal limits chosen. Therefore, some care needs to

be taken during fitting the regression line. The upper fractal limit (rrU) was chosen to be half

of the nominal length of the profile i.e., rrU = Ln/2. The lower fractal limit (rrL) was taken as

twice the sampling interval, i.e., rrL = 2s. The sampling interval, s was the average sampling
interval value of a profile. Table 4.2 summarizes the results for the ruler method applied to

the 13 cliff profiles. The estimate errors in the fractal dimension D and the intercept C were

derived based on equation 2.1 as described in Chapter 2.2. Here, ADr = Aß and ACr = AC.

From Table 4.2, as well as Fig. 4.6, the fractal dimensions derived by the ruler
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The ruler method is applied on the map and field map profiles
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Fig. 4.6. Log-log plots of the ruler method applied on the 13 cliff profiles from the Kimmeridge and Studland

Bays, where Lr is the length ofthe profile as it was measured by a ruler r. Therefore Dr = 1 + ß, where ß is the

slope of the regression line. They are plots (a) of one map mean high water shore line (mhw) and three field

profiles (kmgl, kmgm, kmgs) sampled at 0.5 m, 0.1 m, and 0.01 m from Kimmeridge Bay; (b) of two map

profiles (mlw and cOO1) and three field profiles (stdl, stdm, stds) sampled at 1.0 m, 0.1 m, and 0.01 m from

Studland Bay; (c) & (d) of two paired profiles of different lithology from Kimmeridge Bay (kshl vs kdol,
ksh2 vs kdo2) at a sample interval of 0.10 m.

method range from 1.01 to 1.09 (the average Dr = 1.03, and the standard deviation = 0.02),
and are independent of the length (Lo) or the nominal length (Ln) of the profile, whereas the

intercept Cr is dependent on Lo or Ln (the longer Lo or Ln is, the greater Cr is). The right¬
most column ofTable 4.2 shows the values of 10Cr, which lie between the nominal length

Ln and the curve length Lo.
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Table 4.2. The fractal features of the cliff profiles
derived from the ruler method.

i Profiles

Field i kmgl

ikmgm

ikmgs
ikshl
iksh2

ikdol

!kdo2
istdl

istdm

istds

Map i mlw

imhw

icOOl

i Total

L(m)

155.1

11.5

2.0

10.0

11.8

10.0

11.8

155.6

11.2

1.0

2130

2755

1078

Lo(m)

169.8

14.3

2.9

10.8

14.4

12.0

15.1

165.4

11.7

1.1

3315

4288

1187

s(m)j
0.48!

0.10!

0.01!

0.10!

0.10!

0.10!

0.10!

0.97 J
0.10!

0.01 J
2.74 J
3.59 J
5.47 J

DrADr

1.01 0.01

1.03 0.01

1.09 0.02

1.01 0.01

1.05 0.02

1.04 0.02

1.07 0.02

1.01 0.01

1.01 0.01

1.02 0.01

1.03 0.01

1.04 0.02

1.02 0.01

1.03 0.02

Cr ACr

2.22 0.01

1.09 0.01

0.32 0.02

1.0110.01

1.11 0.01

1.03 0.01

1.12 0.01

2.21 0.01

1.05 0.01

-0.01 0.01

3.53 0.02

3.68 0.02

3.08 + 0.01

10Cr

166.0

12.3

2.1

10.2

12.9

10.7

13.2

162.2

11.2

1.0

3388

4786

1202

Ln: Nominal length of a profile (m); Lo: profile length (m); 1.03 0.02: stands for the average value and its
standard deviation; s: Sampling intervals; Dr & Cr: Fractal dimension and intercept derived from the ruler
method.

4.3.2. 1-d spectral method

As mentioned in Section 4.2.1, three map cliff profiles have been carefully selected,
and they have no overhangs. To satisfy the underlying theory of the 1-d fast Fourier

10transform (FFT), the unequal-interval profile was resampled linearly at 2 equal-intervals in

,10the study. Thus the resampled profile has a sampling interval of Ln / (2 -1), and Ln = xN -

X!. Based on the results drawn in Chapter 2.5.4, a profile recorded as [xi5 yj = g(Xj)], where i

= 1,2,..., N, needs to be weighted by Harming window which is given by,

i-l

N-h

Therefore, the Harming window weighted profile becomes [xi5 ys Wh(i) = g(Xj) Wh(i)]. As

discussed in Chapter 2.4.1, the power spectral density F(X) of a profile has a power law
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The 1-d spectal method is applied on the field and map profiles
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Fig. 4.7. Log-log plots of the 1-d spectral method applied on the 10 field and 3 map profiles. These are the

power spectral density P(Ä.) against wavelength X (a) of three field profiles from Kimmeridge Bay (kmgl,

kmgm, and kmgs) sampled at 0.5 m, 0.1 m, and 0.01 m; (b) for three field profiles from Studland Bay (stdl,
stdm, and stds) sampled at 1.0 m, 0.1 m, and 0.01 m); (c) and (d) for two paired field profiles of different

lithology from Kimmeridge Bay (kshl vs kdol and ksh2 vs kdo2) at a sample interval of 0.10 m; (e) is of

three map profiles digitized from 1:10,000 maps of southern coast of England.
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dependence on wavelength (X) ofthe form,

p(x)=clfx

where ß is the slope of the fitted line ofthe log-log plot ofP(A,) against X, and X = 1/f.

The fractal dimension of a profile is determined by (Mandelbrot, 1986; Voss, 1985a, b,

1988; Berry and Lewis, 1980),

(4-4)

The physical meaning of Clf is a simply scaling factor for roughness. Its value does not

necessarily correspond to any particular feature of the profile, but depends on the amplitude
of the profile (say at wavelength of X = 1).

Fig. 4.7 is the log-log plot ofpower spectral density P(A,) against the wavelength (X)
for the 13 cliff profiles. The fractal dimensions ofthese profiles vary from 1.05 to 1.33, and

have an overall average D = 1.15 0.07 over fractal limits between twice the sampling
interval (2s) and half of the nominal length. These fractal features (including Dlf, Clf)
determined by using the 1-d spectral method for the 13 profiles are listed in Table 4.3. In

Table 4.3, ADr = Aß and ACr = AC, and Aß and AC are determined by equation (2.1).
There is no clear dependence of the fractal dimensions Dlf and the intercept value

Cif on the nominal length ofthe profiles (Ln) or the different measuring intervals as shown

in Fig. 4.7(a) and (b).

Fig. 4.7(a) is the overlaid log-log plots of the power spectral density P(A-) against the

wavelength (X) of three field profiles (kmgl, kmgm, and kmgs) from Kimmeridge Bay,
which were sampled at different intervals of 0.5 m (kmgl), 0.1 m (kmgm), and 0.01 m

(kmgs). Their spectral distribution shows a distinguished pattern of constant fit over a

wavelength of X = 2 cm to X = 100 m. The overall average slope of the spectra over this

range is roughly ß = 2.8, hence Dl{ = 1.1 and Log(Clf) = -1.2.

For the series ofprofiles obtained in Studland Bay (stdl, stdm, and stds) which were

sampled at 1.0 m, 0.1 m; and 0.01 m, similar spectral distribution pattern could also be
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found as shown in Fig. 4.7(b). There is a general agreement in their power spectral density,
which has an average slope of ß = 2.7, and therefore an overall Dlf = 1.15 and Log(Clf) = -

1.1 with an overlap ranges between 2 cm and 100 m.

Table 4.3. The fractal features of the cliff profiles
derived from the spectral method.

i Profiles

Field i kmgl

ikmgm

ikmgs
Ikshl
!ksh2
ikdol
!kdo2
istdl

istdm

istds

Map i mlw

imhw

icOOl
i Total

L0(m)

155.1

11.5

2.0

10.0

11.8

10.0

11.8

155.6

11.2

1.0

2130

2755

1078

L0(m)

169.8

14.3

2.9

10.8

14.4

12.0

15.1

165.4

11.7

1.1

3315

4288

1187

s(m)

0.48

0.10

0.01

0.10

0.10

0.10

0.10

0.97

0.10

0.01

2.74

3.59

5.47

Sr(m)

0.151

0.011

0.002

0.010

0.012

0.010

0.012

0.152

0.011

0.001

2.080

2.690

1.053

Dlf+ADlf

1.1010.15

1.1510.19

1.1410.08

1.0510.18

1.1310.10

1.1210.08

1.3310.12

1.1310.34

1.2210.21

1.14 + 0.21

1.1810.07

1.1810.07

1.0710.11

1.1510.07

Clfl AClf

-1.3710.30

-0.6110.15

-0.6310.21

-0.7010.17

-0.65 10.08

-0.33 10.08

-0.27 10.09

-0.88 10.94

-1.47 + 0.18

-1.04 + 0.37

0.25 10.23

1.6710.30

-0.4410.36

Ln: Nominal length of a profile (m); Lo: profile length (m); 1.15 + 0.07: stands for the average value and its
standard deviation; s: Sampling intervals; sr: resampling intervals for FFT; Djf& Clf: Fractal dimension and
intercept derived from the spectral method.

This fitness ofpower spectral density ofprofiles, of different sample intervals,

against wavelength in the log-log plot (Fig. 4.7a and b) with an exponent ß near to 3. Some

studies (Brown, 1987; Power and TuUis, 1991; Weissei et. al, 1994; Malinverno, 1995)
have concluded that the power spectra from self-similar fractals have slopes of ß = 3 on log-

log plots ofpower spectral density against spatial frequency, while spectra from self-affine

fractals have slopes of ß other than 3. This is because for exponent of ß = 3, we have the
TT

parameter H = 1, and hence D = 1.0. It shows that a rescaled part by a constant factor r (r
= r1 = r) in both horizontal and vertical coordinates is similar to the original. It is self-

similarity. In this study, the field and map profiles have an average fractal dimension ofD

= 1.15 as determined by the spectral method. Their exponent ß is reasonably close to 3.0,

thus they can be concluded as self-similar profiles although self-affinity may exist.
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4.3.3. 1-d structure function method

As described in Chapter 2.6, the first and second orders structure functions lead to

the very same results for the simulated 1-d ffim profiles of different H values. Therefore,

the fractal dimensions of the profiles will be determined by constructing their 1st order

structure functions, i.e., their absolute mean relief M(h) against the lag h. The original

profile is also weighted by Harming window described in Section 4.3.2. The absolute mean

relief of a profile [M(h)] ofthe lag h is given by,

M(ti) = y\e(xl+K)-tr(x,i oc h" = h2-D

where Nj, is the number of the paired data points which have a spatial distance ofh. The

power-law relationship between M(h) and the lag [h] leads to the determination ofthe

fractal dimension (Du) of a profile, which is given by,

(4.5)

where ß is the slope of the fitted line on the log-log plot of the mean reliefM(h) against h

over the fractal limits. The estimating errors ADJS and ACls are equal to Aß and AC which

are determined by equation (2.1).

Unlike the simulated 1-d fBm profiles, those field profiles measured by using two or

more trends in the field after the coordinates transformation (kmgl, kmgm, stdl, and stdm)
and three map profiles (mlw, mhw, and cOOl) are not equally sampled. Therefore, the lag h

for these profiles are assigned values. The assignation ofthe lag h is give by,

h =

where s is the average sampling intervals of the profile, [xu x2) means X! < X < x2. If the
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The 1st order structure function of the field and map profiles (q = 1)
2 , , ; , 2

a,kmgl, D = 1.08, = -0.36

b, kmgm,

-3

a, stdl, D = 1.10, C = -0.71

b, stdm, D - 1.21, C - -1.16

e.stds, D - 1.16, <*- -1.04

Log(h) 2 (a) (b) -2

-2

a, ksb.1,1
b, kdol,1

D - 1.08, C - -0.76

D - 1.19, C - -0.66

OX)

,3

-2
-1 Log(r) i (C) (d) -i

Bf)

3

a, mlw, D - 1.13, C - 0.85

b, mhw, D = 1.13, C = 0.88

c, cOOl, D = 1.10, C:=

Log(h) (e)

Log(h)

a, ksh2, i D - 1.15, C - -0.76

b, kdo2,' D - 1.36, C - -0.77

Log(h) l

Fig. 4.8. Log-log plots of the first order structure function method applied on the 10 field and 3 map profiles.
These plots the mean relief log[M(h)] against the lag log[h] of (a) three field profiles from Kimmeridge Bay

(kmgl, kmgm, and kmgs) sampled at 0.5 m, 0.1 m, and 0.01 m; (b) three field profiles from Studland Bay

(stdl, stdm, and stds) sampled at 1.0 m, 0.1 m, and 0.01 m; (c) and (d) two paired field profiles of different

lithology from Kimmeridge Bay (kshl vs kdol and ksh2 vs kdo2) at a sample interval of 0.10 m; (e) is of

three map profiles digitized from 1:10,000 maps of Dorset.
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profile after the coordinate transformation is recorded as [xi5 g(Xj), i = 1,2,..., N] and has an

average sampling interval of s, then for a paired data points of [xi5 g(Xj)] and [xj5 g(Xj)], its

lag (Xj - Xj) is assigned as h if (h - s/2 < Xj - Xj < h + s/2). The procedure of lag assignation is

omitted for those equally sampled field profiles (kmgs, stds, kshl, ksh2, kdol, and kdo2).

Therefore, the relief of the profile for different lag h, such as h = s, 2h = 2s, and 3h = 3 s, is

calculated.

Fig. 4.8 is the log-log plots of the mean relief M(h) against the lag h for 13 cliff

profiles of southern England. The range of the lag h (fractal limits) is, in most cases, chosen

to be between the twice ofthe average sampling interval (rlsL - 2s) and a quarter of the

nominal length ofthe profile Ln (rlsU = Ln/4). The fractal features (the fractal dimension Dls
and the intercept Cls) are given in Table 4.4.

Table 4.4. The fractal features of cliff profiles
derived from the first order structure function (q = 1).

i Profiles

Field ! kmgl

ikmgm

ikmgs
Ikshl
!ksh2
!kdol
!kdo2
istdl

istdm

istds

Map i mlw

imhw

!c001
i Total

Ln(m)

155.1

11.5

2.0

10.0

11.8

10.0

11.8

155.6

11.2

1.0

2130

2755

1078

Lo(m)

169.8

14.3

2.9

10.8

14.4

12.0

15.1

165.4

11.7

1.1

'3315

4288

1187

s(m)i
0.48 j

o.ioj
0.01!

o.ioj
0.101
o.ioj

o.ioj
0.97!

0.10 J
0.011
2.74 J
3.59 j
5.47 J

DlsADls

1.08 0.01

1.15 0.01

1.12 0.01

1.08 0.01

1.15 0.01

1.19 0.03

1.36 0.03

1.10 0.01

1.21 0.01

1.16 0.02

1.13 0.01

1.13 0.01

1.10 + 0.01

1.15 0.07

Cls ACls

-0.36 0.01

-0.63 0.01

-0.70 0.01

-0.76 0.01

-0.76 0.01

-0.66 0.01

-0.77 0.01

-0.71 0.01

-1.160.01

-1.04 0.03

0.85 0.01

0.88 0.01

0.99 0.02

Ln: Nominal length of a profile (m); Lo: profile length (m); 1.15 0.07: stands for the average value and its
standard deviation; s: Sampling intervals; D,s & Cls: Fractal dimension and intercept derived from the
spectral method.

Table 4.4 reveals that the D-value ofthe 13 cliff profiles is between the range of

1.08 and 1.36 with an overall average ofDls = 1.15 0.07. The fractal dimension and the

intercept have no systematic relationships with the nominal lengths (Ln).

Fig. 4.8(a) is the log-log plot of the 1st order structure function M(h) against the lag h
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ofthe three field profiles kmgl, kmgm, kmgs, which have different sample intervals of

approximately 0.5 m, 0.1 m, and 0.01 m respectively. Three field profile (stdl, stdm, and

stds) obtained in Studland Bay, which were sampled at 1.0 m, 0.1 m, and 0.01m

respectively, have similar distribution pattern of their mean relief M(h) against the lag h in

the log-log plot (Fig. 4.8b).

4.3.4. The average measurement method

If the surface roughness is considered to be the variability ofheights (or depths), the

variation in height may be used to describe the roughness of a surface. Perhaps the most

widely used average roughness parameters are the root mean square deviation RMS (or"
and the centre-line average deviation CLA (or RJ. They may be mathematically defined

(Ward, 1982) as,

2 dx (4.6)

and

CLA(Ra)=- [\z\dx (4.7)

where L is the nominal length of a profile (i.e., the profile span along the horizontal or x-

coordinate). For a practical (or discrete) profile, equations (4.6) and (4.7) could be given by,

RMS

and

CLA(R>jjt\z>\> 8l ^
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where N is the number of measures made ofthe profile, and z is the orthogonal distance

measured between the mean line and the profile. The mean line is defined as the line such

that the area above the line is equal to the area below the line for a profile.

Table 4.5. The root mean square (R,,)
map and field profiles derived from

and centre-line average (Rj,) values of
the average measures of roughness.

i Profiles

Field i kmgl
ikmgm

ikmgs
!kshl
!ksh2
!kdol
ikdo2

istdl

istdm

istds

Map i cOOl

imlw

imhw

! Total

Ln(m)

155.1

11.5

2.0

10.0

11.8

10.0

11.8

155.6

11.2

1.0

2130

2755

1078

L0(m)

169.8

14.3

2.9

10.8

14.4

12.0

15.1

165.4

11.7

1.1

3315

4288

1187

s(m)i

0.477!
0.095!
O.Olo!
O.lOo!
O.lOo!
O.lOo!
0.1001

0.968!
0.098!
O.Olo!
5.470T"
2.740!
3.590!

1
1

r<,
1.686

0.331

0.105

0.178

0.287

0.247

0.324

1.564

0.174

0.213

236.91

281.76

15.32

Ra

1.422

0.283

0.086

0.123

0.232

0.195

0.262

1.168

0.16

0.213

162.47

187.89

12.123

Rq/Ra 1 RC

1.185J
1.171!
1.213!
1.116!
1.178!
1.251!
1.1671

I.340!
1.088!
l.OOl!
1.458r
I.500!
1.264!

1.23 0.141

l' = Rq/Ln
0.011

0.029

0.053

0.018

0.024

0.025

0.027

0.010

0.016

0.213

0.111

0.102

0.014

Dr

1.01

1.03

1.09

1.01

1.05

1.04

1.07

1.01

1.01

1.02

1.03

1.04

1.02

Ln: Nominal length of a profile(m); s: sample interval (m); 1.23 0.14: stands for the average value and its
standard deviation; R^RMS): Root mean square; R,(CLA): Centre-line average.

For a symmetrical Gaussian distribution, relationship o

(Sayles, 1982),

and IL, is given by

rms(r)
CLA(Ra) (4.8)

The ratios of Rq/Ra from the map and field profiles vary between 1.17 and 1.45, with an

average value close to 1.25 expected from a symmetrical Gaussian surface (Table 4.5).

Based on Table 4.5, the root mean square Rq and the centre line average R values of

the 13 profiles being considered are plotted versus the nominal length (Ln) in a log-log scale

as shown in Fig. 4.9. The regression lines of a slope of about 1 indicate that Rq and R^ are
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Root mean square (Rq)
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log(Rq)= 0.98*log(Ln)-1.48

1000

100

10
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0.01

log(Ra)= 0.95*log(L)-1.53
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Fig. 4.9. Log-log plots of the root mean square (R,) and centre line average R^ against the nominal length
(LJ of field and map profiles. They show that both R,, and R^ increases as Ln increases, they are totally

positively correlated, hence failed to describe the profiles roughness-

very much positively correlated with the nominal length of the profile (Ln). In other words,

both Rq and Ra failed to describe the roughness ofthe profiles.

The dependence ofRq or (RJ on Ln (or Lo) is very similar, therefore the pair of r<,
and Ln is taken as an example. To remove the effects of Ln on Rq, we provide a new

parameter Rq' = R/Ln, which is more effective, to describe the profile roughness based on

the study of these 13 profiles. The coincidence between the new roughness descriptor Rq'
and the fractal dimension Dr determined by the ruler method, as shown in the most right
column of Table 4.5, indicates that Rq' is a successful parameter to describe the roughness
of the 13 cliff profiles.
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4.4. COMPARISON OF THE METHODOLOGY

In this section, the fractal features (including the fractal dimensions and the intercept

C) derived from the ruler, 1-d spectral, and first order structure function methods are

compared, and the discussion of the fractal behaviours ofthe field and map profiles is

followed.

4.4.1. Fractal behaviours from different methods

4.4.1.1. Fractal dimensions derived from different methods

The fractal dimension D is scale-invariant and describes how the roughness of a

profile varies with length scale. Fig. 4.10(a) and (b) are the linear-log plots of the fractal

dimensions D, which are determined by the ruler (Dr), 1-d spectral (Dlf), and 1st order

structure function (Dls) methods, against the nominal length (Ln) and the sample intervals

(s) ofthe 13 cliff profiles described in this Chapter. The log scale for Ln (or s) deployed
here is not only for the purpose of revealing any kind ofpossible power-law relationship,
but also to allow the comparison of the D values over a wider range scales. The two liner-

log plots clearly indicate the determined D values are independent on observation scales.

To compare the D values derived from the ruler, spectral, and structure function

methods, their error bars have been plotted in Fig. 4.10(c) at a confidence level of 95%.

Fig. 4.10(d) is the error bar plots of three types ofD values (Dr, Dlf, and Dls) at a confidence

level of95% as the field and map profiles were separated.

Table

Mean

Variance

df(degree

4.6. Paired

of freedom)
111 (statistical value)

tc (critical two-tail value)

comparison

Dr
1.03

0.001

12

6.55

2.18

t-testofD

Dlf
1.15

0.005

values

Dr
!l.03
io.ooi

(Dr,

12

6.34

2.18

Dlf,Dt

DIs

1.15

0.005

s) of the 13

il.l5

cliff profiles.

Da
1.15

10.005 0.005

12

0.16

2.18

df: The degree of freedom (the number of the profiles is 13) in the analysis; 111: calculated statistical t

value; t Critical two-tail: the theoretical t value at a confidential level of95% (a = 0.05).

Table 4.6 is the results of the paired comparison t-test (2-tails) at a 95% confidence
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Fig. 4.10. Comparison of the fractal dimensions determined by different methods. The ruler, 1-d spectral,
and 1st order structure function methods, which are represented by the subscripts r, lf, and ls. (a) and (b) are

linear-log plots of the fractal dimensions (Dr, Dl{, and Dis), which are presented by the solid, shaded, and

empty circles respectively, against the nominal length of profiles (LJ and the sample intervals (s) for the 13

field and map profiles. They indicate that the fractal dimensions determined by the three methods have no

systematic relationships with the observation scales, (c) error bars plot of the three types of D values at a

confidence level of 95% (i.e., a = 0.05) for the field and map profiles. It shows that D values determined by
the ruler method is statistically significant difference from the spectral (and structure function) methods, (d)
error bars plot of the fractal dimensions for the 10 field profiles, as well as for the 3 map profiles, for the

application of the three different methods. There seems to be no statistically significant difference in D-values

between the field and map profiles.

level (i.e. a = 0.05). 111 is the calculated value, and t is the critical t value of the inverse of
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the student's t-distribution (2-tails) for a degree of freedom of 12 at a confidential level of

95%, here tc = 2.18 as df= 12 (degree of freedom) at a = 0.05. As 111 > tc, the paired t-test

comparison indicates there is significant difference between two samples at a confidential

level of 95%. Therefore, it is clear that there is a significant difference between Dr and Dlf,
and between Dr and Dis, whereas no significant difference between Dlf and Dls.

As shown in Fig. 4.10 and Table 4.6, the fractal dimension of the cliff profiles
determined by the ruler method (Dr) are significantly different from the fractal dimensions

of the cliff profiles determined by the spectral and structure function methods (Dlf and Dls),

whereas, the spectral and structure function methods yield no significant difference between

the determined D values (Dlf and Dls) at a confidential level of 95%.

Fundamentally, there is no reason why the fractal dimensions determined by the

different methods should be the same (Turcotte, 1991). Indeed, as a profile is analyzed by
the same types ofmethods, such as the ruler and box-counting methods, it should yield the

same D values. It must be made clear that the ruler method dimension is different from the

spectral dimension. They characterize different scaling properties of a profile. The ruler

dimension is a roughness descriptor, which characterizes the "filling capacity" of a profile,

however, the spectral dimension is measuring the variation ofthe power spectra at different

wavelength (or frequency), i.e., the variance of the profile.

4.4.1.2. Intercepts derived from different methods

To reveal the relationship between the intercept C and the profile length, the

intercepts of the ten field and three map profiles determined by the ruler (Cr), 1-d spectral

(Clf), and 1-d 1st order structure function (Cls) methods are plotted against the profile length

(Lo) and against the nominal length of the profiles (Ln) at log-log scale as shown in Fig.
4.11. The plotting results ofthese three methods are symbolised by the solid, shaded, and

empty circles, and their regression lines (least squared method) by the straight, dashed, and

dotted lines, ß is the slope of the regression line, and the subscripts r, lf, and ls are used to

distinguish the results derived from the three methods.

It is obvious that the dependence of the intercept C on the profile length (Lo) is

roughly the same as that on the nominal length of the profiles (Ln). Therefore, Fig. 4.11(b)
is taken as an example for further discussion. As shown in Fig. 4.11(b), the intercepts Cr

has a power-law relationship with the nominal length of a profile (Ln). The power-law
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Fig. 4.11. The power-law dependence of the intercepts C derived from the ruler, 1-d spectral, and 1st order

structure function methods on the profile length (Lo) and the nominal length of the profile (LJ. The

subscripts r, lf, and ,, are used to characterized the intercepts derived from the ruler, 1-d spectral, and 1st order

structure function methods, and are symbolised by solid, shaded, and empty circles respectively, ß is the

slope of the linear regression line for the plotted points, (a) log-log plot of the intercept (Cr Clf, and Cls)
against Lo for all 13 profiles, (b) log-log plot of the intercept (Cr Clf, and Cls) against Ln of the 13 profiles.

relationship can be given Cr = 1.05 Log(Ln) - 0.03 (R2 = 0.998). However, Clf derived from

the 1-d spectral method is less dependent on Ln, in the form of C!f = 0.41 Log(Ln) -1.15 (R
= 0.34). It shows a poor correlation between Clf and Ln, i.e., it maybe said Clf has no

systematic relationship with Ln. The dependence of Cis on Ln lies between them, i.e., Cls =

0.60 Log(Ln) -1.32 (R2 = 0.79).

In summary, the intercept determined by the ruler method depends very much on the

length of the profile. Physically, it shows the length of a profile as the profile is measured

by a unit length. The intercept determined by the spectral method is independent on the

length of the profile, it characterizes amplitude of the profile at a wavelength X = 1. The

intercept determined by the structure function method lies between two cases, it is the mean

relief (or semivariance for the 2nd or structure function method) at a unit lag of the profile.

4.4.2. Discussions

There are two types ofmethods to determine the fractal dimension of a profile, one

is the ruler and box-counting methods, and the other is the spectral and the qth order
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structure function methods. These two methods deal with different types ofpower-law

relationships. The former reveals the changing degree ofthe power-law dependence of the

curve length (Lr) on the ruler length (r) used to measure the curve, and the later reveals the

changing degree ofthe power-law relationship among the spatial energy T?(k) for a certain

wavelength X,. Both types ofmethods produce two parameters to describe the scaling

behaviours of a profile, an amplitude (intercept) C and a fractal dimension D which is

determined by the scaling exponent ß. Generally speaking, the amplitude parameter C

characterizes the amplitude ofthe profile roughness (usually at a unit length scale) and the

fractal dimension (determined by the scaling exponent ß) describes how the roughness

varies with scales. This is true for the second type ofmethod, but might be not the case for

the first type of method. For example, the vertical scale variation of a profile (or surface)

produces no change in D values for the spectral and structure function methods since the

zeroset of the profile (or surface) do not change (refer to Chapter 2.7 for more details).

However, for the ruler and ruler method, it is clear that the amplitude parameter C greatly

depends on the profile length (Lo) or the nominal length (Ln) of the profile.
It has been accepted that some special cares should be taken when applying the ruler

method to self-affine fractals; or applying the spectral method to self-similar fractals

(Mandelbrot, 1985; Wong, 1987; Brown, 1987; Fox, 1989; Hough, 1989; Power and Tullis,

1991; Malinverno, 1995). For example, the ruler method has been widely applied to self-

affine fractals (Aviels et. al, 1987; Okubo and Aki, 1987; Carr and Warriner, 1987; Turk et.

al, 1987). Some oftheir reported fractal dimensions are very low (close to 1). This can be

explained by either the concept of the crossover length or the profiles from the study areas

do possess a low fractal dimension.

Wong (1987) pointed out that the ruler method always gives a fractal dimension

close to 1 for resolutions greater than the crossover length ofprofiles, and suggested that the

crossover length (b) can be given by (Brown, 1987),

'D

where a is the standard deviation of heights of a profile, r is the sampling interval, and D is

the fractal dimension.
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Suppose that a self-affine fractal profile of a nominal length (i.e., the length ofthe

profile along the horizontal coordinate) Xo has a sampling intervals of length r, a standard

deviation ofheights ct, then the total length ofthe profile X is determined by,

This is because the a can be regarded as the average value ofthe vertical fluctuation over

sampling intervals r. Combining this equation with the definition of crossover length, we

have,

X =Ä.01|l + l^

Since the fractal dimension D > 1.0, for r b, the equation is equivalent to,

then the slope of log-log plot of X against r is 1-D; for r b, we have X = X,o, then the

fractal dimension is always D 1.0.

The fractal dimension derived from the ruler method in this study area is relatively
close to 1.0, and has an average ofD = 1.03.

As the spectral method is applied on the profiles, the spectral exponent ß may vary

between 3 and 1, and have an average value of ß = -2 (Berry and Hannay, 1978). Some

previous studies (Fox and Hayes, 1985; Power et. al, 1987; Turcotte, 1987; Huang and

Turcotte, 1989; Fox, 1989) have suggested or implied that a profile of spectral exponent ß =

-2 is self-similar. They argued that the units ofpower spectral density to be length squared,

i.e.,
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This is not the case. For profiles with ß = -2, and D = 1.5, we have the parameter H used for

rescaling H = 0.5; i.e., if a profile is rescaled in the horizontal coordinate by a factor r, then

its vertical coordinate must be rescaled by a factor ofr
5 in order to keep the rescaled part

to be similar to the original. As later studies (Brown, 1987; Power and Tullis, 1991;

Malinverno, 1995) have shown that power spectra from self-similar surfaces have slopes of

ß = 3 on log-log plots ofpower spectral density against spatial frequency, while spectra

from self-affine surfaces have slopes of ß other than 3. For profiles with ß = 3, and D = 1.0,

we have the parameter H = 1. It shows that a rescaled part by a constant factor r in both

horizontal and vertical coordinates is similar to the original. It is self-similarity. Power and

Tullis (1991) have collected some natural surface profiles data from the studies ofBrown

and Scholz (1985) and Power et. al. (1987,1988), and shown that these profiles are

approximately self-similar within the 6.5 order of magnitude wide wavelength band of 10

m to 40 m (the general trend of the profiles has a slope of ß = 3) although the spectral

exponent of some profiles were biased from 3.

The spectral slopes of the 10 field and 3 map profiles is ß = 2.7 (rather than ß = 3) in

the study area, and yield an average spectral dimension ofD = 1.15 over a range of scales

between 2 cm and 1.4 km. They are self-similar fractals. Firstly, three map profiles

digitized from the 1:10,000 maps of Dorset are topographical contours of different

elevations and have self-similar scaling properties. Secondly, the field profiles possess
similar scaling behaviours as the map profiles. Their spectral exponent of ß = 2.7 located in

the biased areas of the results presented by Power and Tullis (1991)
The question arisen here is why the profiles from southern England have a such low

fractal dimension by comparing the topographic contours discussed in Chapter 3 (which
have an average fractal dimension ofD = 1.23)?

Kaye (1989) analyzed the west and east coast shore lines of Great Britain, and

summarized that the fractal dimensions, as determined by the ruler method, of west coast is

D = 1.30; of east coast is D = 1.20; and the entire coast of Great Britain is D =1.25. After

study the fractal dimensions of the north (D = 1.29) and south (D 1.09) shorelines of

Manitoulin Island (which is the world's largest island in the fresh water), as determined by
the ruler method, Kaye concluded that "the erosive forces forming the two sides ofthe

island have produced shorelines ofvery different ruggedness".
From the empirical data ofRichardson quoted by Mandelbrot (1977), the fractal
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dimensions of some coast lines and land frontiers vary a lot as shown in Table 4.7. This

shows the variations in D values are caused by the different types of curves studied, not by
the different methodologies deployed.

D

Austrian coast

1.172

Table 4.7. The

South Africa
coast

1.024

D values of different

German land
frontier

1.172

types of curves

West coast of
Great Britain

1.26

Land frontier of

Portugal

1.122
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4.5. COMPARISON OF DIFFERENT DATA TYPES

It might be worthy while investigating whether there is a significant difference

among the different profile types in terms ofD-value derived from a single method, this

could exclude any effects may be caused by different methods.

Fig. 4.10(d) is the error bars plot ofD values derived from the three methods (the

ruler, 1-d spectral, and 1st order structure function methods) of 10 field and 3 map profiles at

a confidence level of 95%. From the mean plot, it is clear that when the 10 field profiles
and 3 map profiles are grouped separately, the mean plots of each type ofD values (Dr, Dlf,
and Dls) show there is no statistically significant different between the field and map

profiles.

Table 4.8 lists the average and the standard deviation of the fractal dimensions of the

10 field and 3 map profiles determined by the ruler (Dr), 1-d spectral (Dlf), and 1st order

structure function (Dls) methods.

Table 4.8. The average and standard deviation of D value for
different data sources and methods.

Field profiles

Map profiles
Total

Dr ! Dlf ! D,s
1.03 0.03 (10) ! 1.15 0.08 (10) ! 1.16 0.08 (10)
1.03 0.01 (3) ! 1.14 0.06 (3) ! 1.12 0.02 (3)
1.03 0.02 (13) ! 1.15 0.07 (13) ! 1.15 0.07 (13)

1.03 0.03 (10): stands for the average value is 1.03; the standard deviation is 0.03; and the number of data
values used is 10.

Fig. 4.12 is the plot of D-values of 10 field and 3 map profiles determined by the

ruler, spectral, 1st order structure function methods. Both Table 4.8 and Fig. 4.12 indicate

that there is no statistically significant difference between the D values determined from

different type of data sources.
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Fig. 4.12. A distribution of the fractal dimensions (Dr, Dlf, and Dls) derived from the ruler, 1-d spectral, and

1-d first order structure function methods for the 13 field and map profiles. The plot shows that the fractal

dimensions D have no systematic relationships with data types.
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4.6. LITHOLOGY VARIATION

Among the 10 field profiles in the study area, there are two pairs of field profiles

(kdol vs kshl; kdo2 vs ksh2) from Kimmeridge Bay. They are two adjacent lithological

layers of dolostone and shale, and the shale layer is located just underneath the dolostone

one. Their measured profiles are shown in Fig. 4.5. The comparison ofthe appearances

between the dolostone profiles (kdol and kdo2, Fig. 4.5b and d) with shale profile (kshl and

ksh2, Fig. 4.5a and c), it is obvious that the dolostone profiles are more irregular than the

shale profiles. This corresponds to the geological fact that the shale layer is more easily
eroded away, and becomes smoother than the dolostone layer, whose profile variation is

controlled by the fractures (or joints) in the area.

Table 4.9. Comparison of the two pairs of field profiles from Kimmeridge Bay.

Profiles

kshl

kdol

ksh2

kdo2

L(m)
10.0

10.0

11.8

11.8

s(m)i
o.ii
o.ii
O.ii

o.i!

Dr
1.01

1.04

1.05

1.07

Crj
1.01!

1.03!

l.i lj
1.12I

D.f
1.05

1.12

1.13

1.33

clfj
-0.70!

-0.331

-0.65]
-0.27]

D,s
1.08

1.19

1.15

1.36

cj
-0.76!

-0.66!

-0.76!

-0.77!

R,
0.178

0.247

0.287

0.324

Ra
0.123

0.195

0.232

0.262

R,/L,
0.018

0.025

0.024

0.027

The two pairs ofprofiles were analyzed by the above four techniques discussed in

Section 4.3, which includes the ruler (Fig. 4.6c and d), 1-d spectral (Fig. 4.7c and d), and 1st

order structure function (Fig. 4.8c and d), and the average roughness description (Rq, RJ
methods, and their analyzed results are shown in Table 4.9. As shown in Table 4.9, all the

values of the fractal features (including fractal dimensions, intercepts C) and R</Ln derived

from different methods of dolostone profiles are (slightly) higher than those of shale profiles

except Cjs from the pair ofkdo2 versus ksh2 which are reasonable close. These analysis
results coincide with the fact that the dolostone profiles are move variable than the shale

profiles (refer to the standard deviation ofthe two paired profiles in Table 4.1,). This can

be explained by the geological fact that the dolostone profile is rougher than the shale

profile, and the former is much more controlled by the fracture joints.
For the ruler method (Fig. 4.6c and d), both the D values and intercept of dolostone

profiles are higher than those of shale profiles.

The 1-d spectral (Fig. 4.7c and d) and the 1st order structure function (Fig. 4.8c and

d) methods show that the dolostone profiles have overall more power (energy) than shale
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profiles between the range of scales observed. Both the D values (Dlf, Dls) and the

intercepts (Clf), derived from the two methods, of dolostone profiles are greater than those

of shale profiles. In other words, the dolostone profiles have greater amplitude of

roughness, and the roughness varies with length scale at a faster rate, than the shale profiles
over a range between 0.2m and 5 m.

The values ofR^ (root mean square), R, (centre line average), and Rq/Ln resulted

from the average measurement method (the very right column of Table 4.9) of dolostone

profiles are slightly higher than those of shale profiles. This indicates that the dolostone

profiles have more variation, hence rougher, than the shale profiles. Furthermore, this also

show that although the Rq and R^ values are dependent on the nominal length of a profile,
the profile roughness does contribute to the values ofRq and R,. In order to remove the

effects ofnominal length of a profile for describing the roughness of the profile, the new

parameter Rq/Ln as described in Section 4.3.4 should be used to characterize the roughness
of a profile.

As mentioned in the introduction ofthis chapter, the fractal dimension D describes

how the roughness changes with the scale of observation (horizontally), while the intercept
C describes the amplitude of a profile roughness (vertically). The analysis result strongly

suggests that the dolostone profiles are rougher than the shale ones, which corresponds to

the geological fact. Therefore, the fractal models presented in Section 4.3 are successful

roughness descriptors ofthe natural profiles.
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4.7. CONCLUSIONS

Based on the analysis of the ten field and three map profiles from the Dorset area of

southern England using the ruler, 1-d spectral, 1st order structure function, and the average

measurement methods, the following tentative conclusions may be drawn.

1. The field and map profiles are self-similar fractals with an average D = 1.03 by the ruler

method over a range between 2 cm and 1.4 km, i.e., about 2 magnitudes. The fractal

limits (rL and rv) are roughly between the range of the twice average sample intervals and

a quarter the nominal length ofprofiles (Ln). Two pairs ofprofiles, which were sampled
at different intervals (1st pair: kmgl, 0.5 m, kmgm, 0.1 m, kmgs, 0.01 m; 2nd pair: stdl, 1

m, stdm, 0.1 m, stds, 0.01 m), generate a very good linear fit in terms of the spectral
distribution patterns versus wavelength on a log-log scale (Fig. 4.7a and b). The 1st order

structure functions of these profiles produce similar distribution patterns between the

mean relief and lag (Fig 4.8a and b). The spectral and 1st structure function yield an

average fractal dimension ofD =1.15.

2. Field and map profiles have no significant difference in terms ofD values.

3. Comparison of the two pairs of field profiles of shale and dolostone layers from

Kimmeridge Bay, kshl vs kdol and ksh2 vs kdo2, reveals that the dolostone profiles
have higher fractal dimensions than the shale profiles. This corresponds to the geological
fact that the shale layer is more easily eroded away, and becomes smoother than the

dolostone layer, where fracture joints control its formation.

4. Different erosion process could lead to the variation of the fractal dimension of

topographic contours. The down cutting erosion process, which involved river network

or faults, usually results in higher fractal dimension of about D = 1.25 (as discussed in

Chapter 3) than the wave erosion process, which leads in lower fractal dimension of

about D 1.08 for the 10 field and 3 map profiles from southern England.

5. The symmetrical Gaussian distribution is a good approximation for deviation of field and

map profiles, the ratio of the root mean square and the centre line average Rq/Ra = 1.23.

The traditional roughness descriptors Rq(or RJ is dependent on the nominal length (Ln)

of a profile, and failed to describe the roughness ofprofiles of different lengths. The

ratios R,,' = Rq/Ln corresponds well with the fractal dimension determined by the ruler

method, and are successful to describe the roughness ofprofiles.
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6. The power-law dependence ofthe intercept Cr derived from the ruler method is

dependent on the profile length Lo or the nominal length ofthe profile (Ln). The

intercept Clf derived from the 1-d spectral method, however, has no systematic

relationship with Lo or Ln. The dependence of intercept CJs derived from the 1st order

structure function method on Ln lies between the two cases.
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CHAPTER 5

DISCUSSION ON FRACTAL DIMENSIONS

OF COASTLINES AND CONTOURS

5. DISCUSSION ON FRACTAL DIMENSIONS OF COASTLINES

AND CONTOURS

5.1. INTRODUCTION

The fractal concept is a successful model to describe coastlines, land frontiers, and

contours (e.g. Richardson, 1961; Mandelbrot, 1977; Goodchild, 1980; Feder, 1988; Kaye,

1989; Turcotte, 1992; Chapters 3 and 4). Table 5.1 lists some published fractal dimensions

of coastlines and land frontiers and shows that different fractal dimensions occur even when

the same method is used.

A typical example was quoted by Mandelbrot (1977) based on the empirical data of

Richardson (1961), the fractal dimension of the South African coastline is D = 1.02 which is

very close to 1, whereas the fractal dimension of the coast of Great Britain is D = 1.25, both

determined by the ruler method. The coastline of Great Britain is much irregular than that

of the South Africa. The former is controlled by different erosive processes such as glacier,
river down-cutting, and wave erosions, whereas the latter is a fairly straight coastline, and

dominated by the wave erosive (cliff/ retreat) process. This suggests that the difference in

fractal dimensions of coastlines and contours may reflect their formation mechanism,

including the controls of erosive processes, lithology, fractures, etc.
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Table 5.1. D values of some coastline and contours determined by the ruler method

location

South Africa coast

land frontier of Portugal
German land frontier

Australian coast

coast of Great Britain

east coast of Great Britain

west coast of Great Britain

south shore line, Manitoulin, Canada

north shore line, Manitoulin, Canada

Norway coast

topographic contours covering granite plutons
Vulcano, Italy
Stromboli Italy

Alicudi, Italy

Dr

1.02

1.12

1.17

1.17

1.25

1.20

1.30

1.09

1.29

1.35

1.11-1.26

1.05- 1.34

1.02-1.04

1.02

literature sources

Richardson (1961),

quoted by Mandelbrot (1977)

Mandelbrot (1977)

Kaye (1989)

Feder (1988)
Norton and Sorenson (1989)

Leonardi et al. (1994)

Other fractal curves arising in rocks may also be diagnostic ofprocesses. For

example, Xie (1993) and Xie and Sanderson (1995) suggested that the transgranular

cracking produces higher fractal dimension (D = 1.36) than the intergranular cracking (D =

1.25). The study may reveal the control of the fracture patterns over the coastlines in terms

of coastline shape and the fractal measurements of coastline.

The objectives of the Chapter are:

to compare different fractal dimensions of coastlines and contours determined by the

ruler method from

1), worldwide literature;

2), a re-analysis ofparts ofthe coastlines of Great Britain and Ireland;

3), the results ofprevious chapters.

to examine the role of different erosive process on the fractal dimension;

to examine the roles of lithology and structure on the fractal dimension.
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5.2. DATA SOURCES

5.2.1. Locations of the coastline sections

Fig. 5.1 is a diagram of Great Britain and Ireland, where the Great Britain part was

digitized from 1:625,000 geological maps and the Ireland from the 1:1,000,000 map of

mineral deposits of Ireland. The digitizing procedure was carried out on the TDS digitizing
table using the DIGICONprogram developed by Professor David J Sanderson in Quick

Basic. Fig. 5.1 shows the locations of eleven coastline sections sampled around the islands.

The coastlines gb, gbe, gbw, and ire are shown in Fig. 5.2. In addition, the western and

eastern boundaries of the Dixie valley ofNevada, USA, presented by Zhang et. al. (1991),

were also digitized to evaluate the role of fault scarps in terms of the fractal dimension.

file

gb

gbw

gbe
ire

el

e2

e3

si

s2

s3

s4

s5

il
"^

i2

i3

dxw

dxe

map scale

1:625,000

1:625,000

1:625,000

1:1,000,000

1:625,000

1:625,000

1:625,000

1:625,000

1:625,000

1:625,000

1:625,000

1:625,000

1:1,000,000

1:1,000,000

1:1,000,000

1:1,613,000

1:1,613,000

Table 5.2.

s (km)

3.935

4.272

3.591

3.220

0.864

0.646

0.714

0.406

0.504

0.538

0.488

0.461

0.592

0.519

0.695

1.094

0.844

List of coastline portions and contours

Lo (km)

7016

3894

3164

3713

201

159

463

397

511

160

127

218

745

742

229

138

254

locations

entire coast of Great Britain (GB)
west coast of GB

east and south coast ofGB

entire coast of Ireland

south-east coast of England
Dorset coast of England
south coast of Cornwall, England
north-west coast of Scotland

north-west coast of Scotland

Caithness coast of Scotland

north-east coast of Scotland

east coast of Scotland

south coast of Ireland

south-west coast of Ireland

north-east coast ofNorthern Ireland

west profile of the Dixie valley, Nevada, USA

east profile of the Dixie valley, Nevada, USA

Table 5.2 summarized some basic features of the coastline from Great Britain and

Ireland, and of contours from the Dixie valley. Lo is the digitized length of the curve, which

is given by,
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Fig. 5.1. Digitized coastlines of Great Britain and Ireland and the locations of coastline portions used in the

study. The coastline sections gbe and gbw are shown in 5.2(a).

N-\

j=1

where (x;, y;) is the recorded coordinates of a digitized curve, and N is the number of the

points used to digitize the curve, s is the average sampling interval of the coastline, which

is given by s = Lo / N.

5.2.2. Brief description of the geology of the coastline sections

In this section, a brief description of the geology of the coastline sections samples in
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the study area is presented, and appropriate controls over these coastline sections are

emphasised as shown in Table 5.3.

Table 5.3. Brief description of the geology of the sampled coastline sections

section

gb

gbw

gbe

ire

el&e2

e3

sl&s2

geology

closed coastline; wide variety of geological settings and geomorphologic processes.

variety of old metamorphic rocks, traversed by a series of ancient geological
movements which led to NE-SW orientated structures, dominated by both the drowned

river (rias) and glacier (fjord) valleys.

variety of Devonian to Quaternary sediments mainly flat-lying. Relatively fewer large
rivers except Solent, Thames, Humber, and Firth of Forth lay with intervening coast

dominated by wave action / cliff retreat erosion.

variety of rock types from Dalradian metamorphics, Devonian sediments, to Tertiary

lavas, mainly involved the E-W or NE-SW strike structures (faults and folds). South¬

west part is dominated by river down-cutting erosion, whereas north-east part by the

cliff retreat erosive process.

E-W oriented coastline of Mesozoic sediments, generally flat-lying. The E-W

oriented Mesozoic and Tertiary structures (folds, faults, and inverted faults) control

the general trend of the coastline of the English Channel. The main structures roughly

parallel to the coastline, and the strata dipping gently to north and south. Few major

river networks and drowned valleys in the area allow the coast to assume a more

mature aspect: long sweeping and flatter curves are characteristics and the headlands

in the area have generally been cut back (Steers, 1948). Wave erosion / cliff retreat

processes control the share of the coastline sections.

The E-W oriented coastline section is mainly composed of Devonian sediments,

Variscan intrusive granite, and the Lizard complex (Evans, 1990). The sedimentary
rocks around the coastline are generally resistant, and the outcrop strata is typified by

rugged cliffs with relatively little coastal erosion taking place. The general orientation

of the coastline section parallels and is controlled by Variscan thrusts with flat-lying
Mesozoic sediments located in off-shore areas. The river down-cutting erosive

process controls the coastline section producing classical rias, where the sea penetrates

along drowned river valleys.

The two sections are NE-SW oriented and composed of Lewisian gneiss, Torridonian
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s3

s4

s5

il&i2

i3

sandstones and Moine meta-sediments. The general trend of the coastline is parallel to

the Moine thrust. NW-SE orientated Tertiary basic dikes are perpendicular to the

general trend of the coastline. The area was greatly modified by Quaternary ice sheets

which strongly eroded much below the present sea level, producing drowned glacier

valleys or fjords, and the most rugged coastline in the UK. The most significant
difference between the geology of the Scottish landmass and the submarine geology
off its west coast is that a larger area offshore is underlain by Permian and Mesozoic

rocks.

Devonian old red sandstone (ORS), and flat-lying. The fault strike is mostly NE-SW

oriented. Few major river / glacial drainage valleys involved in the area. The

coastline is controlled by the cliff retreat process.

Dalradian metamorphic rocks overlain by the non-marine Devonian-Cretaceous

sediments. The E-W oriented coastline parallel to the bedding of the off-shore

Mesozoic rocks, locally parallel to the fault strike (faults along the River Firth). Few

major river / glacial valleys. The coastline is dominated by the cliff line retreat / wave

action process.

Carboniferous and Silurian sediments with flat-lying. The bedding of the off-shore

sediments rocks (Carboniferous and Permian) parallels to the coastline section

sampled, but small faults are locally perpendicular to the coastline. The area is

involved few major river drainage valleys, and the coastline is controlled by the cliff

retreat / wave action erosion.

Devonian, Carboniferous sediments, folded into major E-W trendy. The coast is

controlled by resistant Devonian rocks in cores ofmajor anticline, with long inlets of

less resistant Carboniferous rocks in cores of syncline and along faults. River erosion

produced long E-W valleys at sea level and typical ria coastline. i2 is a N-S oriented

section which is perpendicular to the main structure lines and valleys, whereas il

parallels to the main structures but involved some river valleys. The coastlines are

dominated by the fluvial erosion (large drainage valleys).

Coastline is dominated by Tertiary basalt with Dalradian metamorphic rocks and flat-

lying carboniferous-Cretaceous sediments. Few major river drainage valleys involved

in the area, and the coastline controlled by the cliff retreat / wave action erosion.

In summary, the coastline of the N-W of Scotland (si and s2) is by far the most

rugged part of any area ofUK, this diversity is due mainly to the glacial erosion acting on
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rocks of great variable strengths. The fabric drainage networks in the area also contribute

the formation of the ruggedness of the coastline. The river down-cutting erosive process

plays an important role for the formation of coastline sections of e3, il, and i2, with post¬

glacial sea level rise producing drowned valleys or rias. The straighter coastline sections

sampled in the British Isles (el, e2, s3, s4, and s5) have a common characteristic: the

bedding of the off-shore sediment rocks mostly parallels to the orientation of the coastline

and few major drainage river networks are involved. These coastlines are mainly controlled

by the wave action / cliff line retreat.

5.2.3. Brief description of the erosive processes

Glacial erosion: During the Quaternary (glacier ages), immense supplies of ice

drained from the mountainous areas ofNorth and West of Britain, and produced deep

glacier valleys. Glaciers often cut into the bedrock much deeper than the sea level. These

glacier valleys generally cut across geological fractures and structures, although some major
faults could control valleys.

Fjords have resulted from the well developed valley systems (especially in the

greatly over-deepened glacial troughs in the North and West of Scotland, which extends

below the present-day sea level. Therefore, even with the uplift of the crust (due to the

removal of glaciers) and the rise of the sea level (due to the melt water), the coastline in NW

of Scotland is still dominated by the glacier valleys, and formed the most rugged coastline

in the UK.

River down-cutting erosion: The development of a river valley depends on the

original surface, the climate (rainfall), and the underlying geological structure (faults, folds,

and varied resistance to erosion of rocks). The river down-cutting involves the incision of

stream channels into bedrocks, the downstream transportation and the deposition of the

eroded sediments.

River system usually form a tree (or branching) structure, where deeper valleys in

mountainous areas and plateaus that have raised high above sea-level. Such river network

systems are typically fractals (Gan et. ah, 1992). River networks, and to some extent glacier

valley system, represent a system of lines of erosion which lead to area filling (D > 2)
fractal geometry (Norton and Sorenson, 1989).

Simple down-cutting ofriver channels produces gorge valleys. Down-cutting may

proceed a long way before the valley walls are worn back to any great extent, and their
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eventual removal by the river. Down-slope transportation ofmaterials produces V-shaped

valleys, where the rate of deepening slows down and widening begins to catch up, with

production of a cross-profile approximating to a V-shape. Typically, while the valley is

being widened by the wasting back of its sides, the river itself begins to widen its valley

floor by under-cutting its banks, where both down-cutting and lateral cutting are taking

place simultaneously or alternately from time to time.

After the later glaciation, the rise of the sea level produced coastlines dominated by
the rias in the SW England and SE Ireland where the absence of ice sheets produced a little

uplift. The coastline sections (e.g., e3, il and i2) are dominated by the river down-cutting
erosion.

Most rivers drain directly into the sea. Except in mountainous terrains most river

channels are flanked by an area of subdued relief termed a floodplain formed by deposits
laid down when the river floods. Along the east coastline of England, deposition processes,

which produced floodplains and estuary (e.g., Humber, Thames, and Firth of Forth) filled

the river and coupled with cliff retreat and resulted in straight coastline.

Wave action / cliff retreat erosion: Major processes of cliff retreat are the basal

erosion and removal of collapsed materials by waves. Where wave action undercuts the

base of cliffs and is capable ofremoving all debris accumulating at the base of the cliff,

lithological and structural controls become significant in influencing cliff form. The wave

action / cliff retreat is actually eating the landward of the coastal area back, and generate a

straight coastline, especially when the bedding and main structure strikes of the area parallel
to the general trend of coastline.

The coastline sections (s3, s4, s5, el, e2, and i3) located in the areas where few

major rivers involved are straight, controlled by wave action / cliff retreat erosion, locally

by the estuary deposition process.

Lithology also plays an important role in the formation of the coastline. Generally

homogeneous rock types have equivalent resistance to erosion, and produces straighter

coastline, such as coastlines in Caithness, Antrim, Dorset. Heterogeneous rock types

together with some structures often lead to differential erosive process, and generate more

rugged coastline (Cornwall).

In summary, the coastline ofNW of Scotland (si and s2) is dominated by the glacier

valleys (fjords) even with the post-glacial uplift in the area due to the deep cut into the

bedrocks during the galication. The subside sea level rise in SE England produced large
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catchment rivers with widely spaced main rivers enter into sea (usually produce estuaries,

e.g., Thames), separated by long stretch of coast with no major rivers (dominated by cliff

retreat).
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5.3. ANALYSIS RESULTS

The ruler method was applied to the data sets listed in Table 5.2, and the determined

fractal features, including the fractal dimensions Dr, intercepts Cr, the lower (r^) and upper

(rRU) fractal limits, shown in Table 5.4. The estimated errors ADr and ACr are determined

by equation (2.1) of Chapter 2.

Table 5.4. The analysis

file

gb

gbw

gbe
ire

el

e2

e3

si

s2

s3

s4

s5

il

i2

i3

dxw

dxe

i-RL (km) rRU

3

4

4

3

2

0.8

1

2

2

0.4

1

1

1

1

0.6

2

2

results

(km)

150

200

150

200

60

20

20

20

40

20

10

10

40

40

20

20

20

of coastline portions

Dr

1.25

1.30

1.20

1.30

1.04

1.12

1.30

1.37

1.37

1.09

1.08

1.10

1.25

1.35

1.15

1.03

1.22

and

ADr

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0.05

0.02

0.01

0.01

0.01

0.01

0.04

0.01

0.01

0.02

contours by the

Cr

3.95

3.74

3.59

3.66

2.30

2.16

2.64

2.64

2.78

2.17

2.09

2.28

2.82

2.88

2.33

2.14

2.44

rule method

ACr
0.01

0.02

0.02

0.01

0.01

0.01

0.02

0.04

0.02

0.01

0.01

0.01

0.01

0.04

0.01

0.01

0.02

Examples of individual coastlines and log-log plots derived by the ruler method are

shown in Figs. 5.2, 5.3, and Fig. 5.4. The log-log plots were shifted (offset) vertically in

order to avoid overlaps; The intercept values Cr shown on the figures, as well as in Table

5.4, can be used to recover their correct positions.

As shown in Fig. 5.2 the fractal dimensions of the coastlines of Great Britain

coincides with the results determined by Mandelbrot, (1977) and Kaye (1989), i.e., the

fractal dimensions, as determined by the ruler method, of west coast is D = 1.30; of east

coast is D = 1.20; and the entire coast of Great Britain is D =1.25. The coastline of Ireland

has a fractal dimension of 1.30, which is as same as that ofwest coast of Great Britain.
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o
o

s

D = 1.30, C = 3.66

x 100 km
(c) (d)

-l 0 Log(r), (km)

ire

Fig. 5.2. The coastlines of Great Britain and Ireland and their log-log plots as determined by the ruler

method, (a) The entire (gb), west (gbw), and east (gbe) coastlines of Great Britain, (b) The log-log plots
coastlines shown in (a) as the ruler method is deployed The log-log plots of the coastlines gbe and gbw were

vertically shifted down to avoid the overlaps. Their intercepts C values can be used to restore their original

position of the log-log plots, (c) and (d) are the entire coastline of Ireland (ire) and its log-log plot derived

from the ruler method.,

Fig. 5.3 shows the fractal dimensions of coastline sections of British Isles. It

demonstrates that 1) D values vary from 1.04 to 1.37; 2) higher D values occur in west

areas, whereas lower D values in south and east areas; 3) there is no systematic correlation

within rock types, e.g., for Devonian and Carboniferous sediments, il, i2, and e3 have

higher D values ( 1.3) than s3; 4) to some extent, D values are controlled by structure,

generally, higher D values occur in the folded rock areas (e.g., il, i2, e3, si, and s2),



Chapter 5. Discussion On Fractal Dimensions OfCoastlines And Contours 163

300

200

100

300

200

100

S2

sl

300

200

100

el, D = 1.04

>D= lJO

100 200

s3

100 km 200 300

il

D = 1.04, C = 2.30

300 (a); (b) -1

4

Log(r)(km)

D = 1.37, C = 164

D = l.Oß, C = 2.09

D = l.lp, C = 2.28

,, \ ,,, Log(r), (km)

100 200 300 (e) (f) Log(r), (km)

Fig. 5.3. The coastlines portions of Great Britain and Ireland and their log-log plots as determined by the

ruler method, (a) and (b) are three coastlines of south England (el, e2, and e3) and their log-log plots of the

ruler method, (c) and (d) are five portions of the coastline of Scotland (sl, s2, s3, s4, and s5) and their log-log

plots, (e) and (f) are three sections of coastline of Ireland (il, i2, and i3) and their log-log plots. In (b), (d),

and (f), the log-log plots were vertically shifted (offset) either down or up (e2 and i2 remain unchanged) in

order to avoid overlap. The log-log plots can be restored based on the intercept C values.
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Fig. 5.4. Two topographic contours from the Dixie valley, Nevada, USA and their log-log plots of the ruler

method, (a) dxw is the valley floor along the Dixie valley active normal fault system (fault deformed /

controlled contour), whereas dxe is less controlled by the fault system, (b) are the log-log plots of the two

contours. The log-log plots were shifted vertically up or down in order to avoid overlap, they can be restored

based the intercept C values.

whereas lower D values occur in the areas where few folds involved rock areas (e.g., el, e2,

s3, s4, s5, and i3).

Fig. 5.4(a) shows a typical example of fault controlled valley floor on one side

(dxw), and the other side (dxe) is less controlled by the fault system. Their fractal

dimensions are significant different. The former has a much lower fractal dimension ofD =

1.03 than the later, which has a fractal dimension ofD = 1.22.

The next three Sections will discuss and explain why the fractal dimensions of the

coastlines and topographic contours are so significantly different from each other. The

variations in D values are caused by several geological factors, which control the formation

of coastlines and topographic contours. Three geological aspects, the erosive process,

lithology, and fracture will be discussed.
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5.4. DISCUSSIONS

5.4.1. Erosive process

Different erosive processes, such as glacier action, river down-cutting, and wave

action / cliff retreat erosion, could form different coastlines. Their fractal behaviours are to

be investigated.

Table 5.5 summarized the fractal dimensions of the coastlines and topographic
contours discussed in the previous studies, Chapter 3, and this Chapter. The ruler method is

deployed.

Table 5.5. The D values of the coastline and contours

formed by different erosive processes

Erosive processes

glacier

river down-cutting

wave action

location

Norway

si, s2, Scotland

e3, England; il, 12, Ireland

topographic contours ofborder areas between

Spain and Portugal
north shore line, Manitoulin, Canada

South Africa

i3, Ireland; el, e2, England; s3, s4, s5, Scotland

cliff profiles of Kimmeridge and Studland Bay
south shore line, Manitoulin, Canada

Dr

1.35

1.36

1.24

1.23

1.29

1.02

1.11

1.03

1.09

Dr ranges

1.35-1.37

1.20-1.30

1.10-1.47

1.04-1.15

1.01-1.09

sources

Feder, 1988

Chapter 5

Chapter 5

Chapter 3

Kaye,1989

Mandelbrot, 1977

Chapter 5

Chapter 4

Kaye,1989

The low D values (D = 1.01 -1.15) of the coastlines of Dorset (el and e2), of the

East Scotland (s3, s4, and s5), and ofthe north-east Ireland (i3) occur where the coastline is

controlled by the cliff retreat / wave action. If coastal erosion by wave action and cliff

retreat operates on an initially smooth coastline, the waves will cut back the coastline. If

there are not any local differences in weathering, the resulting coastlines would be expected

to be "straighter" or "smoother", and will have a lower D value, say D 1.1 (1 < D < 1.5).

The D values of field profiles of Dorset also have low D values (D = 1.03), and this suggests

that low D values for cliff retreat process occur over a wide ranges of scales (from 10 cm to

60 km). Marked lithology variations may produce some what higher D values.

The moderate D values (D = 1.20 -1.35) obtained for the coastline sections of the

British Isles which are dominated by river down-cutting processes (e3, il and i2) are similar
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to those ofthe topographic contours of the border areas between Spain and Portugal as

discussed in Chapter 3. Down-cutting erosive processes by river action is associated with

large amounts of mass-wasting, feeding sediments into the low reaches ofriver or sea, and

produces rougher and more rugged coastlines. A coastline with a fractal dimension, say D

= 1.3, is subject to the locally concentrated river down-cutting erosion process, and is a

result of sea-level rises.

The highest D values (1.35-1.50) of coastlines around the British isles occur in the

north-west of Scotland, where the formation of the coastline dominated by the abundant

glacier valleys. This group ofD values could be compared with those obtained from the

coastlines ofNorway (D = 1.35, Feder, 1988).

In summary, the fractal dimensions ofthe coastlines and contours are dominantly
controlled by different erosive processes. The coastlines formed by down-cutting erosion,

such as river networks and glaciers, have higher D values (1.20 < D < 1.37) than those

formed by wave action erosion (1.03 < D < 1.20). Coastlines produced by drowned river

valley or glacier valley system will have similar fractal dimension. The moderate D values

of the coastline sections of British Isles where river down-cutting erosion is dominant are

similar to the D values of topographic contours in the border area between Portugal and

Spain. In more general terms, the land surface formed by the variation of erosive power on

the river network would have a fractal dimension between 2 and 3, and the contours would

be expected to have 1 < D < 2.

5.4.2. Lithology
The 123 contours from the border area between Spain and Portugal as discussed in

Chapters 3 were from two major rock groups - Igneous (48 contours) and Metamorphic (75

contours). Erosion in the area is largely controlled by the river down-cutting and associated

with mass-wasting processes. For the ruler method, the fractal dimensions of the contours

from the granite areas (D = 1.25) are slightly higher than those from the metamorphic rock

areas (D = 1.20) as determined by the ruler method (Table 5.6). Although the difference is

small, it is statistically significant. Furthermore, the difference is not caused by the methods

employed, but by the difference of rock groups. This indicates that the topographic

contours from granite areas are more rugged than those from the metamorphic rock areas.

The metamorphic rocks in the area tend to be rich in soil, and are controlled by mass-

wasting process, hence have smoother contours. The granites in the area, however, are more
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resistant to the weathering process and produce more irregular contours.

As discussed in Chapter 4, there are two pairs of field profiles from Kimmeridge

Bay, Dorset, England: kdol vs kshl ( nominal length Ln = 10 m) and kdo2 vs ksh2 (Ln =

11.8 m). The shale layer is located just underneath the dolomite one (Fig. 4.5). Their

fractal dimensions determined by the ruler method (Table 5.6) show that the dolomite

profiles have slightly higher D values (more irregular) than the shale profiles. The small

difference in D is effective. Firstly, the observation scale is the same, between the lower

and upper fractal limits (r^ = 0.02; rRU = 5 m). Secondly, the difference coincides with the

analysis results of the spectral, structure function, and average measurement methods

(Table 4.9). Thirdly, the comparison of the appearances between the dolomite profiles

(kdol and kdo2, Fig. 4.5b and d) with shale profile (kshl and ksh2, Fig. 4.5a and c) shows

that the dolomite profiles are more irregular than the shale profiles. This corresponds to the

geological fact that the shale layer is more easily eroded away, and becomes smoother than

the dolomite layer, whose profile variation is mainly controlled by the fractures (or joints) in

the area.

Table 5.6. The summary of D values of different contours from Chapters 3 and 4

location

Spain/Portugal

Dorset (kdol), England
Dorset (kdo2), England
Dorset (kshl), England
Dorset (ksh2), England

Dr
1.19

1.25

1.04

1.07

1.01

1.05

Dr range

1.19-1.23

1.24-1.25

lithology

metamorphic rocks, sediments

igneous rocks

Kimmeridge dolomite

Kimmeridge dolomite

Kimmeridge shale

Kimmeridge shale

sources

Chapter 3

Chapter 3

Chapter 4

Chapter 4

Chapter 4

Chapter 4

Leonardi et. al. (1994) conducted fractal analyses of the coastline segments of

volcanic islands of Vulcano, Stromboli and Alicudi in southern Tyrrhenian sea, and.

concluded that high D values (1.34) characterize acid rocks derived effusive activity;
intermediate D values (D = 1.07) for pyroclastic deposits from explosive activity; and low D

values (D = 1.01) for those deposits strongly reworked and considered as alluvium.

These examples suggest that in some coastal situations rock type may have an effect

on D values, but the coastlines of the British Isles show that the lithological control is more

subtle than that of river erosion.

Table 5.7 shows the fractal dimensions of the coastlines of England, Scotland, and
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Ireland organized at the order ofthe resistance of rock types to erosion. From Table 5.7, it

can be seen that fractal dimensions of the coastline sections of the British Isles have not any

systematic relationship with the resistance of the rock types. Although it would appear that

erosion processes (as discussed in the previous section) rather than lithologies are dominant

in the control of the fractal dimensions of the coastlines ofBritish Isles.

Table 5.7. The D values of the coastline and contours from different lithologies

location

resistant

less resistant

lithology
si and s2 (Lewisian gneiss, Torridonian sandstone, Moine metamorphic rocks)
i3 (Tertiary basal, Dalradian metamorphic rocks, and Carboniferous-Cretaceous
sediments);
e3 (Devonian sediments, intrusive rocks); s3 (Devonian old red sandstone); s4

(metamorphic rocks and Devonian sediments); il and i2 (Devonian,
Carboniferous sediments)
el and e2 (Mesozoic sediments); s5 (Carboniferous sediments) .

1.37

1.15

1.08-1.35

1.04- 1.12

In summary, different lithologies contribute to the variation ofD values. The studies

carried out in Chapter 3 shows that the fractal dimensions of igneous rocks are significant

higher than those of meta-sediments, and dolostone have higher D value than the shales. In

these two cases, the effects on D of erosive processes were excluded, whereas the variations

in D values of coastlines of England, Scotland and Ireland are compound controlled by the

erosive process and lithologies. Therefore, the erosive process might be the primary

control, and lithology tends to produce more subtle variations in D values of coastlines and

topographic contours.

5.4.3. Fractures

Different fracture patterns also contribute to the variation in the fractal dimensions

although this is not clearly demonstrated in the study of the British Isles. Xie (1993) and

Xie and Sanderson (1995) studied the intergranular and transgranular cracking systems, and

concluded that the transgranular fractures possess higher fractal dimension (D = 1.37) than

the intergranular fractures (D = 1.26) (Table 5.8). After study the topographic contours of

Sawtooth Range, Idaho, Norton & Sorenson (1989) shown that the fractal dimensions of the

topographic contours vary from 1.11 to 1.26, and that the larger D values occur locally

where fractures are most frequent and/or continuous. Xie and Pariseau (1994) provided an

empirical relationship between the fractal dimension and the joint roughness coefficient
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(JRC) based on the study of the triadic Koch curve, i.e., JRC = 85/2671 (D-l)5679. In other

words, JRC is positively correlated with the fractal dimension.

The fault deformed profile (fault trace) produces a low fractal dimension. For

example, the west boundary of the Dixie valley (fault segment) has a low D = 1.03, while

the east boundary has a higher D (= 1.22). The fractal dimension of the Dixie fault segment

D = 1.03 is similar to that of the San Andreas main fault D = 1.02 (Aviles et. al, 1987).

Table 5.8. D values of the coastline, contours, and profiles
oriented with different fractures

fracture features, and/or file

intergranular fracture

transgranular fracture

combined intergranular and transgranular fracture

San Andreas main fault line

along fault strike, dxw

unconformity, dxe

crossing fault strike, i2

Dr sources

1.26

1.365 Xie and Sanderson (1995)
1.255

1.02 Aviels et. al. 1987

1.03 (Zhang, 1991), Chapter 5

1.22

1.35 Chapter 5

The curve perpendicular to the structure strike is more irregular, thus has higher D

value, than that parallels to the structure strike. The coastline i2 (SW of Ireland) is

perpendicular to the general structure strike (note main effect here is folding), and have high
D values of 1.25 and 1.35. This may also be explained as lithological control since folding

produces changes in rock types along the coast. Power et. al. (1987) concluded that the

fault profiles parallel to the slip direction are much smoother than those perpendicular to the

slip direction. Fault roughness perpendicular to the slip direction is similar to the roughness

of natural joints. This is because the fractures control the locally weathering and erosive

processes, hence dominate the formation of coastlines traces and have higher fractal

dimension.

In summary, higher D values of coastlines, contours, or profiles are derived from the

regions where fractures are abundant. High D values also occur as the orientation of the

curve cross-over with the structural strike, whereas fault deformed profile usually leads to

low D values.
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5.5. CONCLUSIONS

Based on the study carried out in this chapter and the summarized analysis results of

Chapter 3 and 4, the following conclusions may be drawn.

1. Significant variations in fractal dimensions exist and are controlled by several geological
factors (such as erosive process, lithology, and fractures) which contribute the formation

of coastlines, topographic contours, and profiles.
2. The dominant control on the fractal dimension, D, is the erosive processes. Contours and

coastlines formed by the down-cutting erosion by rivers and ice have higher D values

than those formed by the wave action and cliff retreat processes. The former has a fractal

dimension D ranges from 1.1 to 1.5, whereas the latter generally give low D values ofD

< 1.10. The D values of field profiles of Dorset also have low D values (D = 1.03), and

this suggests that low D values caused by the cliff retreat process occur over a wide

ranges of scales (from 10 cm to 60 km).

3. Different lithologies generally produce more subtle variation in the fractal dimensions of

coastlines and contours. For example, the igneous rocks tend to have higher D (= 1.25)
than the metamorphic rocks (D = 1.20) (Chapter 3); dolomite layers produce higher D

values (=1.13) than shale layers (D = 1.02) in Kimmeridge Bay (Chapter 4). However,

the coastline of Great Britain, which cover different types of lithologies, generally shows

little variation in D values (Table 5.7) with lithology, being dominated by different types

of erosive processes.

4. High D values also occur as the orientation of the curve cross-over with the structural

strike, whereas a fault deformed profile usually leads to low D values. For example, the

fractal dimension of the Dixie fault segment D = 1.03 is similar to that of the San

Andreas main fault D = 1.02 (Aviles et. ah, 1987).
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6. FRACTAL ANALYSIS OF DEM AND LANDSAT TM DATA

6.1. INTRODUCTION

The fractal concept has, in the last decade, become the most successful mathematical

model for characterizing the spatial variation ofthe Earth's surface. This success is due to

the fractal model being able to capture the essence and complexity of the Earth's surface

systematically and quantitatively, while other traditional parameters do not (Lam, 1990;

Power and Tullis, 1991; Weissel, 1994). There are numerous references, which are listed by

Xu et. al. (1993), Malinverno (1995), concerning the fractal analysis ofthe Earth's surface,

as well as the methods for calculating fractal dimensions. These studies cover a wide

spectrum including landforms, seafloor, river networks, faults, earthquakes etc.

Two popular and convenient representations of the Earth's surface variation involve

use of digital elevation models (DEM) and satellite Thermal Mapper (TM) imagery. They

are both 2-d, equally intervalled, raster data sets. DEM data are the elevation variations of

the Earth's surface, and include only the topographic information. However, TM data

reveal the electromagnetic radiation (EMR) variations of different spectral wavelengths of

the Earth's surface. In other words, TM data are the representations of the local scale

spectral variability, such as roads, buildings, vegetation, shadows etc. Although TM data do

not represent the real topographic refection, the local spectral features can indirectly reflect

topography. Therefore, DEM and Landsat TM images are useful in characterizing the
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spatial variation of the Earth's surface, thus the complexity of these spatial surfaces could be

described and measured by the fractal concept. Previous studies have shown that the

question ofwhether or not the fractal model can be applied to DEM and Landsat TM data

seems to have a positive answer (Shelberg et. al, 1983; Mark and Aronson, 1984; Roy et.

al, 1987; Lam, 1990; Lavallee, 1993; Weissei et. al, 1994). DEM data have fractal

dimensions of 2.10 to 2.50 (Shelberg et. al, 1983; Mark & Aronson, 1984; Roy et. al,

1987) by using USGS 30-metre DEM grid data. Lam (1990) demonstrated that TM images
ofthe coastal Louisiana areas have fractal dimensions of 2.54 to 2.87 over the observation

scale between 25 m and 150 m.

The methodologies for determining the fractal dimension ofDEM data are the 2-d

intersection, cube (3-d box) counting, triangular prism, 2-d spectral, first and second order

structure function methods; for determining the fractal dimensions ofTM data are the 2-d

spectral, first and second order structure function methods. The fractal analysis of extracted

coastline from TM data is carried out by the ruler and box-counting methods.

The objectives ofthe fractal analysis ofDEM data are to:

determine the fractal dimension ofDEM of the border area between Spain and Portugal
and to compare the determined D value with the previous studies;

relate the determined D value ofDEM with the previous work done on contours (Chapter

3) since DEM is the 3-d model of the topographic surface in same area.

The objectives of the fractal analysis ofTM data are to:

investigate whether TM data are fractals;

study what can be learnt from the fractal properties ofTM data, including:
0 comparison between the D values ofTM imagery of Qatar with those derived by
Lam (1990), as well as with those of the DEM surfaces;

0 examination of the effects of different TM bands on D values for same land type;

0 investigation of the possible variations in D values related to different land types

covered. Five study areas are involved;

0 discussion ofthe variations of the fractal dimensions determined by different

methods that reveal the scaling properties ofDEM and TM surfaces;

relate the fractal properties between 1-d and 2-d TM features by comparing the D value

of the extracted coastline of Qatar with those of the 2-d TM surfaces of the coast area.
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6.2. FRACTAL ANALYSIS OF DEM DATA

6.2.1. DEM data

The DEM data set was digitized from the 1:20,000 contour map (C.G.S, S.A., July

1987), which was mapped using a 10 metre interval, of the border area between Spain and

Portugal. The centre ofthe data set is located in Spain at about N3920', W708' as show in

Fig. 6.1. The DEM data set covers a grid of 65 by 65, and an area of 640 m by 640 m.

yi/v

c

\
Oporto
k

*TUÖAL
^ Lisbon Js*

P

~\1 Digitized DEM

/ Badajoz

SPAIN

Madrid

of 640 m by 640 m

^

Barcelon

/
-AH Q N39"

0 :100 200 300 400 km

0 \

Fig. 6.1. Location of the digitized DEM.

The digitized procedure is described as follows. Firstly, a 65 by 65 square grid (each

cell has a side length of 0.5 cm, thus the gridding interval is 10 m) was drawn, covering the

study area. Therefore, the data grid size is 65 by 65, and has a side length of 640 m. Then

the elevation on each crossing point ofthe grid was estimated from contours and recorded as

a series of (x, y, z), where x and y are the coordinates ranging 0,1,..., 64, and z is the

contour elevation at (x, y). Since the map has a 10 m interval of contours, the estimating
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Fig. 6.2. The digitized DEM of an area of 650 m by 650 m. The board crosses in (a) and (b) show their

match orientation, (a) 3-d perspective view of the DEM. (b) The digitized contour map of 10 m interval.

error of the contour elevation is expected to be about 1 m. Fig. 6.2(a) shows the digitized
DEM in 3-d perspective view, Fig. 6.2(b) is the digitized contour map at a 10 m contour

interval. Any possible errors could occurr during the digitizing procedure; the resulting
DEM was deduced by comparing the original 1:20,000 contour map with Fig. 6.2(b).

Therefore, the DEM data set is represented by a 2-dimensional array (65 by 65) of

contour elevations equally spaced with 10 m gridding interval, and the side length is 640 m.

The DEM has minimum and maximum contour elevation of 309 m and 611m, and the

average and the standard deviation of contour elevation are 418.8 m and 61.4 as shown in

the upper part of Table 6.1.

6.2.2. Fractal analysis of DEM data

The 2-d intersection, cube-counting (3-d box-counting), triangular prism, spectral,
and structure function methods were deployed to determine the fractal dimensions of the

DEM data set digitized from the 1:20,000 contour map. Brief descriptions of the different

methodologies are given here, and refer to Chapter 2 for the principles and details of the

methodologies.

Table 6.1 lists the fractal dimensions of the DEM data set determined by the 2-d

intersection, cube-counting (3-d box-counting), triangular prism, spectral, and structure

function methods. The estimation errors Aß, AD, and AC are given by equation (2.1).
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Table 6.1. D values ofDEM data set determined by different methodologies

DEM information: data size = 65 by 65; contour elevation:

Methodologies

2-d intersection (zeroset theory)

The cube (3-d box) counting

The triangular prism

The 2-d spectral

The first order structure function (q=1)

The second order structure function (q = 2)

ßAß

-1.23 0.04

-2.25 0.03

-0.10 0.01

-2.54 0.05

0.8010.01

1.5310.04

minimum = 309 m; maximum = 611 m;

average = 418.8 m; standard

JDIAD
jD2i = 2.23 0.04 (Di^ = 1.2

12.25 0.03
J2.1010.01
12.23 10.03

j 2.20 0.01
J 2.23 0.02

deviation = 61.4.

!CAC

3) 13.91 0.05

! 6.37 0.07

16.07 0.02
11.83 0.05

1 -0.02 10.01

10.15 10.05

6.2.2.1. The 2-d intersection method

Fig. 6.3(a) is the contour set, which comprises 17 contour segments, of an elevation

418.8 m (the average elevation for the area). The contour set was resulted from intersecting
the DEM surface with a horizontal plane of a vertical height, which is the average ofthe

contour elevation values of the DEM data set. Fig. 6.3(b) is the log-log plot of the box-

counting method applied on the contour set shown in Fig. 6.3(a), where Nr is the number of

boxes of a side length ofr needed to cover the contour set. The fractal dimension of the

DEM data set D2j 2.23, which is the D value of the contour set Dint2 plus 1 based on the

zero set theory (Table 6.1). The estimate errors in D2i and C2j are determined by equation

(2.1) as described in Chapter 2.2.1.

6.2.2.2. The cube (3-d box) counting method

The cube-counting method was applied on the digitized DEM data set, which is a 65

by 65 2-dimensional raster array of a equally spaced grdding interval (10 m). Fig. 6.4(a)

shows the log-log plot of the number of filled cubes (Nr) against the side length of the cube

(r). The "filled cube" is defined as such either the cube is located underneath the DEM

surface or the cube contains any portions of the DEM surface. In the study, the side lengths
of the cube(s) used to contain the DEM data are 640, 320,160, 80,40,20 and 10 m.

As shown in Fig. 6.4(a), the fractal dimension of the DEM data set D2b = 2.25 as

determined by the cub-counting method. The estimated errors AD2b and AC2b were

determined by equation (2.1) in Chapter 2, and are shown in Table 6.1.
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Fig. 6.3. Application of the 2-d intersection method applied on DEM data set. (a) perspective view of the

intersected contour set (17 contours) of contour elevation of 418.8 m. (b) log-log plot of the box-counting
method applied on the contour set shown in (a).

6.2.2.3. The triangular prism method

The triangular prism method was used to determine the fractal dimension of the

DEM data set. Fig. 6.4(b) shows the log-log plot of the surface area S against the resolution

area s, where s = r2 and r ranges from 10 m to 640 m The slope of the regression line is ß =

-0.10, hence the fractal dimension Dt = 2.10. The estimated errors AD2b and AC2b were

determined by equation (2.1) in Chapter 2, and are shown in Table 6.1.

6.2.2.4. The 2-d spectral method

The original DEM surface (without trend removed) were filtered by the 2-d Hanning
window presented by Subba Rao (1991), then the mean power spectral density P(k) at radius

wave number k was estimated used the method presented by Turcotte (1992). The slope of

the fitted line of the plot of Log[P(k)] against Log(k) is ß, and the fractal dimensions

derived from the 2-d spectral method D2f is given by equation (2.5). The definition of P(k)

and k, together with the principles of the method, are given in Chapter 2.5.3.

Fig. 6.4(c) shows the plot of Log[P(k)] against Log(k), where P(k) is the mean

power spectral density at the radius wave number k. The slope of the regression line is ß = -

2.54, thus the fractal dimension of the DEM data D2f = 2.23 as determined by the
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Fig. 6.4. The log-log plots for determining the fractal dimensions of the DEM data using the cube counting
(a), triangular prism (b), 2-d spectral (c), 1st and 2nd order structure function (d) methods. Refer to text for

more details.

2-d spectral method over the range ofthe radius wave number between 0.01 and 0.11. The

estimated errors AD2f and AC2f were determined by equation (2.1) in Chapter 2, and are

shown in Table 6.1.

6.2.2.5. The structure function method

The first (# = 1) and second (q = 2) order structure function methods are constructed

to determine the fractal dimension of the DEM data set. The pre-process of the DEM data is

similar to that of the 2-d spectral method. The original DEM surface (without trend
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removed) were filtered by the 2-d Hanning window, then the mean absolute DEM surface

reliefM(h) and the mean semivariance y(h) for the lag h (10 < h < 320 m) were estimated.

Given that the slopes of the fitted line of the plots of Log[M(h)] and Log[y(h)]against the lag

h are ßj and ß2, then the fractal dimensions D2s determined are given by equation (2.7).

Fig. 6.4(d) shows the plots of Log[M(h)] and Log[y(h)] against Log(h), where M(h)

and y(h) are the mean absolute relief and the mean semivariance of the DEM data set, and h

is the lag. The slopes of the regression lines are ß! = 0.80 and ß2 = 1.53, thus the fractal

dimension of the DEM data D2s = 2.20 and 2.23 derived from the 1st and 2nd orders structure

function method. The estimated errors AD2f and AC2f were determined by equation (2.1) in

Chapter 2, and are shown in Table 6.1.

6.2.3. Discussions

The fractal dimension of the DEM data set is D2 = 2.23 (Table 6.1) derived from

different methodologies except the triangular prism method which leads D2 = 2.10. The

difference in D is caused by the methodology (triangular prism method) itself. As discussed

in Chapter 2.9, the triangular prism method produces a power-law relationship between the

surface area S and a resolution area of s2. The concept of fractal reveals the power-law

relationship between the number of the objects (Nr) and the characteristic size r of the

objects (Chapter 1.3), i.e., Nr = C r"D. Obviously, the triangular prism method does not meet

the requirements of the definition of a fractal set. We revealed a power-law relationship

between S/s2 and s, and the slope of the regression line is ß = -2.20 which is closer to the D

values derived from the intersection, spectral and structure function methods. But this may

require further investigation in the future.

The D values ofDEM data and the topographic contours satisfy the zeroset theory.
The border area between Spain and Portugal has a fractal dimension of 1.23 for the

topographic contours, of 2.23 for the surface elevation variation. As discussed in Chapter 3,

the 132 topographic contours have an average fractal dimension of T>x - 1.23 derived from

both the ruler and box-counting method. The fractal dimension of the DEM data set as

shown in this section is D2 = 2.23 derived from different methodologies (except the

triangular prism method).

In summary, the DEM data of the border area of Spain and Portugal of a gridding
interval of 10 m (elevation contours are every 10 m) has a fractal dimension of D2s(q = 2) =
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1.23 and D2s(q = 1) = 1.20, i.e., 2ßt - ß2 = 0.07 > 0. Lavalle et. al. (1993) and Weissei et. al.

(1994) revealed that the positive value of 2ß2 - ß2 shows the surface is multi-scaling,

therefore, the DEM data in the study area behaviours multi-scaling property.
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6.3. FRACTAL ANALYSIS OF TM DATA

6.3.1. Brief introduction to Landsat TM data

Since 1972 there have been six Landsat satellites launched by NASA (the National

Aeronautics and Space Administration). Landsat 6 failed to be put into orbit, while Landsat

5 an earlier MSS (multi spectral scanners) are still in orbit gathering TM (Thematic Mapper)
data. The most important features which characterize TM data are of four types: spectral,

spatial, radiometric, and temporal resolutions.

The spectral resolution: The spectral resolution defines a specific wavelength

interval, which is often in m (^m = lO"6 metre) (Simonett, 1983). Records for each

spectral wavelength interval form a 'band'. The TM scanner is a multi-spectral scanning

system which records the electromagnetic radiation (EMR) in seven intervals of spectral

wavelengths (Table 6.2) (Star and Estes, 1990). TM data have a swath width of

approximately 185 km (i.e., a single TM image covers an area of about 1852 km2) taken

from a flight height of approximately 705 km.

Table 6.2 Six spectral bands of Thematic Mapper (TM) (Star and Estes, 1990)

Band i Wavelength ^m) i Characteristics

Bl

B2

B3

B4

B5

B6t

B7

0.45 - 0.52 i Blue-green, maximum penetration of water, useful for mapping coastal water

j areas, differentiating between soil and vegetation, forest type mapping and
I detecting cultural features.
I

0.52 - 0.60 i Green, matches green reflectance ofpeak of vegetation, useful for identifying
j cultural features.

0.63 - 0.69 i Red, matches a chlorophyll absorption band, useful for discriminating vegetation
J types, determining soil boundary and geological boundary delineations as well
i as cultural features.
I

0.76 - 0.90 i Reflected-Infrared, useful for determining biomass content and for mapping
] shorelines.
i

1.55 - 1.75 I Mid-Infrared, sensitive to the amount of water in plants, penetrates thin clouds,
] good contrast between vegetation types, discriminating clouds, snow and ice.

10.40 -12.50 i Thermal Infrared, useful for vegetation and crop stress detection, heat intensity,
] insecticide applications and for locating thermal pollution, and geothermal
i activity.
I

2.08-2.35 i Mid-Infrared, useful for discriminating geologic rock formations and soil

J boundaries, as well as soil moisture content.

t: This is the thermal band. The Landsat TM data in the study area lack thermal band cover because of the
unsuitability of this band in a desert area
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The spatial resolution; TM data are organized as raster data of seven layers if a

band is regarded as a layer. They are laid out in a grid similar to the square on a checker

board in which a grid cell is represented by a pixel. A pixel is the smallest unit of a TM

image and is abbreviated from 'picture element1. The spatial resolution is the area of a pixel,
which can be recognized by the scanner sensor (Simonett, 1983), and is 30 m by 30 m for

all bands except the thermal band (band 6), which has a spatial resolution of 120 m by 120

m. For each band, there are about 6167 (=185,000/30) pixels for a single TM image of a

swath width of 185 km.

The pixel value is termed a digital number (DN), which represents the amount of

EMR energy for the pixel in a band. The higher the DN is, the more EMR energy the TM

scanner received. TM data are thus, digital representations of the earth, stored as an image
file on a magnetic tape or computer disk. These representations form images when they are

displayed on a screen or output as a hard copy.

The information of a single pixel for each band can be expressed by (x, y, Zj), where

x (column) and y (row) are the location of the pixel in a 2-dimensional coordinate system,

and Zj is the value ofDN of the ith band (layer).

The radiometric resolution: This is also termed the pixel depth, which defines the

range ofDN values. For a 8-bit system, each pixel has a possible range ofDN from 0 to

255 (= 28-l).
The temporal resolution: It refers how often a sensor obtains imagery of a

particular area. For Landsat TM, this is every 16 days. It is not used in the study.

6.3.2. Landsat TM data

The Landsat TM quadrant of the northern part of Qatar, as shown in Fig. 6.5, was

selected due to its light cover of vegetation. From the TM quadrant, five study areas which

present five distinct ground classes were extracted based on their different land types (from
the 1:50,000 geological map of Qatar) as shown in Fig. 6.6. Table 6.3 summarizes the TM

quadrant information and image features, including the land features and the upper-left

coordinates, of each subset area.

Each of the five study areas is a small subset of the image, which has 64 by 64 =

4096 pixels, and covers an area of approximately 4 km2. The TM image of the study area

lacks thermal band 6 shown in Table 6.2, therefore there is 6 bands and the band 7 replaces
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Fig. 6.5. Geographical locations of Qatar and the study area.

Table 6.3 Different land types of five study areas from Qatar

TM information:

Format: RAE

Spatial resolution: 30 m

Block factor: 1
Date: 06-06-1990

Upper-left: (1,1)

Lower-right: (6967, 5965)

Pixel depth: 8-bit

Areas

A,Edm2

B, Qmcs

C, Qsb

D, Coast

E, Urban

i
i Land features

i dolomite and limestone
i
I

i calcareous sand of marine origin including
j coastal dunes, locally cemented
i
i saline, gypsiferous and silt flats
1
i coastal area

i
i urban area (Doho, the capital of Qatar)

i

i Upperleft position

11369,1144
I
i

12215, 1141
i
i

12545,1639

12524,2113

12258, 2445

band 6 in later discussion.

Fig. 6.7 shows composite images of the five study areas A, B, C, D, and E using
bands 4 (Red), 3 (Green) and 2 (Blue). The DNs for all the five study areas range between 0

and 127.

Table 6.4 lists statistical summaries of the six bands ofTM data from the five study
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A: Edm2 - E, dolomite & limestone.
(Edml, E, limstone & dolomite.)

B: Qmcs - Q, calcareous sand of marine origin
including coastal dunes, locally cemented.

C: Qsb - Q, saline, gypsifetous, & silt flats.

D: Coastal area.

E: Urban area of Doha.

I

E: Urban

2600' N

25 30' N

2500' N
5100' E 5130' E

Fig. 6.6. Geographical locations of five Study areas from Qatar.

areas. It is expected that standard deviations in DN of the six bands from the coastal area

will be greater than those from the other areas since the coastal area is covered by part land

and part sea. The RSS%, which was described in Chapter 2.4.2, is used to characterize the

trend of the TM surfaces

6.3.3. Fractal analysis of TM data

All six bands of the five study areas were used for the analysis. Each study area has

different land type features (Table 6.3) and, for the same study area, each band reflects

different spectral characteristics (different wavelength bands). The purpose of choosing and

analyzing the TM image data of different land types and different bands is to investigate the

effects of the different land types and different bands on the fractal dimensions.
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(a). Study area A: Edm2

(c). Study area C: Qsb

(b). Study area B: Qmcs

(d). Study area D: Coast

IMAGE =

Bands 4 (Red) + 3 (Green) + 2 (Blue).

(e). Study area E: Urban (Doho)

Fig. 6.7. Composite images of study areas A, B, C, D, and E using bands 4 (Red), 3 (Green) and 2 (Blue).
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Table 6.4 Summary
i

Band i Area, Symbols

lA, Edm2
>
I
i B, Qmcs

Bl i C, Qsb

i D, Coast
1
IE, Urban

lA, Edm2
1
i B, Qmcs

B2 iC, Qsb
i

i D, Coast

IE, Urban

lA, Edm2
1
i B, Qmcs

B3 iC,Qsb
1
i D, Coast

i E, Urban
I

lA, Edm2

IB, Qmcs

B4 iC, Qsb

i D, Coast

lE, Urban

lA, Edm2
1
i B, Qmcs
I

B5 iC.Qsb
j

i D, Coast

i E, Urban

lA, Edm2
1
i B, Qmcs

B6 iC,Qsb
1
i D, Coast
1

i E, Urban

statistics of TM

i

i

i
1i
i
ti
i
ti
i
t1

-f-
i

i
I1
i

1
i
iI
i

i
i1
i

1
i
i1

i1
i

i

1
i

i
i1
i

1
i

i

I
i
i1
i

i
i

i

i

1
i
ii
i

i
i
i1
i

Max

45

73

127

127

127

105

120

121

123

121

127

38

127

127

127

127

28

127

127

127

105

122

127

125

127

127

120

89

126

127

data for all

Min

23

43

0

0

0

90

99

63

43

12

0

10

0

0

0

0

5

0

0

1

84

94

0

2

0

0

104

9

11

0

six bands

Avg

36

60

44

86

28

97

111

93

78

80

6

26

92

36

97

119

18

101

32

88

96

109

73

51

48

118

110

32

51

78

and five study

Std

2.8

6.2

20.0

35.0

14.0

1.8

4.1

11.5

27.0

8.4

7.2

5.6

36.1

24.3

16.6

20.9

4.7

18.9

34.5

11.2

3.4

4.6

34.3

28.1

48.6

22.7

2.7

14.7

41.8

10.0

areas

RRS (%)

6.8

69.6

13.1

59.1

3.0

0.0

71.3

16.9

75.0

3.5

0.1

69.1

1.9

6.2

0.2

0.1

71.4

10.4

6.8

9.2

23.3

56.2

6.6

57.8

0.9

0.3

19.6

5.2

67.8

3.0

The spectral, the 1st, and 2n order structure function methods are deployed to

determine the fractal dimensions of all the six bands of five subsets ofTM data from Qatar.

Different land types of the five TM data subsets were shown in Table 6.3. The pre¬

processing of the TM data sets are the same as those of simulated surfaces and DEM data
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2-d simulated surfaces (midpoint displacement)

127

127

mp22, H = 0.8, D = 2.2

mp25, H = 0.5, D = 2.5

mp28, H = 0.2, D = 2.8

2-d simulated surfaces (interpolation)

int28, H = 0.2, D = 2.8

Fig. 6.8. Perspective views of the simulated 2-d ffim surfaces by the midpoint displacement and interpolation

techniques using H = 0.8, 0.5, and 0.2. The vertical values of the surfaces have been linearly stretched from

the range of (zmin, z^) to the range of (0, 127). The fractal dimensions of the new surfaces remain

unchanged, as 2.2, 2.5, and 2.8 respectively.

set (Chapter 2.5 and 2.6). For the spectral method, the original TM surface (without trend

removed) were filtered by 2-d Harming window (Subba Rao, 1991), then the power spectral

density P(k) at the radius wave number k were estimated (Turcotte, 1992), and the fractal

dimension D2f of the TM data was estimated from equation (2.5). For the 1st, and 2nd order

structure function methods, the original TM surface (without trend removed) were filtered

by 2-d Harming window, then the mean absolute DEM surface relief M(h) and the mean

semivariance y(h) for the lag h (30 < h < 150 m) were estimated, and from their log-log

plots, the fractal dimensions D2s were determined by equation (2.7).

Table 6.5 summarizes the fractal dimensions (D2f, and D2s) and their fractal limits

derived from the spectral, the 1st, and the 2nd order structure function methods for the six

bands of the five study areas (A-Edm2, B-Qmcs, C-Qsb, D-Coast, and E-Urban). The
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127

127

mam

(a). A, Band 2

(c). B, Band 2

(e). C, Band 2

(g). D, Band 2

(i). E, Band 2

127

127

127

(b). A, Band 3

ssss^lük

(d). B, Band 3

(f). C, Band 3

(h). D, Band 4

(j). E, Band 5

Fig. 6.9. 3-dimensional displays of some TM surface from the five study areas. The vertical values are digital
numbers (DN) of the TM imagery, which ranges (0, 127).

features of different bands and different land types are shown in Table 6.2 and Table 6.3.

In order to visually compare the DN of the TM imagery, Fig. 6.8 shows the 3-d

perspective view of the simulated 2-d fBm surfaces ofH = 0.8, 0.5, and 0.2, they have
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fractal dimensions of 2.2, 2.5, and 2.8 respectively (refer to Chapter 2.4 for more details).
The simulated surfaces (z) were linearly stretched from the range of (zmin, z^) to the range

of (0,127), i.e., the new surface z' is given by,

127

imx min

Table 6.5 The fractal dimensions derived from the spectral (D2), 1st, and 2nd
order structure function methods for the study areas

The 2-d spectral method), D = (7 - ß

D2f

Bl

B2

B3

B4

B5

B6

Thel

Dzste

Bl

B2

B3

B4

B5

B6

The 2

D2ste

Bl

B2

B3

B4

B5

B6

A, Edm2

2.47 0.02

2.17 0.05

2.89 + 0.05

2.64 0.04

2.28 + 0.03

2.72 0.04

2f)/2

B, Qmcs

2.26 0.03

2.14 + 0.07

2.46 0.02

2.41 + 0.02

2.18 + 0.05

2.17 0.05

'
order structure function method (q = 1), D = 3 -

= 1) A, Edm2

2.35 0.01

2.12 0.01

2.79 + 0.02

2.37 + 0.01

2.17 + 0.01

2.4*6 0.02

B, Qmcs

2.19 0.01

2.10 + 0.02

2.30 0.01

2.30 0.01

2.15 0.01

2.12 0.01

nd
order structure function method (q = 2), D = 3

= 2) A, Edm2

2.49 0.01

2.16 0.01

2.90 0.01

2.79 + 0.01

2.23 + 0.01

2.81 0.01

B, Qmcs

2.26 0.01

2.12 0.01

2.43 0.01

2.42 0.01

2.20 + 0.01

2.15 0.01

C,Qsb

2.31 0.03

2.17+0.05

2.80 0.04

2.32 + 0.01

2.58 + 0.04

2.39 0.03

ßi

C,Qsb

2.29 0.02

2.13 + 0.02

2.46 0.01

2.17 0.01

2.36 0.02

2.31 0.02

-ß2/2

C,Qsb

2.34 0.02

2.18 0.01

2.79 0.01

2.36 0.02

2.63 0.01

2.39 0.02

D, Coast

2.50 0.03

2.25 0.03

2.77 0.03

2.90 0.03

2.52 + 0.04

2.22 0.05

D, Coast

2.37 0.02

2.18 + 0.01

2.52 0.03

2.64 0.01

2.43 0.01

2.18 0.01

D, Coast

2.68 0.01

2.24 + 0.01

2.81+0.01

2.88 0.01

2.63 0.02

2.26 0.02

Bold D-value is the lowest or highest D-value for the same method; Italic D-value is the
value for the same studv area: Underline D-value shows those TM surfaces are displayed
limits for the 2-d spectral, 1st and 2nd order structure function methods are (0.01, 0.11) m"1

E, Urban

2.84 0.03

2.42 0.02

2.56 0.02

2.41+0.01

2.96 0.04

2.44 0.02

E, Urban

2.76 0.01

2.37 + 0.01

2.48 0.01

2.39 0.01

2.81 0.01

2.40 0.01

E, Urban

2.86 0.01

2.48 + 0.01

2.74 + 0.01

2.49 0.01

2.95 0.01

2.50 0.02

lowest or highest D-
in Fig. 6.9; Fractal

; (30, 150) m.
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where zmjn, and zrmx are the minimum and maximum values ofthe original surfaces. The

linear stretch process does not affect the fractal dimensions of the simulated surfaces. This

is because the linear stretch consists of two steps and does not affect the scaling property of

the original surfaces: the first step is that the original surface is vertically upper shifted by

an amount of zmin; the second step is that the original surface values are multiplied with a

constant of 127/(zmax - z^) given a specific surface.

Fig. 6.9 shows similar perspective views of some TM bands from the five study

areas, and provides some visual comparison of the TM surfaces with different study areas

and different bands. The displayed TM surfaces in Fig. 6.9 have either the lowest or highest
D valuesCTable 6.5).

Compared Table 6.5 with Table 6.1, TM images have higher fractal dimensions and

have more variations in D values than most terrain surfaces, such as digital elevation model

(DEM), on the Earth. TM images of the study areas have D2f = 2.14 to 2.96 with an average

of 2.47 (std = 0.25) at the scale range between the wave number 0.01 and 0.11 m"1; D2s =

2.10 to 2.81 with an average of 2.35 (std = 0.20) for the 1st order structure function method;

and D2s = 2.12 to 2.95 with an average of 2.51 (std = 0.26) for the 2nd order structure

function method at ranges from 30 m to 150 m. The terrain surfaces, however, have fractal

dimensions of 2.10 to 2.50 (Shelberg et. al, 1983; Mark & Aronson, 1984; Roy et. al,

1987) by using USGS 30-metre DEM grid data. The digitized DEM data gridded at 10 m

interval of the border are between Spain and Portugal has a fractal dimension about D =

2.23 as discussed in Section 6.2.2. This is expected because TM data are more complex
than DEM data. The DEM data include only topographic information, whereas, the TM

data are the representations of the different spectral characteristics such as roads, vegetation,

houses, and land types.

Lam (1990) used the isarithmic line algorithm, which was described by Shelberg et.

al. (1983), to calculate the fractal dimensions of three different Landsat TM quadrants of

coastal areas of Louisiana. Lam demonstrated that most TM images ofthe areas have

fractal dimensions of 2.54 to 2.87 at the scale range between 25 m and 150 m, and

concluded that TM images have higher fractal dimensions than most terrain surfaces.

The lowest fractal dimension is found in band 2 of the study area B, where D2f =

2.14, D2s = 2.10 (q = 1), and D2s = 2.12 (q = 2). A perspective view ofDN is shown in Fig.

6.9(c). This is because study area B is covered by a single rock unit (calcareous sand of

marine origin including coastal dunes, locally cemented), and band 2 (wavelength 0.52 -
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0.60 m) produced relatively less complexity ofthe TM surface in spectral characteristics.

The highest fractal dimensions are found in band 5 of the urban area ofDoho (E),
where D2f = 2.96, D2s = 2.81, and D2b = 2.95. Fig. 6.9(j) shows its perspective view (band

5), which is so erratic that it nearly fills in the whole cube. This may be explained by the

sensitivity ofband 5 to the existence of different spectral characteristics and linear structures

such as roads, vegetation, houses, and land types in urban area.

As can be seen from Table 6.5 and the comparison with the previous studies (e.g.

Lam, 1990), fractal dimensions ofTM images vary considerably with changing the

methodology, study area, and band. A very important question that may be raised here is

" What dominates thefractal dimensions ofTM images?" A detailed discussion ofthe roles

of the three factors (different land types, bands, and methodologies) on the variations of

fractal dimensions is followed. The spectral and 2n order structure function methods

resulted in roughly the same fractal dimensions of the TM imagery, both ofthem are

significant higher than the D values determined by the 1st order structure function method.

The difference will be discussed in Section 6.3.3.3.

6.3.3.1. Different land types

The five selected study areas cover different land types (Table 6.3), thus their

different spectral characteristics are expected to affect their fractal dimensions. Fig. 6.11 is

the linear plot ofthe fractal dimensions against different bands (each band has five study

areas) derived from the 2-d spectral, 1st and 2nd order structure function methods, where the

D values are represented by the empty circles, solid circles, empty rectangles, solid

rectangles, and empty triangles for the study areas of A, B, C, D, and E.

Table 6.6 shows 1), the mean and standard deviation ofD values of the six bands for

each study areas; and 2), the paired t-test comparison results (at a confidential level of 95%,

i.e., a = 0.05) of different study areas in the fractal dimensions determined by the spectral,
1st and 2n order structure function methods. The paired t-test comparison of areas is

compared based on paired variables for each band, and for each method. For example, six

D values of six bands of the area A were paired with six D values of six bands of the area B

for the spectral method.

The paired t-test comparison results (Table 6.6) indicates that the study area B

(Qmcs, covers the calcareous sand of marine origin) produces the lowest D value (D is
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2.8

2.6

2.4

2.2

2.0
(a)

Spectral:

(b) (c)

Structure tunc. D2S(q=2)

Fig. 6.10. Comparison of the fractal dimensions of TM imagery of the six bands. Each band has five study

areas. Different land type features of the different study areas are shown in Table 6.3. (a) D values

determined by the 2-d spectral method (D2f); (b) and (c) D values determined by the 2-d 1st and 2nd order

structure function methods.

about 2.25) while the urban area E yields the highest fractal dimension followed by areas D,

A, and C (Table 6.6). The study area B is significant different from all other four areas;

there is no significantly difference between study areas A, C, and D; The urban area E is

significant different from areas B and C, but not A and D. These results are independent of

the methodologies used in calculating D values.

Although the existence of the linear structures such as roads, vegetation, houses, and

land types occursin urban area E, the area does not always produce the expected high D
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values such as 2.8 and 2.9 as show in Table 6.5. For example, the TM surface shown in Fig.

6.9(i) seems not to have a fractal dimensions of around 2.85. This is because different

bands (hence different wavelength) have different sensitivities of the same object, in other

words, different bands also affect the variation of the fractal dimensions ofTM imagery.

Table 6.6 The paired t-test comparison of different study areas in

D2f determined by the 2-d spectral method

study areas I

mean 1 std

A, Edm2

B, Qmcs
C,Qsb
D, Coast

E, Urban

I*2s (q = 1) determin

study areas

mean std

A, Edm2

B, Qmcs
C,Qsb
D, Coast

E, Urban

D2s {q = 2) determin

study areas

mean std

A, Edm2

B, Qmcs
C,Qsb
D, Coast

E, Urban

A, Edm2

2.53 0.27*

\

ed by the 2-d 1st

A, Edm2

2.37 0.24

\

ed by the 2-d 2nd
A, Edm2

I 2.5610.32

1 \

B, Qmcs
2.2710.13

3.21*

\

C,Qsb
2.43 0.23

1.04V

2.03

\

order structure function method

B, Qmcs
2.19 + 0.09

2.31

\

C, Qsb
2.2910.12

1.10

2.02

\

order structure function method

B, Qmcs
2.2610.13

2.96

\

t Critical one-tail value tc = 2.02 at a confidential level

2.53 0.27* (normal): is the mean value and standard

C, Qsb
2.45 0.22

0.91

2.39

\

= 95%, i.e., a = 0

D, Coast

2.53 10.27

0.01

2.79

0.90

\

D, Coast

2.3910.18

0.21

4.30

1.24

\

D, Coast

2.58 0.27

0.25

4.87

1.36

\

D values.

E, Urban

2.6110.24

0.45

4.18

2.02

0.54

\

E, Urban

2.5410.20

1.22

3.73

3.32

1.45

\

E, Urban

2.67 + 0.21

0.62

4.18

2.72

0.79

\

05 (degree of freedom df = 5);
deviation for study area A of the six bands;

3.21* (bold + italic): is the absolute statistical t value of the paired t-test comparison, which is > tc (2.02) and
shows significant difference between the two samples;
7.04V (italic): is the absolute statistical t value of the paired t-test comparison, which is < tc (2.02) and shows
no significant difference between the two samples.

6.3.3.2. Different bands

The DN ofTM data in each band are the amount ofEMR energy transmitted in

space for a specific wave interval, and received by the multi-scanner installed in satellites

(Table 6.2). Therefore different bands reveal different spectral characteristics, and have
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(a)

Spectral: D2f

(b) (c)

Structure rune. D2s(q=2)

Fig. 6.11. Comparison of the fractal dimensions of TM imagery from five study areas. Different land type

features of the different study areas are shown in Tahle 6.3. (a) D values determined by the 2-d spectral

method (D2f); (b) and (c) D values determined by the 2-d 1st and 2nd order structure function methods.

different sets ofDN values for a single study area. This difference is expected to affect the

variation in fractal dimensions of different bands. Fig. 6.11 is the linear plot of the fractal

dimensions, derived from the spectral, 1st and 2nd order structure function methods, against

the land types, where the D values are represented by the empty and solid circles for band 1

and 2; the empty and solid rectangles for band 3 and 4; and the empty and solid triangles for

band 5 and 6.

Table 6.7 summarizes 1) the mean and standard deviation ofD values ofthe five

study areas for a single band; 2) the results of the paired t-test comparison for the D values
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of six bands at a confidential level of 95% (a = 0.05). The paired t-test comparison of

bands is compared based on paired variables for each area, and for each method. For

example, the five D values ofthe five areas ofband 1 were paired with the five D values of

the five areas ofband 2 for the spectral method. The D values were determined by the 2-d

itidspectral, 1 and 2 order structure function methods.

Table 6.7 The paired t-test comparison of different bands m D values.

D2f determined by the 2-d spectral method

t-test (paired)

mean 1 std

Bl

B2 i
B3

B4

BS

B6

D2s (q = 1) deterr

t-test (paired)

mean 1 std

Bl

B2

B3

B4

B5

B6

D2s (q = 2) deteri

t-test (paired)

mean 1 std

Bl

B2

B3

B4

B5

B6

Bl B2 B3

2.4810.23* 2.23 + 0.11 2.70 + 0.18

\ 4.484 1.63*

\ 4.42

\

nined by the 2-d 1st order structure function i

Bl B2 B3

2.3910.22 2.1810.11 2.5110.18

\ 4.24 1.02

\ 3.47

\

nined by the 2-d 2nd order structure function

J Bl B2 B3

1 2.53+0.25 2.2410.14 2.7310.18

I \ 4.85 2.01

\ \ 5.43

\ \

B4

2.5410.24

0.44

2.63

1.57

\

method

B4

2.3710.17

0.17

2.43

1.39

\

method

B4

2.5910.23

0.53

2.83

1.64

\

B5

2.5010.30

0.35

2.96

1.17

0.17

\

B5

2.38 10.27

0.17

2.80

0.84

0.08

\

B5

2.5310.31

0.02

3.26

1.47

0.32

\

B6

2.39 + 0.22

0.75

1.48

3.92

1.02

0.72

\

B6

2.2810.13

1.46

1.86

3.88

0.87

0.94

\

B6

2.4210.25

0.77

1.53

4.03

1.31

0.57

\

t Critical one-tail value tc = 2.13 at a confidential level = 95%, i.e., a = 0.05 (degree of freedom df = 4);
2.48 10.23* (normal): is the mean value and standard deviation for area A of the six bands;

4.48+ (bold + italic): is the absolute statistical t value of the paired t-test comparison, which is
shows significant difference between the two pairs;

1.63* (italic): is the absolute statistical t value of the paired t-test comparison, which is < ^ (2
no significant difference between the two pairs.

>tc (2.13) and

13) and shows
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An examination of the mean D values in Table 6.7 (refer to Table 6.5 for more

details), as well as shown in Fig. 6.11, indicates that band 3 usually yields the highest fractal

dimensions, whereas band 2 has the lowest D value. The D values ofbands 4, 5,1, and 6

are in between them. Band 5 has highest standard deviation in D values (Table 6.7), i.e.,

band 5 is more variable than the other bands in D value.

As shown in Table 6.7, the fractal dimension ofband 2 is significantly different from

those ofbands 1, 3,4, and 5 at a confidential level of 95%; the significant difference also

exists between band 3 and band 6. For the other pairs ofbands, the paired t-test does not

show any significant difference. These results are independent of the methodologies used to

calculate the D values.

6.3.3.3. Different methodologies

The spectral, 1st, and 2" order structure function methods were used to determine

the fractal dimensions for all the six bands of the five study areas. The results of these

dimensions are shown in Table 6.5.

Fig. 6.12(a), (b), and (c) are the linear plots of D2s (q=1) against D2f, of D2s (q = 2)

against D2f, and ofD2s (q = 2) against D2s (g = 1) respectively. Their trend lines can be

Table 6.8 The paired t-test comparison of different methodologies in D values.

D range (min - max)"

avg std*

t-test (paired)3
D2f

D2sfo=l)

D2S(?=2)

Spectral method

D2f

2.14-2.96

2.47 0.25

D2f

\

Structure function method

D2s(?=l)
2.10-2.81

2.35 0.20

D2s(?=l)

7.idf-

\

D2s(?=2)

2.12-2.95

2.51 0.26

D2s(?=2)

-3.15"

-7.321

\

© The minimum and maximum D values occur in band 2 of the study are B and band 5 of study area E

(urban) respectively;
* 2.47 0.25 the average and the standard deviation for a single method;
~ the paired t-test comparison among the methodologies at a = 0.001 (degree of freedom df = 29); and the t

critical one-tail value tc = 3.40;

7.1(r (bold + italic): is the absolute statistical t value of the paired t-test comparison, which is > t^ (3.40) and
shows significant difference between the two pairs;
3.15^ (italic): is the absolute statistical t value of the paired t-test comparison, which is < tc (3.40) and shows
no significant difference between the two pairs.
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Fig. 6.12. Comparison of different methodologies in D values. The linear plots of (a) 025(9=1) against D2f; of

(b) D2s(#=2) against D2f; and of (c) 0^(^=2) against D2s(^=l). (d) is the error bars plot of the D values of all

the six bands and five study areas derived from the spectral, 1st and 2nd order structure function methods at a

confidential level of a = 0.001.

described as D2s {q = 1) = 0.76 D2f, +0.49 (R2 = 0.88), D2s (q = 2) = 1.04 D2f-0.07 (R2 =

0.95), and D2s (q = 2)= 1.22 D2s (q = 1) -0.36 (R2 = 0.84) respectively. In other words, D2s

(<7 = 2)>D2f>D2s(<7=l).

Fig. 6.12(d) is the error bars plot ofthe fractal dimensions derived from different

methods at the confidential level ofa = 0.001. The error bar plot here does not take account

of the facts that the fractal dimensions ofTM imagery affected either the different land

types or bands.
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Table 6.8 summarized the results of the paired t-test comparison at a confidential

level of a 0.001 (degree of freedom df= 30 -1 = 29) for the three types ofD values.

From the t-test results and Fig. 6.12, the spectral and 2nd order structure function

methods resulted in roughly the same fractal dimensions of the TM imagery, both ofthem

are significant higher than the D values determined by the 1st order structure function

method.

The higher fractal dimension derived from the 2nd order structure function method

than that derived from the 1st order structure function method could be used to verify the

surface behaviours multi-scaling properties (Lavallee et. al, 1993, Weissei et, al, 1994).

Lavallee et. al. (1993) suggested that simple and multi-scaling behaviour could be

distinguished by examining properties of Agg(h) (Chapter 2.6.1), which is the q'h order

structure function of topography g(x). Generally, the scaling exponent ß9 of the structure

functions depends nonlinearly on the order q. Lavalee et. al. (1993) determined the length

scaling properties of the 1st and 2nd order (g = 1 and q = 2; and the scaling exponents are $x

and ß2 respectively) structure functions from a DEM gridded at 50 m intervals for

Deadman's Butte, Wyoming. They found that 2ßx - ß2 > 0, consistent with multi-scaling

behaviours. Although the found value (2ßj - ß2) was small (0.06 0.01), they pointed out

that it agreed with the results obtained from using a more accurate technique called the

"double trace moment."

Weissei et. al. (1994) determined the scaling properties of the 1st and 2n order

structure functions for the DEMs from Ethiopia, Saudi Arabia, and Somalia (DEMs spans

3 (or 1) of latitude and 1 (or 3) of longitude for 3600 by 1200 points, elevation contours

are every 1000 m). They found that the scaling exponent for the 1st and the 2nd order

moments are different, 2ßx - ß2 = 0.11 0.04 > 0 (where the uncertainty given as two times

the standard deviation).

Converting the differences between the scaling exponents of the 1st and 2nd order

moments into fractal dimensions, the relationship between D2s (q = 2) and D2s (g = 1) can be

deduced from equation (2.7) in Chapter 2.6.3 as D2s(q = 2) = D2s(q = 1) + 0.03 for the

results obtained by Lavallee (1993), and D2s(q = 2) = D2s(q = 1) + 0.06 for the results

obtained by Weissel (1994).

For the TM imagery of northern Qatar, all the six bands ofthe five study areas of

TM data sets were analyzed by the 1st and 2n order structure function methods. The
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average difference between the scaling exponents for the 30 samples are given 2ßj - ß2 =

0.33 0.27 (the uncertainty is the standard deviation). This difference is higher than those

derived from the DEM data sets (border area of Portugal and Spain; Deadman's Butte,

Lavallee et. al. 1993; and Ethiopia, Saudi Arabia, and Somalia, Weissei et. al, 1994). This

may be explained by the facts that TM data include both topographic information and non-

topographic information high frequencies, such as roads and edges caused by different

spectral characteristics of different neighbouring cover types (Lam, 1990).

In summary, the fractal dimensions ofTM imagery are controlled by the land types,

the bands, and the methodologies used. TM imagery of Qatar have multi-scaling properties.
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6.4. FEATURE EXTRACTION (EASTERN COASTLINE)

The TM imagery quadrant of Qatar has 6967 by 5965 pixels has a spatial resolution

of 30 m (i.e., each pixel covers a square area of 302 m
.
An area of 512 by 512 pixels from

the eastern Qatar is taken as an example to demonstrate the way of extracting the coastline.

The area covers part land and part sea. The D value of the extracted coastline is determined

by the ruler and box-counting methods, and the results are linked with those of topographic

contours and coastlines obtained in Chapters 3 and 5.

6.4.1 Extracting coastline from TM data

A FORTRAN program was developed to extract the coastline from the Landsat TM

image data which covers the east coast of Qatar. The extraction procedure is briefly
described as follows.

Firstly, a criterion is needed to distinguish the land and the sea in the area of the TM

imagery. This criterion should be unique to characterize the pixels in which the coastline

passes in the whole imagery area. Therefore, the digital numbers (DN) of the adjacent

pixels of each band for characterizing the coastal line of the all six bands were carefully

studied. It is found that, in a single band, the difference ofDN between the adjacent pixels

which are located on both the land and sea is not significantly different from that ofDN

between the pixels ofthe sea and the land. The combinations of several bands distinguish

the boundary between the land and the sea significantly. Among them, the combination of

bands 4, 5, and 6 provides the best discrimination of the east coastline boundary of Qatar.

Therefore, bands 4, 5 and 6 are selected, and their DN are added together to be DN3,

and used to characterize the coastal boundary. For each pixel, the DN ofbands 4, 5, and 6

are recorded as DN4, DN5, and DN6, hence, DN3 = DN4 + DN5 + DN6. The subtraction (or

differences) ofDN3 between the adjacent pixels, which cover the coastline, then become a

unique threshold value (DNO) in the whole imagery. In other words, the subtraction values

ofDN3 between adjacent pixels where coastline passes can only be greater than DNO,

otherwise the adjacent pixels are regarded as pixels of inter land or inter sea. Thus, the

threshold value DNO can be used to discriminate the boundary between the sea and the land.

The procedure of extracting coastline from TM imagery is similar to that of contouring a

topographic surface with a certain elevation level, and the contour elevation level is 0 here.
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512 pixels x 30 m = 15,360 m

Fig. 6.13. The east coastline segment extracted

from Qatar TM imagery.

Thirdly, if the subtraction ofDN3 between any adjacent pixels exceeds DNO in the

whole image, the coordinates ofthe pixel (row and column numbers) is recorded as the

boundary point, in which the coastline passes.

Finally, the program scans the whole imagery row by row. As soon as first point

(Pj) of the coastline is found, the program starts to trace the coastline by comparing the

pixels surrounded the point P1? and the second point P2 of the same criterion is found. This

process can be carried out until either the last point PN to be the same as the first point Pj of

the coastline (this is the closed coastline) or the edge of the study area

[(0,512) (512,512)1
had been reached (this is open coastline). Therefore, a series of

coordinates can be recorded as the coastline of the imagery area, and form a coastline.

Therefore, the extracted coastline has a resolution of 30 m, which is the spatial resolution of

the TM data.

Fig. 6.13 shows the extracted coastline of eastern Qatar. The side length of the

square is 512 pixels by 30 m = 15,360 m.

6.4.2 Fractal analysis of the extracted coastline

The ruler and box counting methods were used to determine the fractal dimensions

of the coastline. The coastline has fractal dimensions ofDr = 1.25 and Dlb = 1.23. They

have little difference, they are consistent with each other, and have an average fractal

dimension ofD = 1.24.

The theory of zerosets demonstrates that fractals reduce their dimensions by one
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under intersection with a plane (Chapter 2.7.3). A coastline can be regarded as the result of

the study area intersecting with the sea level plane. Therefore, the topographic surface of

Qatar has the fractal dimension ofD = 2.24. This D value is roughly the same as that of

Spain DEM (D = 2.23, Chapter 6.2.2), but is different from that of the TM imagery data.

This can be explained firstly by the fact that TM data represent the spectral characteristics of

the vegetation, land type, road, buildings; secondly that the coastline extraction procedure

might have enhanced the coastline information and this is need to be further investigated in

the future.

6.4.3 Discussion

The fractal dimension of the east coastline of Qatar (D = 1.24) is roughly the same as

that of the coastline of Britain (D = 1.25, Chapter 5; Kaye, 1989; Mandelbrot, 1967). It is

also consistent with the fractal dimension of topographic contours (Chapter 3) of different

map scales of the border area between Spain and Portugal where D = 1.23. Therefore, the

successful extraction of the Qatar TM feature (eastern coastline) and the consistent D value

with the coastlines of Britain demonstrate that the TM feature can be used to estimate the D

value of topography for the area.

As shown in Table 6.5, the sub-image ofband 2 ofthe coastal area (study area D)

has a fractal dimension about D = 2.18 - 2.25 [D2f = 2.25, D2s(#=l) = 2.18, and D2s(#=2) =

2.24], which is reasonably consistent with the D value of the extracted eastern coastline (D
= 1.24) based on the zeroset theory. However, the sub-image ofband 4 of the coastal area

has a fractal dimension about D = 2.64 - 2.90 (D2f = 2.90, D2s(#=l) = 2.64, and D2s(#=2) =

2.88), witch is much higher than the D value of the extracted eastern coastline (D = 1.24).

The different behaviours in the fractal dimension D can be explained by observing their TM

surfaces as shown in Fig. 6.9(g) and (h). Band 2 (wavelength = 0.52 - 0.60 m) has

distinguished a coastal boundary between the land and the sea [Fig. 6.9(g)], and the

coastline of the sub-image coastal area represents a small portion of the extracted eastern

coastline, hence they have roughly the same D values. On the other hand, band 5

(wavelength = 0.76 - 0.90 m) reflects not only the spectral characteristics of the sea but

also the similar spectral characteristics of the land [Fig. 6.9(h)]. Therefore, the fractal

dimension D characterizes the different spectral features of the TM imagery.
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6.5. CONCLUSIONS

The fractal analysis has been successfully conducted on the DEM data digitized

from the border area of Spain and Portugal and on the TM data from five study areas (A-

Edm2, B-Qmcs, C-Qsb, D-Coast, and E-Urban) of Qatar. The results of the fractal analysis

ofDEM and TM data in this chapter can be concluded as following.

1. The digitized DEM of the border area ofPortugal and Spain, which has a elevation of 10

m and covers an area of 640 m by 640 m, has a fractal dimension ofD = 2.23 (Table 6.1).

The D value of the DEM data is in the D ranges from 2.1 to 2.5 obtained by Shelberg et.

al, (1983); Mark and Aronson, (1984); Roy et. al, (1987); Lavallee, (1993); Weissei et.

al, (1994). Based on the zerosets theory, the fractal dimension of the DEM data is

consistent with that of the topographic contours from the same area (T>x = D2 -1 = 1.23)

(Chapter 3). The difference between the D values derived from the 2nd and 1st order

structure function methods is D2s(#=2) - D2s(#=l) = 0.03, and suggests that the DEM has

a multi-scaling property. The difference is consistent with that obtained by Lavalle et. al.

(1993) and Weissei et. al. (1994), they found the difference is 0.03 and 0.06.

2. Five TM sub-images ofthe Qatar have D values ranging from 2.10 to 2.96 (Table 6.5)

derived from the spectral and structure function methods. The D values have a wider

range than the results obtained by Lam (1990) based on the TM quadrants of Louisiana,

where D ranged from 2.54 to 2.87. The lowest fractal dimension is found in band 2 of

the study area B, where D2f = 2.14, D2s = 2.10 (q = 1), and D2s = 2.12 (q = 2). This is

because study area B is covered by a single rock unit (calcareous sand ofmarine origin

including coastal dunes), and band 2 (wavelength 0.52 - 0.60 m) produced relatively

less complexity of the TM surface in spectral characteristics. The highest fractal

dimension is found in band 5 of the urban area ofDoho (E), where D2f = 2.96, D2s = 2.81,

and D2b - 2.95. This may be explained by the sensitivity ofband 5 to the existence of

different spectral characteristics and linear structures such as roads, vegetation, houses,

and land types in urban area.

3. Different land types control the D values. The paired t-test results at a confidence level

of 95% shows that the study area B (Qmcs, covers the calcareous sand ofmarine origin)

produces the lowest D value (D is about 2.25) and is significantly different from the other

four study areas; study area C (Qsb, covers saline, gypsiferous and silt flats) is
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significantly different from the urban area E. The urban area E yields the highest fractal

dimension followed by areas D, A, C, and B (Table 6.6).

4. Different bands also contribute to the variations in D values for the same study area and

same methodology. Band 3 yields the highest fractal dimensions, followed by bands 4,

5,1, and 6, and band 2 has the lowest D value (Table 6.7). The paired t-test comparison

at a confidential level of 95% (Table 6.7) shows the fractal dimension ofband 2 is

significantly different from those ofbands 1, 3,4, and 5 at a confidential level of 95%;

the significant difference also exists between band 3 and band 6. There is no significant

difference found for the other pairs ofbands.

5. Different methodologies also cause the changes ofD values of the TM imagery. The

paired t-test comparison results (Table 6.8), at a confidential level of a = 0.001, for all

the six bands of the five study areas shows that the 2-d spectral and 2n order structure

function methods resulted in roughly the same fractal dimensions, they have no

significant difference. Both ofthem are significantly higher than the D values

determined by the 1st order structure function method. This maybe explained by the TM

surfaces have multi-scaling properties.

6. The difference between the D values derived from the 2n and 1st order structure function

methods for all the six bands of five study areas is D2s(g=2) - D2s(#=l) = 0.16 0.13 (the

standard deviation), and suggests that the TM imagery has a multi-scaling property.

7. The fractal analysis of the extracted coastline from eastern Qatar TM quadrant shows that

TM feature can be extracted to estimate the D value of the topographic surface. The

consistent of the D value of the extracted coastline with the coastal sub-image area can be

used to verify the efficiency of different bands characterizing the coastal boundary. For

example, the sub-image ofband 2 of the coastal area [Fig. 6.9(g)] has a clear coastal

boundary, and has a close D value about D = 2.18 - 2.25 (Table 6.5) to the extracted

coastline D = 1.24 based on zeroset theory, whereas the sub-image ofband 4 of the

coastal area [Fig. 6.9(h)] has complex spectral features in characterizing the coastal

boundary, and has a higher fractal dimension about D = 2.64 - 2.90. Therefore, fractal

analysis of the extracted TM feature characterizes different spectral features of the TM

image. The extracted coastline has a roughly same D values as the coastline of Britain

[D = 1.25; Chapter 5; Kaye (1989), and Mandelbrot (1967)] and the topographic contours

of the border area between Spain and Portugal where (D = 1.23, Chapter 3).
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7.1. METHODOLOGIES

Seven methods [the ruler, box-counting, spectral, q order structure function (i.e., q
order moments), intersection, cube-counting, and triangular prism methods] for calculating
the fractal dimensions ofprofiles or surfaces have been used in the thesis. The programs

and the implementation of these methodologies (including the ruler, box, spectral, and

structure function methods) were verified by the comparison the calculated fractal

dimensions with the known ones (theoretical D values) of the Koch curve, the Cantor set,

and the simulated 1-d and 2-d fBm profiles and surfaces of (Chapter 2). The simulated 1-d

and 2-d fBm with different values ofH = 0.8, 0.5, and 0.2 were generated by the midpoint

displacement and interpolation methods (Barsley et. ah, 1988). Based on the analysis

results, some conclusions can be drawn;

Fractals or not: Unlike the theoretical fractal models (e.g., the Koch curve and the

Cantor set), natural phenomena are characterized by the self-similar or the self-affine fractal

models in a statistical sense (Mandelbrot, 1977). The fractal dimension is usually estimated

from the slope of the regression line through comparatively few points. In some situations,

the points from the log-log plot do not fit a straight line. This may indicate that a line is a

non-fractal. On the other side, some studies (e.g., Ringrose, 1994) did show that the D

values of the coastline profiles in Fife, eastern Britain, vary with map scales. This is needed



Chapter 7. Conclusions 207

to be investigated further so that proper explanations can be provided.
The application of appropriate methods to self-similar or self-affine fractals is

essential. On one side, some methods are not suitable for determining D values of some

curves or surfaces due to the data structure and the underlying theory ofthe methods. For

example, the ruler method can be deployed to determine the fractal dimension of the Koch

curve (or the topographic contours), whereas the 1-d spectral method can not. This is

because the Koch curve (or the topographic contours) has a lot of overhangs motif, i.e.,

given a certain position x, there might be more than one corresponding height y values.

This excludes the applicability of some fractal analysis methods, e.g. the spectral method.

On the other side, the assignment of a fractal dimension D determined for a self-similar set

to a self-affine set could produce ambiguous results (Mandelbrot, 1985). The ruler and box-

counting methods are successful fractal models to describe the self-similar fractals, while

the spectral and q order structure function (i.e., qth moments) methods are suitable to deal

with self-affine fractals. Generally, the methods for determining the fractal dimension of a

self-similar fractal should not be used for determining the fractal dimension of a self-affine

fractal, otherwise, meaningful results would be hardly achieved. For example, the fractal

dimensions of 1-d simulated self-affme ffim surfaces ofH = 0.8, 0.5 and 0.2 are very close

to 1 as they are determined by the ruler or box-counting method (Chapter 2.10.1), and will

vary with the vertical scale (i.e., the amplitude of the curve). This is consistent with the

results obtained by some previous studies (Mandelbrot, 1985; Brown, 1987; Wong, 1987;

Brown, 1987; Fox, 1989; Hough, 1989).

The ruler and spectral dimensions: The ruler dimension (determined by the ruler

or box-counting method, the two methods are equivalent) is different from the spectral
dimension (determined by the spectral or structure function method, the two methods are

equivalent). The former is more or less a roughness descriptor and focuses on the "area

filling capacity" of a curve in the space at certain range of observation scales and the

intercepts depend on the contour length; whereas the latter is to describe how roughness

varies within observation scales and the intercept characterizes the amplitude of roughness.

Therefore, different methodologies can give different fractal dimensions for a single data

set. Fundamentally, there is no reasons why the fractal dimensions should be the same for

different methods (Turcotte, 1992). For example, the topographic profiles digitized from

the 1:10,000 map of southern England have a fractal dimension ofD = 1.03 for the ruler

method, whereas ofD = 1.13 for the spectral method.



Chapter 7. Conclusions 208

Fractal limits: Natural phenomena are characterized by the self-similar or the self-

affine fractal models in a statistical sense over a certain range of fractal limits (Mandelbrot,

1977). Better estimation of fractal dimensions arises: 1) when the map quality is good and

the digitizing noise is little (these two factors control the lower fractal limit); and 2) when

analyzed contour lengths are large (it controls the upper fractal limit). The fractal limits of

the fitted regression line do not always have clear boundaries, and may lead to systematic

deviation from the power-law behaviour (Richardson, 1961). In some cases, the plotted

points may be fitted by more than one straight lines over more than one range of observation

scales. This shows that a line or a surface has multi-scaling behaviours, Kaye (1989)

described this phenomenon as "textural" and "structural1 fractals.

A number of studies (Nye, 1973; Bell, 1975 and 1979; Gilbert and Courtillot, 1987;

Malinverno, 1988 and 1989; Gilbert, 1989) have noted that the upper fractal limit plays an

important role in characterizing surfaces' geography at larger scales. The importance ofthe

lower fractal limit, however, has been little investigated. The study has shown that the

lower fractal limits are controlled by the resolution ofmeasurement, such as map scales,

map quality, digitizing accuracy etc.

Hanning window: The application of Harming window on the synthetic fBm

samples is essential in order to obtain correct fractal dimensions for the spectral method and

structure function methods. This is because the principles of the methods were deduced

from the theoretical assumption: the infinite sample size, and the truncation phenomena

(Gibbs effects) resulted from applying theory on the data of finite sample size in practice.

Table 2.5 and 2.6 show that the D values of 1-d and 2-d fBm can be correctly determined as

the fBm were Hanning window weighted for the spectral method. Comparisons between

the lower part of Tables 2.5 and 2.7 and between the lower part of Tables 2.6 and 2.8 show

the D values of the synthetic fBm are the same as determined by the spectral and structure

function methods. They are well consistent with the theoretical D values which are given

byH.

Zeroset theory: The zeroset theory relates the fractal dimensions of 1-d profiles to

those of 2-d surfaces. The zeroset theory suggests that D values of surfaces (D2) are

reduced by 1 after they are intersected by a plane (Goodchild, 1982; Burrough, 1981;

Barnsley et. al. 1988), i.e., the resulted curves have a fractal dimension T>x = D2 -1.

Although this is effective in practice for a crude approximation, care must be taken when

this deduction is needed. 1). The WHOLE set of the intersected contours resulted from
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intersecting the surface with a horizontal plane has a fractal dimension of its surfaces minus

1. An individual contour of the set of different H values, however, has the same fractal

dimension D = 1.24. 2). Only the contour set from intersecting the surface with a

horizontal plane is self-similar, the others are self-affme. 3). The spatial location of the

intersected contour set (i.e., the spatial locations of different contours ofthe same elevation)

also controls the D value. For example, the intersected contour set only consists of a single

coastline for a surface area which covers partly land and partly sea, and it has a fractal

dimension ofD = 1.2. The deduction of the surface ofhaving D = 2.2 might be not

sufficient. The zeroset theory also relates the 2-d self-affme method to the 1-d self-similar

method. In a topographic surface (x, y, z), (x, y) are self-similar and z scales differently

(hence self-affine). Thus the surface must be analyzed by self-affine method, whereas the

contours can be treated by self-similar method (e.g., DEM analysis).

7.2. APPLICATIONS

The fractal concept is a successful model to characterize the spatial variations ofthe

Earth's surface in the form of either 1-dimensional curves (topographic contours and

profiles) or 2-dimensional raster data sets (DEM and TM). Based on the analysis results,

the conclusions can be reached:

Topographic contours and coastlines: A consistent, reproducible fractal

dimension can be estimated from a contour of any elevations (i.e., contour elevation

invariant) on any maps (i.e., scale invariant) providing care is taken to define fractal limits.

Similar fractal dimensions are obtained from the ruler and box-counting methods at a

confidential level of 95%, it shows Dlb = Dr 0.15. The study of the 132 topographic

contours, which were digitized from the different scales (1:200,000,1:50,000,1:20,000) of

maps from the border area between Spain and Portugal, has shown that topographic

contours are self-similar fractals, and have a fractal dimension of about D = 1.23 (ranges

from 1.01 to 1.47 and the standard deviation = 0.07) over the fractal limits ranging from 30

m to 13 km (3 orders of magnitude). The analysis result is consistent with previous studies,

such as Mandelbrot (1967); Norton and Sorenson (1989).

Geological factors in the variations of D values: The variations in D values of the

coastline, topographic contours, and field profiles are controlled by several geological
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factors, such as erosive process, lithologies, and fractures. Erosiveprocess: The dominant

control of the D values of the coastlines, contours and profiles is the erosive process. As

shown in Table 5.4, coastlines and topographic contours formed by the down-cutting

erosion with river net work system and ice have higher D values (1.1<D<1.5) than those

formed by the wave action and cliff retreat process (1.01 < D < 1.10) (Feder, 1988; Kaye

1989; and the analysis results of Chapter 3, 4, and 5). Lithologies: Different lithologies can

either result in significant difference or produce more subtle variation in the fractal

dimensions of coastlines and contours. For example: The D values of topographic contours

from granite areas (D 1.25 0.02 ) are higher than those ofnearby metamorphic country

rocks (D = 1.20 0.02). Although the difference is small, it is statistically significant

(Chapter 3); The dolostone layers have higher D values (=1.13) than the shale layers (D =

1.02) in Kimmeridge Bay (Chapter 4). This corresponds to the geological fact that the shale

layer is more easily eroded away, and becomes smoother than the dolostone layer, where

fracture joints control its formation; However, the coastlines of Great Britain, which cover

different types of lithologies, show little variation in D values (Table 5.6) with lithologies.

The variation in D values are dominated by different types of erosive processes, and

different lithologies result in subtle variation in D values. Fractures: Higher D values of

topographic surfaces derive from the regions where fractures are abundant (Norton and

Sorenson, 1989). High D values also occur as the orientation of the curve cross-out with the

structural strike (Power et. al, 1987), whereas fault deformed profile usually leads low D

values (Chapter 5.6; Aviles et. al, 1987). It should be pointed out that the erosive processes

are often correlated with fractures, and they often compound control the variation in D.

DEM analysis: The DEM data digitized from the 1:20,000 map covering the border

area of Spain and Portugal, which has a elevation of 10 m and covers an area of 640 m by

640 m, has a fractal dimension ofD = 2.23 (Chapter 6.2). The D value of the DEM data is

in the D ranges from 2.1 to 2.5 obtained by Shelberg et. al, (1983); Mark and Aronson,

(1984); Roy et. al, (1987); Lavallee, (1993); Weissei et. al, (1994). Based on the zerosets

theory, the fractal dimension of the DEM data is consistent with that of the topographic

contours from the same area (Dj = D2 -1 = 1.23) (Chapter 3). The difference between the D

values derived from the 2" and 1st order structure function methods is D2s(g=2) - D2s(^=l) =

0.03, and suggests that the DEM has a multi-scaling property. The difference is consistent

with that obtained by Lavalle et. al. (1993) and Weissei et. al. (1994), they found the

difference is 0.04 and 0.05.
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TM analysis: The results of the fractal analysis of the five TM sub-image (A-

Edm2, B-Qmcs, C-Qsb, D-Coast, and E-Urban) of Qatar have shown that D values ofthe

TM images range from 2.10 to 2.96. The variations in D values are contributed by different

types of surface, band variations, and methodologies. Types ofsurfaces: Different land

types control the D values. The paired t-test results at a confidence level of 95% shows that

the study area B has the lowest D value (D is about 2.25) and is significantly different from

the other four study areas, whilst the urban area E yields the highest fractal dimension

(about D = 2.6) followed by study areas D, A, and C (Chapter 6.3.3.1). This is because the

study area B (Qmcs) is covered by a single rock unit (the calcareous sand of marine origin),

whereas the urban area E contains much more spectral characteristics, such as buildings,
road system etc. Band variations: Different bands contribute the variations in D values for

the same study area and same methodology. Band 3 usually yields the highest fractal

dimensions, followed by bands 4, 5, 1, and 6, and band 2 has the lowest D value (Chapter

6.3.3.2). The paired t-test comparison at a confidential level of 95% shows the fractal

dimension ofband 2 is significantly different from those ofbands 1, 3,4, and 5 at a

confidential level of 95%; the significant difference also exists between band 3 and band 6.

Multi-scaling: TM imagery has a multi-scaling property and can cause the variations in D

values when it is analyzed by the different methods. The significant difference between the

D values derived from the 2nd and 1st order structure function methods for all the six bands

of five study areas is D2s(#=2) - D2s(g=l) = 0.16 0.13 (the uncertainty is the standard

deviation), and suggests that the TM surfaces exhibit multi-scaling properties (Chapter

6.3.3.3).

7.3. FUTURE WORKS

A number of studies (Nye, 1973; Bell, 1975 and 1979; Gilbert and Courtillot, 1987;

Malinverno, 1988 and 1989; Gilbert, 1989) have noted that the upper fractal limit plays an

important role in characterizing surfaces' geography at larger scales. The importance ofthe

lower fractal limit, however, has been little investigated. It maybe used to quantify the data

sources (e.g., the map quality), data acquiring process (such as the digitizing step and the

sampling theory), and the filter designs in the subject of image processing.

Some previous studies (Cox and Sandstrom, 1962; Neidell, 1966; Bretherton, 1969,
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Balmino, 1973; Warren, 1973; Bell, 1975; Berry and Hannay, 1978; Sayles and Thomas,

1978; Bell, 1979; Brown and Scholz, 1985; Fox and Hayes, 1985; Power et. al, 1987;

Turcotte, 1987; Fox, 1989; Hough, 1989; Malinverno, 1995) have shown that the spectral

exponent ß of a profile of the Earth varies between 1 and 3, and has an average of ß = 2,

hence an average D = 1.5. After comparing the synthetic surfaces with actual topography,

Mandelbrot (1975,1983) noted that D = 1.5 is too high, and concluded that the topography

of the Earth has a fractal dimension D = 1.2. The difference in D values is definitely

worthwhile further investigating. Ten map and three field profiles described in Chapter 4

show self-similarity, but why their D values determined by the spectral method are not all so

near to 1.00 (i.e., the spectral slopes are not 3)? This might provide some information that

these profiles behaviour some extent self-affinity.

Gravity provides the fundamental controls on the scaling properties of natural

landscapes. This is because the elevations of the Earth's surfaces are biased by tectonic

movements and erosive processes. Tectonic forces (especially compresional tectonic

movements) bias landscapes towards a greater proportion of areas at higher elevation,

whereas the erosive or deposition processes bias landscapes towards a greater proportion of

areas at lower elevation. Further study may reveal the scaling properties of the up/down

biased effects of the landscape, and the fractal analysis of the real Earth's surface may

involve the structure function method at more than 2nd order.

Topography is the representation of the intersection of tectonic and erosive forces at

a given time. The continuously observation made for every specific interval for the same

objects, such as coastlines, river network, and lake shoreline, may provide the variation of

the object. The variation of the scaling properties of the object in the relative age could

provide some evolution information of the object, and may have some environmental

applications.

The fractal analysis results of the DEMs made of different techniques (e.g.,

digitization of the existed contour maps, and photogrammetric methods applied to stereo

imagery are two examples) could be compared with each other, and used in assessment of

the quality of DEMs. In other words, the fractal analysis results (and log-log plot patterns)

of the DEM could be used to judge how well the DEM represents the real topography. The

fractal analysis method could also be applied to the Radar imagery, and the results could be

compared with those of the TM imagery.
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The application of the spectral and structure function methods applied on the

Harming window, straight line y = x (or a plane surface z = 2x + 4y + 6), and Harming

window filtered straight line or surface described in Chapter 2.5.1 and 2.5.3 leads to the

slope (ß) of the regression line on log-log scale and the D values as following:

Table 7.1. D values of the Hanning window, straight line or surface, and Hanning
window filtered straight line or surface by the spectral and structure function methods

l-d Hanning window (hj

straight line y = x

filtered straight line yf = y h,

2-d Hanning window (h2)

plain plane z = 2x + 4y + 6

plain plane zf = z h2

l-d spectral

ß = 4.3; D =

ß = 2.0;D =

ß = 6.2; D =

2-d spectral

ß = 2.0; D =

ß = 2.0; D =

ß = 2.0;D =

method

0.35.

= 1.50.

= 0.60.

method

= 2.50.

= 2.50.

= 2.50.

l-d structure function method

q=1

ß= 1.0; D = 1.0.

P = 1.0; D= 1.0.

P = 1.0; D = 1.0.

i ß = 2.0; D= 1.0.

,p = 2.0; D = 1.0.

, p = 2.0; D= 1.0.
I

2-d structure function method

q = 1

P = 1.0; D = 2.0.

P = 1.0; D = 2.0.

p = 1.0; D = 2.0.

;q=2
1 p = 2.0; D = 2.0.
1

J P = 2.0; D = 2.0.
1

[ß = 2.0; D = 2.0.

From the results shown in the above table, it can be seen that structure function method

yield reliable D values, whereas the D values determined by the spectral method does lead

to expected results. This might need further investigation in the areas of the theoretical

theorem between the D value and the regression slope ß.

Further investigation is also needed for understanding the problems like :

1. the necessarility of applying the Harming window to the profiles or surfaces for the

structure function method;

2. theoretically the detrending process is necessary for FFT, why the detrending process had

no effects on (or distorted) the D values of the simulated theoretical l-d and 2-d ffim;

3. whether it is possible to obtain better and more reliable D values by using much larger

sizes of the simulated l-d and 2-d fßm;

4. the simulated l-d and 2-d fßm samples might need to be characterized by other

parameters in describing their scaling properties;

5. the effects caused by applying the Hanning window to the unequal intervaled map and

field profiles (Chapter 4) needs to be evaluated in quantity, this estimating error also

occurred as resampling the filed and map profiles before FFT.
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APPENDIXES

APPENDIX 1. SIMULATION OF RANDOM FRACTALS

A1.1. INTRODUCTION

The fractal concept can be combined with Brownian motion, and used to simulate

the natural realities in the world. The two most important methods to generate fBm are

interpolation and spectral synthesis. In this appendix, the principles of the midpoint

displacement and interpolation methods will be explained and used to generate 1-d and 2-d

fBm.

In Section A1.2, the concept ofBrownian motion and its generation by using the

integration of white noise and midpoint displacement method are reviewed. 1-d fBm is

discussed in Section A1.3. This includes the definition of 1-d fBm and its generation by

using the midpoint displacement and interpolation methods. The relationship between the

fractal dimension D and the roughness characteristic parameter H of fBm is also

investigated. Section A1.4 focuses on the discussion of 2-d fBm. The displacement and

bilinear interpolation methods are employed to generate samples of 2-d fBm

All programs of generating Brownian motion, white noise, and fBm are written in

VISUAL BASIC and FORTRAN 77 codes.
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A1.2. 1-DIMENSIONAL BROWNIAN MOTION

Brownian motion is the name given to the irregular and erratic movement of small

particles of solid matter, suspended in a liquid, under microscope by the botanist Robert

Brown (1828). Brownian motion is also occasionally either refer to as "brown noise" or

"Wiener Process". The mathematical theory ofBrownian motion was invented by Wiener

(1923). The range of applications ofBrownian motion has gone far beyond the study of

microscopic suspended pollen, and includes a variety of statistical mechanics, physical,

biological, electronics, communications, economic and management systems etc.

Furthermore, the concept of fractional Brownian motion (ffim) may be introduced through

the integration of Brownian motion with the fractal concept. The theory of fBm is

fundamental to the simulation ofrandom fractal profiles and surfaces.

A1.2.1. Definition

Suppose one dimensional Brownian motion is defined as a random process B(t), i.e.,

a function B(t) of a real variable t (t usually indicates time, or a horizontal position). B(t)

has independent increments with t, i.e., the random variable B(t2) - B(tj) is independent for

any sequence 0 < tt < t2. Generally it satisfies,

i). BytzjBytij has a Gaussian distribution (Al.l)

t2-tx

where B(t2), Bft) are two realizations of the random variable at time t2 and tl5 AB(t) = B(t2)

- B(tj) is the increment of B(t) from time tx to t2, and E is the mathematical expectation.

(Al.l) and (A1.2) indicate that the increment ofBrownian motion AB(t) follows the

Gaussian distribution and its variance (the mean square increments) is proportional to the

time difference At. Such a function is said to be both stationary and isotropic.

From equation (Al .2), it is obviously that,

o
+ t)-B(to) and
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have the same finite dimensional joint distribution functions for any t0 and r > 0, we may

say that the increments of B(t) are statistically self-similar in this sense. The second

equation above is just a properly rescaled version of the first with a scaling factor 4r
.
In

other words, B(t) has a statistical invariant scaling behaviour. If the time t is changed by a

factor r (from t to rt), then the increment AB(t) is changed by a factor *Jr
.
This

characterizes Brownian motion as self-affine.

A1.2.2. Construction of Brownian motion

Brownian motion can be constructed using either integration of Gaussian white

noise (W) or the midpoint displacement method.

A1.2.2.1. Integrating Gaussian white noise

White noise, W, is the term applied to any zero mean random process whose power

spectral density spectrum is a flat line. In other words, all the frequencies have the same

amount of energy. The name comes from an analogy to the idealized spectrum ofwhite

light (taken as a whole) which would contain power at all frequencies (all visible wave

bands) in equal proportions. Therefore, the correlation of a white noise is an impulse. In

other words, W = (Wt) is defined as a White noise process if Wt and Ws are independent and

have the same distribution whenever t * s. Especially, it is termed as Gaussian white noise

if the random variables have the same Gaussian distribution. Refer to Kallianpur and

Karandikar (1988) for more details.

1). Generating Gaussian white noise

Gaussian white noise can be produced by using a pseudo random number generator,

i.e., a series of uniformly distributed random numbers over a certain interval. This interval

is usually in [0, A], where A will be 1, or 231 -1 (32-bit), or 215 -1 (16-bit). The

standardisation procedure, which is given by,

Z=Y-E(Y)

is used to approximate the Gaussian white noise based on the Central Limit Theorem. The

Central Limit Theorem states that if Zn is the standardized sum of any n identically
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distributed random variables Y{ (i = 1, 2,..., n), then the probability distribution ofZn tends

to be normal distribution as n goes to infinity. In practice, n = 3 or n = 4 yields satisfactory

results for our purpose (Voss, 1985).

Let us now briefly examine the link between the uniformly distributed random

variable Yj and its standardized sum Zn. Suppose that Ys is the i-th uniformly distributed

random variable, then its expectation E(Yj) and variance Var(Yj) are given respectively by,

1 -I
o A 2

Thus,

Therefore,

2). Integration of Gaussian white noise

Equation (A1.4) allows white noise to be obtained from uniformly distributed

random variables which are generated by a random number generator in most computers.

The integration of Gaussian white noise as shown,

= f W(s)ds
J -oo
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Brownian motion

Gaussian white noise

Fig. Al.l. Gaussian white noise and its integration of 1-dimensional Brownian motion.

obviously satisfies (Al.l) and (A1.2), and therefore yields Brownian motion.

A Visual Basic code is written to produce the Gaussian white noise and its

integration - Brownian motion traces as shown in Fig. Al.l. Notice that the trace of

Brownian motion has a increase trend from the left to right, this is because that the series of

generated uniformly distributed random numbers fall over the interval of [0,1].

A1.2.2.2. The midpoint displacement method

Another straight-forward way to approximate Brownian motion is the midpoint

displacement method. This method is a recursive generating, or midpoint interpolating

technique, which was firstly used to approximate the normal Brownian motion in 192O's by

N. Wiener. Promoted by Carpenter, Fournier, and Fussell (Carpenter,1980; Fournier et ah,

1982), it has become widely popular in areas of surfaces simulation and computer graphics

(Hearn and Baker, 1986; Harrington, 1987).

Fig. A1.2 demonstrates the principle of the midpoint displacement method for the

first two levels. Considering the time interval [0, 1], we select B(0) = 0 and B(1) as a

Gaussian random variable with zero mean value and variance a
, i.e.,

Far[j?(l)-5(0)]=cr (A1.5)

and we expect,
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B(t)
i

4
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0

4/-
Va

O :

Vz

: _^*~
D2; ^^^^

Original or determined points
Points to be determined

3/4

B(1)

1 tto- t

1

Fig. A1.2. Principles of the 1-dimensional midpoint displacement.

Var[B(t2)-B(tx)]=\t2-t^ (A1.6)

to satisfy (A1.2), where tx and t2 two moments in [0, 1], i.e., 0 < tj < t2 < 1.

Firstly, t is taken as '/z, the middle point of 0 and 1; and B(!/2) is set to be the average

ofB(0) and B(1) plus some Gaussian random offset Dt with zero mean and variance A] ,

i.e.,

\)- B(0)

and obviously the same holds for B(1) - BQA). Combined with (A1.5) and (A1.6), the

variance of the left part of the above equation is given by,

= -Var[B(l)-B(0)]+Var(Dl) *=* -a2 + A, 2
g(5.6) 1

2

Therefore,
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Fig. AI.3. Some samples of 1-dimensional Brownian motion generated by the midpoint displacement

technique at different levels. 2n is the number of points in a single sample profile at level n. The sample

profiles have been vertically condensed to fit in the diagram.

Secondly, t is taken as lA, and B(lA) is set to be the average ofB{Vi) and B(0) plus

some Gaussian random offset D2 with zero mean and variance A22. Similarly, we have,

Thus,

Var y-r1

Therefore,

The same procedure can be applied to B(3/4) when t is taken as 3A, and furthermore to

the finer resolutions. Generally speaking, at level n, the values of midpoints are averaged
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by their nearby two points plus a random Gaussian offset Dn with zero mean and variance

A,,2 which is given by,

Therefore a random element, Dn, of variance 2 or
,
which is proportional and

corresponding to the time difference At = 2"n, is added to ALL the midpoints ofthe

displacement procedure at level n, and a Brownian noise of 2" + 1 points is obtained.

A Visual Basic code, mpld, is made to generate 1-d Brownian motion by using the

midpoint displacement method. Fig. A1.3 shows some samples of 1-d Brownian motion

generated by mpld at different levels n, where n = 3, 4, 5, 6, 7, 8, and 9. With the

requirement of a task, finer resolution can be reached at deeper level.
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A1.3. 1-DIMENSIONAL FRACTIONAL BROWNIAN MOTION

One dimensional fractal Brownian motion, (abbreviated as 1-d ffim in later

discussion), combines the concepts of 1-d Brownian motion and fractals, due to the work

done by Mandelbrot and Ness (1968). It has become a fundamental mathematical model for

the random fractals found in the nature, and in the computer graphics simulations (Voss,

1985).

A1.3.1. Definition of a fractional Brownian motion

1-d fßm is defined as a random process VH(t), which is a function VH(t) of a real

variable t (t usually denotes time). Its increment AVH(t) = VH(t2) - V^) has a Gaussian

distribution with a variance 112 - tx |2H for 0 < t, < t2 < 1 i.e., AVH(t) satisfies,

0- VH($^V H(t ^) has a Gaussian distribution (A1.8)

ii). E^H(t2)-VH(t$Y\t2-tx\2H (A1.9)

where the parameter H has a value 0 < H < 1. Therefore H typically relates with AVH by the

simple statistical scaling law,

AVHozAtH (ALIO)

where AVH = VH(t2) - V^), and At = t2 - t5 > 0.

H is a very important parameter to characterizes the behaviour of AVH. It has a

relationship with the fractal dimension D ofD = 2. Brownian motion discussed in Section

A1.2 is the special case of fflm with H = 0.5, and D = 2 - H = 1.5.

A1.3.2. Relationship between H and D

As discussed in Chapter 1, the fractal dimension of a self-similar curve, in terms of

box (or interval) dimension, is given by,
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Nr=r'D (Al.ll)

where Nr is the number ofboxes of size r required to cover the curve, and D is the fractal

dimension derived from the box counting method. Mandelbrot (1985) pointed out that the

assignment of a fractal dimension D determined by (Al.ll) to a self-affine set could

produce ambiguous results. The difficulties can be easily explained here by the scaling law

(ALIO) of fßm VH(t). For instance, if the time span [0,1] is divided into N equal intervals,

then for the time increment At each of these intervals will contain a rectangle of At by AVH.

Therefore At is given by,

A,~L-r

From (ALIO), we have,

Thus the number ofboxes of size r required to cover the sample of fßm over the time span

[0,1] is given by,

At

Combining this equation with (ALI 1) and (ALI2), we can deduce the very important

relationship between D and H for 1-d fßm,

D = 2-H (A1.13)

For the normal Brownian motion, H = 0.5, and D = 1.5.

A1.3.3. Generating fractional Brownian motion

A variety of techniques and methods have been developed for generating fßm. The
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most important two methods are interpolation and spectral methods. The interpolation
method is focused on in this discussion since it can be easily extended to 2-d fßm

generation and requires less computing time and memory.

A1.3.3.1. The midpoint displacement method

The midpoint displacement technique, discussed in Section Al .2.2.2, is very often

used in approximating fBm (Voss, 1985). Combining equations of (A1.6) and (ALIO), we

have,

Var\FH(t2 -

where AVH = VH(t2) - V^) has a Gaussian distribution over the time span [0, 1], and

Var[VH(l) - VH(0)] = a2 with 0 < ^ < t2 < 1.

Similarly, VH(0) is set to be 0, VH(1) a sample of Gaussian random variable with

variance of a2, and VH(V2) the average of VH(0) and VH(1) plus some Gaussian random

offset Ü! with zero mean and variance Ax2, i.e.,

Combining (A1.15) with (A1.14) gives,

Var

Thus,

2H

_2

The same procedure is carried out until level n, then the length scale has decreased to 2"n,

and a random Gaussian variable offsets Dn with variance An is added to the midpoints of
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\th 2the(n-l) level. 4, is given by,

~ 2H-2 \_2 (A1.17)

For H = 'A, (A1.17) is equivalent with (A1.7).

Fig. A1.4(a) shows three samples of 1-d fBm generated by the midpoint

displacement method with different H values of 0.8, 0.5, 0.2 respectively. The programs

used are written in Visual Basic code; mpld is for generating samples, sn&profp is for

plotting the samples.

It has been shown that the midpoint displacement method does not yield the right

fBm when H * V2 (Mandelbrot, 1982). In fact, we do have,

Var -la'+A'-f!
2H

but unfortunately,

Var = Var

= Var a
7

This clearly indicates that this process does not have stationary increments AVH over At

except H = l, they are not all statistically equivalent, although it does produce a fractal. For

example, points generated at different levels have different statistical properties in their

neighbourhoods. Actually the values of points remain unchanged once they are determined,

and roughly only halfpoints are determined more accurately. For example, at level (n -1),

there are (2n - 2""1 + 1) points in total, of those there are (2""1 - 2n~2) points are newly

determined. The concept of the stationary increments demands that ALL the points

generated during the displacing procedure should be determined more accurately.
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Midpoint displacement Successive random additions Interpolation (r = 0.1)

H^

H-

0.8,

0.5,

0.2,

v

D-

d =

D-

m

1.20

1.50

(a) (b) (c)

Fig. A1.4. Some samples of 1-dimensional ffim generated by; (a) the midpoint displacement, (b) the

successive random addition, and (c) interpolation techniques with H values of 0.8, 0.5, and 0.2 respectively.
There are 2 points for a single sample.

From the point ofview of the Nyquist sampling theorem, to approximate N real points

requires N/2 complex frequencies or N/2 sine and cosine components. The midpoint

displacement, however, only adds sine or cosine parts, not both.

One approach to deal with this non-stationary increments caused by the midpoint

displacement technique is to add offsets Dn of a suitable variance An to all points generated

during the approximating procedure. This method is termed 'successive random addition' by

Voss (1985). All points at each level are treated equivalently and determined more

accurately by adding an offset Dn which is a Gaussian random variable with a variance A,,2
at level n, where A,,2 is given by,

A "-I- 1-22H-2y (A1.18)

Fig. A1.4 (b) shows three samples of 1-d fBm generated by the successive random addition

method with different H values of 0.8, 0.5, 0.2 respectively.. The programs written in

Visual Basic code; mpadld for generating samples, and profp for plotting the samples.

A1.3.3.2. The interpolation method

The midpoint displacement and successive random additions methods are two

special cases of the interpolation method, which interpolate midpoints at each level with an

interpolating ratio r = Vi, i.e., the resolution is improved by a factor r = V2 each time further.
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The interpolation method deals with the situations that different interpolating ratios 0 < r < 1

are evoked.

If there are Nn points with a resolution of At at level n, then there will be Nn+1 = Nn /r

new points with a new resolution of rAt at level (n + 1). The values of these new points are

set through using the linear interpolation which is a kind of distance weighted average

method. That is, the closer to one end the new point is, the higher weighted index is given

to that end point. This can be easily illustrated by the 1-d x-axis situation as shown in Fig.

A1.5(a). If the weighted index to the end point x0, say u, is defined as,

u =
(x-x0)

then the value of the interpolated point at x, VH(x), is determined by,

VH(x)=(l-u)VH(x0)+uVH(x,)+Dn

2
A random offset Dn of Gaussian random variable with variance of An is added to all points,

including the original and new interpolated points for the purpose of stationary increments.

From (Al .9), An2 is given by,

With the same idea of the midpoint displacement method, a similar equation to

(A1.18) to determine An2 is given by,

where r is a scaling factor (0 < r < 1). Different values r will change the appearance of the

generated fractals, but not the fractal dimension D which is only determined by the

parameter H. The variation in fractal appearance caused by the changes of r is termed
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H = 0.80, and D = 1.20

X

-o-

point x to be interpolated from (x0,
r = 0.90

(a) (b)

Fig. A1.5. (a) Principles of 1-d linear interpolation method; and (b) some samples of 1-dimensional fßm

generated by interpolation method using different scaling factors r.

lacunarity.

Fig. A1.5(b) shows the changes of fractal appearance using different scaling factors r

and a constant H = 0.80.

The linear interpolating technique used here can be easily extending to higher

dimensions.

A1.3.4. Discussion

The fßm is self-affme. Fig. A1.4 shows some samples of 1-d fßm generated by the

midpoint displacement, the successive random addition, and the interpolation (r = 0.1)

methods through using different H-value. As can be seen from (ALIO) and Fig. A1.4, VH(t)

must be magnified by a factor rH (from VH(t) to rHVH(t)) if t is increased by a factor r (from t

to rt) to keep the traces statistically invariant in shape. This non-uniform scaling behaviour

is known as self-affinity.

H is a very important parameter to characterizes the behaviour of fßm. Generally, a

sample of fßm is rough when its H-value is close to 0, while those with H-value close to 1

are relatively smooth. Furthermore, the parameter H describes the "roughness" of samples

of fßm at small scales. From Fig. A1.4, the samples of high H values seem to characterize

the trends of the samples of low H values. As mentioned that the Brownian motion is one

special case of fßm, with H = 0.5, and D = 1.5.

The followings are some general discussion with the variations ofH between [0, 1]:
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1. H = 0. fBm is termed 1/f noise, which is an intermediate type of noise between white

noise and Brownian noise. 1/f noise presents one of the most common types of noise

found in the nature, and its origin is still a mystery after more than 60 years of

investigation (Voss, 1979). The name comes from the special relationship between the

power spectral density P(f) and its corresponding frequency f, i.e.,

P(f)=Cj

where C is a constant. Thus, the sample of VH(t) could be expanded in the t-direction by

any factors and could densely fill up a region in the plane, and its fractal dimension is 2.

2. H = l. This is the opposite situation of 1/f noise, gives the fractal dimension of a ample

of 1-d fßm D = l, and shows its behaviour as a straight line since AVH(t) = At.

3. 0< H<1. This is the most important and common case of fßm. The relationship

between the fractal dimension of samples of 1-d fBm and the parameter H is D = 2 - H,

and hence 1 < D < 2. Taking Brownian motion as a dividing situation, then we can

divide the fBm into three categories:

H = Yz. fBm becomes normal Brownian motion, i.e., 1/f2 noise, which satisfies,

where P(f) is the power spectrum density for the frequency f, and C is again a

constant. Its derivative corresponds to the uncorrected Gaussian white noise

(Mandelbrot and Ness, 1968; Mandelbrot, 1982). This indicates that VH(t2) - VH(t) is

statistically independent with t2 -tx for H = lA, where t5 < t < t2, and thus D = 1.5.

Vi < H < 1. There is a positive correlation between increments AVH(t) and At from

(ALIO). For example, if t is increased by t0, then VH(t +10) intends to increase for a

fBm.

0 < H < Vi. It is an opposite situation to 2), and there is a negative correlation between

At and AVH(t), and samples of fBm seem to be more erratic than that with lA < H < 1

as shown in Fig. A1.4.
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A1.4. 2-DIMENSIONAL FRACTIONAL BROWNIAN MOTION

A1.4.1. Definition of a 2-dimensional fractional Brownian motion

A 2-dimensional Brownian motion is a two dimensional process B(t, s), taking

values in R2(t, s), that has the following properties,

/). B^, A, j- B(t2, s2 J has a Gaussian distribution, with zero mean

indicating that the variance of the increments depends only on the distance.

A 2-d fBm is can be similarly defined as a two dimensional random process, VH(t,

s), which satisfies,

0- Vhvi s2jVh({i>si) has a Gaussian distribution (A1.21)

ii). E^H(t2,s2)-VH(tx,s$Y [^ -tj +(s2 -Siy J (A1.22)

where the parameter H again satisfies 0 < H < 1, and characterizes the roughness of the

generated 2-d fBm.

A1.4.2. The zeroset theory - relationship between H and D

The relationship between the fractal dimension D and parameter H is given by,

D = 3-H (A1.23)

which can be deduced using the concept of the zeroset. The zeroset theory points out that

dimensions of shapes are reduced by 1 after they are intersected with a plane. For example,

a cube has a dimension of 3, its intersection with a plane gives a 2-d square. The

intersection of this square with another plane produces a 1-d straight line segment, and a 0-d
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point will been created if this segment is intersected with yet another plane. This concept is

true when applied to the fractals (Voss, 1988).

It is obvious that the zeroset of a self-similar fractal yields another self-similar

fractal, however, the zeroset of a self-affine fractal could become either a self-similar or

self-affine fractal. For instance, the zeroset of a self-affmel-d fBm is a set of disconnected

points obtained from intersecting 1-d fBm (VH(t), with a fractal dimension Dj) with a plane

parallel to the t-axis. This zeroset is a self-similar fractal and has a topological dimension of

zero and a fractal dimension ofDo = Dj -1. The zerosets of a self-affine 2-d fBm (VH(t, s),

with a fractal dimension D2) however, could be either self-similar or self-affine since two

types of zerosets can be obtained. One is the intersection of 2-d fßm with a horizontal plane

witch is parallel to t- and s- coordinates. This zeroset is a series of contours of the same

height, and is a self-similar fractal with a fractal dimension Dx = D2 -1. The other type of

zeroset is a vertical section as the surface is intersected with a plane that parallels to the t- or

s-axis. This zeroset (profile) may show mostly self-affinity and has a fractal dimension

again D} = D2 -1. Generally, 0 < Do < 1, l< Dt < 2, and 2 < D2 < 3.

A1.4.3. Generating 2-dimensional fractional Brownian motion

The generation of a 2-d fBm can be directly deduced from the definition of 2-d

Brownian motion and the midpoint displacement method as well as interpolation method

used to generate 1-d fBm in the previous Sections.

A1.4.3.1. The displacement method

The idea of the midpoint displacement discussed in Section Al .3.3.1 can be

extended to generate 2-d fBm. Fig. A1.6 illustrates the principles of the methodology.

The initial geometrical shapes can be a unit square, a triangular grid, etc. (Fournier

et. al, 1982; Hearn and Baker, 1986; Miller, 1986; Harrington, 1987). In order to extend

the displacement method to 2-dimensional space, a initial unit square is used.

Firstly, start with a unit square of four corner points whose values have Gaussian

distribution with zero mean and variance a2 as shown in Fig. Al .6(a). Hence the resolution

now is 1, and the central point is to be generated. The value of the central point is set to be

the average of their four corner points plus an offset Dl5 which is again a random Gaussian

variable with a variance of A^ determined by (Al. 19). The scaling factor is r = 1 / -Jl,
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Fig. A1.6. Principles of 2-dimensional midpoint displacement method.

thus,

Secondly, the unit square has become 4 triangles with a resolution of j=. The four

middle points of each side of the original grid are to be determined as shown in Fig.

A1.6(b). Their values are set to be the averages of its nearby three points individually plus

an offset D2 with a variance of A22 which is given by,

A'-li-fa

The scaling factor remains fixed, r = 1/25. This stage is typically used for displacing those

points on the boundary of the original grid.

Thirdly, displacement procedure shown in Fig. A1.6(a) and (b) is repeated, but at

finer resolution [ | in (c), and --j= in (d)] and 45 degree rotated squares as shown in (d).

Finally, this procedure can be carried out until a satisfactory resolution or number of

points is reached.

In general, at stage n, the values of displaced points are set to be the average of their
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H = 0.80, D = 2.20

H = 0.50, D = 2.50

H = 0.20, D = 2.80

(a) (b)

(c) (d)

(e) (f)

Fig. A1.7. Three 2-d ffim samples generated by the midpoint displacement method with H = 0.8, 0.5, and

0.2.

nearby four (or three) corner points plus an offset Dn, which is again a random Gaussian

variable, with a variance of an2 determined by (A1.19). The scaling factor remains

unchanged, r = -j=, at different stages, thus,
V2
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2A/ =

2H
nH

a2=||| a2 (A1.24)

To avoid the non-stationary increments generated during the approximating procedure, the

same idea of the successive random addition method can be used. That is, a random

Gaussian variable given in (A1.24) is added not only to the newly generated points but also

to those old points at every stage. In this study, the random Gaussian variable was not

added sot that the generated mp profiles are non-stationary.

Programs written in Visual Basic code, mp2d and surfp, have been made to generate

samples of 2-d fßm by using the displacement method with different H-value (H = 0.8, H =

0.5, and H = 0.2), and to plot the 3-d perspective view and a 2-d contour maps of the

samples as shown in Fig. A1.7. The scale of axis of x, y, and z is the same for all these

diagrams so that they are easy to compare. To clarify the view, those points whose values

are below the average of a sample are omitted and not displayed, thus only the upper half

details are shown in the figures. These sample have the same size of 64 * 64, hence 4096

points in each sample. They also have theoretical fractal dimensions of D = 2.20, 2.50, and

2.80 respectively as described in (A1.23) and shown in Fig. A1.7(a), (c), (e). The contour

maps have fractal dimensions D = 1.20, 1.50, and 1.80, based on the zeroset concept and as

shown in Fig. A1.7(b), (d), (f).

A1.4.3.2. The interpolation method

The scaling factor discussed in the above displacement method is r = -j=, but it is
v2

possible to approximate a 2-d fßm using different scaling factors, which are ranged (0,1).

The idea ofthe 1-d interpolation method discussed in Section Al.3.3.2 can be further

developed for 2-d interpolation (Voss, 1985).

A unit square is again used, with random values of its four corners selected from a

Gaussian distribution with variance a2. Supposing that the data size is to be N2, then the

final resolution is to be .
As can be deduced easily that there will be \(r)" + if - 4

N-l L J

new points to be generated at stage n. The values of these new points are firstly bilinearly

interpolated from their nearby four corner points, then an offset Dn is added to ALL the
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the point (x, y) is to be interpolated from its nearby four corners

Fig. A1.8. Principles of 2-d linear interpolation method.

new generated points. Dn is, again, a Gaussian random variable with a variance an which is

given by (Al.20).

The 2-dimensional linear interpolation method discussed by Press et. al. (1986) is

demonstrated in Fig. A1.8. The grid square has four corner points (x0, y0), (xl5 y0), (xl9 yx),

and (x0, Vj), and their corresponding values are given as V(x0, y0), V(xl5 y0), V(xl5 y^, and

V(x0, y^. Supposing that a new point V(x, y) falls in the grid square, then the bilinear

interpolation gives its value as,

v(x,y)=(l-uXl-v)v(xo,yo)+u(l-v)v(Xl,yo)
+ (l-u)vV(xo,yl)+uvV(xi,y1)+ Dn

if u and v are defined as,

u and

where 0 < u, v < 1. A random offset Dn with a variance of An2, which is given by (A1.20), is

added ALL points to maintain the property of stationary increments.



Appendix 1. Simulation OfRandom Fractals 237

2-dimensional fBm surfaces generated by the interpolation method ( H = 0.8).

säsöü Itllllll
^

. v.:=s - "-> i.,-."!;rV '-' 'SwJ
§§§111

r = 0.01 r = 0.05

^^^^^^^m
-""^^^^^s

r = 0.10 r = 0.40

- y. -vx .:
-

.

i^^t^--.
-

-

-
-' -:-- -- -- - . ^ -^^-^^c*ö?i?c^c^&

r = 0.70 r - 0.90

Fig. A1.9. Samples of 2-d fBm generated by the interpolation method using different scaling factor r.

Fig. A1.9 shows the lacunarity of samples of 2-d fBm with a constant H = 0.80 and

different scaling factors r (r = 0.05, 0.10, 0.40, 0.70, 0.90 respectively). The variations in r

change the appearance of the generated fractals, but not the fractal dimension D which is

only determined by the parameter H. All samples have a fractal dimension D = 2.20.
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A1.5. CONCLUSIONS

From the literature survey and the study carried out in this appendix, the following
conclusions may be concluded;

1. Both 1-d and 2-d fBm, which are characterized by the parameter H, may be deduced

from the combination of the traditional Brownian motion and the concept of fractals.

Random fBm can be constructed by the displacement and interpolation methods.

2. The interpolation method is preferred to generate fBm since the displacement method

produces non-stationary increments of fBm.

3. Both 1-d and 2-d fBm samples have lacunarity. The variations in scaling factors (r),

which are used in the interpolation method, only change the appearances of fBm, not the

fractal dimensions. The fractal dimensions of fBm are controlled only by H.



APPENDIX 2. FRACTAL ANALYSIS RESULTS OF 132 CONTOURS

Fractal analysis results of all the 132 contours from the border areas

between Spain and Portugal by the ruler and box-counting methods.
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