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Abstract

The focus of this paper is to relate fundamental statistical properties of landforms and drainage networks to models that have
been developed in statistical physics. Relevant properties and models are reviewed and a general overview is presented. Landforms
and drainage networks are clearly complex, but well-defined scaling laws are found. Coastlines, topography contours, and lakes are
classic self-similar fractals. The height of topography along a linear track is well approximated as a Brownian walk, a self-affine
fractal. This type of behavior has also been found in surface physics, for example the surface roughness of a fracture. An applicable
model is the Langevin equation, the heat equation with a stochastic white-noise driver. This model also reproduces the statistics of
sediment deposition. Drainage networks were one of the original examples of self-similar fractal trees. An important advance in
quantifying the structure of drainage networks is the application of the Tokunaga fractal side-branching statistics. A classic problem
in statistical physics is the diffusion-limited aggregation. The resulting tree like structures have been shown to also satisfy the
Tokunaga statistics. A modified version of the diffusion-limited aggregation model reproduces the statistics of drainage networks. It
is concluded that the models developed in statistical physics have direct applicability to the fundamental problems in
geomorphology.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we will discuss several aspects of the
complexities associated with landforms and drainage
networks (Turcotte, 2006). We first consider how these
complexities are quantified. This discussion is generally
carried out in terms of fractal statistics. Mandelbrot
(1967) introduced the concept of fractals in terms of the
length of the west coast of Great Britain. Another
example of a fractal distribution in geomorphology is
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the frequency-area distribution of lakes. Mandelbrot
(1982) also recognized that the Horton–Strahler scaling
of drainage networks defined a self-similar fractal. The
fractal description was subsequently extended to self-
affine fractals. The three-dimensional structure of land-
forms is generally well represented as a self-affine
fractal. This association led Mandelbrot (1982) and Voss
(1989) to generate widely admired synthetic landforms.
This association has also been used to interpolate well
logs in order to determine the full three-dimensional
sedimentary structure (Hewett, 1986, Molz et al., 2004),
and in particular, to improve secondary recovery of
petroleum. While fractals are certainly generally
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Fig. 1. Cumulative number of lakes N with areas greater than A
(Meybeck, 1995). A good correlation with fractal scaling (1) is
obtained taking r=A1/2 and D=1.90.
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applicable, a fundamental question is why? Specifically,
why do drainage networks exhibit a fractal scaling? To
understand the scaling of drainage networks it is neces-
sary to appreciate the importance of Tokunaga (1978)
side branching. This self-similar side branching is a
much better constraint on alternative models for
drainage networks than the original Horton–Strahler
scaling.

A model that exhibits self-similar side branching is
the diffusion-limited aggregation (DLA). Ossadnik
(1992) rediscovered the Tokunaga scaling and showed
that the DLA clusters satisfy this scaling. DLA can also
be shown to have a strong similarity to the headward
migration of a drainage network into a flat plateau. A
rational for this approach to fluvial landscaping has been
given by Chase (1992) in terms of the random migration
of “precipitons” across a landscape.

Theoretical models for surface deposition that result
in the self-affine fractal scaling have been developed in
the physics literature (Barabasi and Stanley, 1993). For
example, solutions of the Langevin equation give this
behavior. The Langevin equation is the heat equation
with a white noise driver. The application of the heat
equation to geomorphology was proposed by Culling
(1960, 1963). It has been used to model alluvial fans and
prograding river deltas. Solutions of the Langevin equa-
tion have been applied to the structure of sedimentary
layering and to rates of sedimentation. In this paper we
review the fractal aspects of landforms, river networks,
and sedimentary layering. We also present some models
that explain this behavior.

2. Fractals

Fractals are a descriptive aspect of geomorphology
(landforms, drainage networks, etc.). Two important types
of fractal statistics exist, the first is self-similar fractals and
the second is self-affine fractals. Many times series have
been shown to be self-affine fractals. Examples include 1/f
noise and Brownian walks. Self-similar and self-affine
fractals are applicable to landforms.

First, consider self-similar fractals. Several defini-
tions exist, but the simple number-length scaling can
form the basis for almost all natural applications. This
can be written (Turcotte, 1997)

Ne r�D; ð1Þ

where D is the fractal dimension and N is the number
of objects with a linear dimension r for a discrete
distribution and the number with a linear dimension
greater than r for a continuous distribution. The concept
of fractals was introduced in terms of the length of the
west coast of Great Britain by Mandelbrot (1967). The
length P of coastline has a power-law dependence on
the length r of the measuring rod. Similar results are
obtained for the length of topographic contours on
topographic maps.

Another example of power-law (fractal) scaling is the
number-area distribution of lakes as illustrated in Fig. 1
(Meybeck, 1995). The cumulative number of lakes with
r=A1/2 (A lake area) greater than a specified value is in
excellent agreement with the fractal relation Eq. (1)
taking D=1.90. This application of fractals illustrates an
important feature of the fractal distribution. The appli-
cable range of fractal statistics must have the upper and
the lower bounds. The integral of the continuous fractal
distribution from r=0 to infinity diverges. This is the
reason that most statisticians reject the fractal distribu-
tion on a formal basis. Yet fractal distributions are
ubiquitous in the physical and biological sciences. The
fractal distribution is the only distribution that is scale
invariant.

Next, we address the applicability of self-affine frac-
tals to landforms. As a specific example we consider the
height of topography along a linear track. The height
of topography, δ as a function of the distance along
the track L, can be considered to be a continuous time
series. On average the dependence of δ on L is well
approximated by (Ahnert, 1984)

deL1=2: ð2Þ

This is the standard deviation of a Brownian walk. A
Brownian walk is a self-affine fractal.

Self-affine fractals can also be defined in a variety of
ways, but the most widely used definition utilizes spectral



Fig. 2. Power spectral density, S, as a function of wave number, k, for a spherical harmonic expansion of the Earth's topography (degree l) (Rapp
1989). The straight line is the dependence of S on k for a Brownian walk obtained from Eq. (2) taking β=2.
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analysis. For a self-affine fractal a spectral analysis results
in a power-law relation between the spectral power
density S and wave number k (Turcotte, 1997)

S ¼ Ck�b: ð3Þ

For a white-noise time series β=0 and for a
Brownian-walk time series β=2 (Turcotte, 1997).
Spectral expansions of global topography have been
carried out, a result is given in Fig. 2. A good correlation
with β=2 is found, i.e. a Brownian walk. This result is
consistent with that given in Eq. (2). Tebbens et al.
(2002) have shown that the seaward migration and the
recession of a sandy coastline is well approximated by a
Brownian walk. We will return to the applicability of the
Brownian walk statistics to topography when we discuss
sediment deposition in Section 5.

3. Drainage networks

Quantification of drainage networks resulted in the
Horton–Strahler ordering and power-law scaling. Man-
delbrot (1982) pointed out that this power-law scaling is
fractal. It is a standard practice to use the Strahler (1957)
ordering system. When two like-order streams meet they
form a stream with one higher order than the original.
Thus, two first-order streams combine to form a second-
order stream, two second-order streams combine to form
a third-order stream, and so forth. The bifurcation ratio
RB is defined by

RB ¼ Ni

Niþ1
; ð4Þ

where Ni is the number of streams of order i. The
length–order ratio Rr is defined by

Rr ¼ ri
riþ1

; ð5Þ

where ri is the length of streams of order i; RB and Rr

are found to be nearly constant for a range of stream
orders in a drainage basin (Horton, 1945). From Eq. (1)
the fractal dimension of a drainage network is

D ¼ ln Ni=Niþ1ð Þ
ln ri=riþ1ð Þ ¼ lnRB

lnRr
: ð6Þ

The fractality of drainage networks was one of the
earliest examples of fractal behavior given by Mandel-
brot (1982). Pelletier (1999) has carried out detailed
studies of seven drainage networks. He found RB=4.6,
RL=2.2 and D=1.99 to a good approximation. Three
examples of these drainage networks are given in Fig. 3.

While the applicability of Horton–Strahler scaling is
certainly of interest, it does not discriminate between
alternative models. Many models have been proposed for
drainage networks that satisfy this scaling (Rodriguez-



Fig. 3. Three examples of typical drainage networks (after Pelletier, 1999).
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Iturbe and Rinaldo, 1997). A major advance in the
quantification of drainage networks was made by
Tokunaga (1978, 1984, 1994). This author was the first
to recognize the importance of side branching; that is
some first-order streams intersect second-order, third-
order, and all higher-order streams. Similarly, second-
order streams intersect third-order and higher-order
streams and so forth. To classify side branching Tokunaga
(1978, 1984, 1994) extended the Strahler (1957) ordering
system. A first-order branch intersecting a first-order
branch is denoted “11” and the number of such branches is
N11; a first-order branch intersecting a second-order
branch is denoted “12” and the number of such branches is
N12; a second -order branch intersecting a second-order
branch is denoted “22” and the number of such branches is
N22 and so forth. The total number of streams of order i,
Ni, is related to the Nij by

Ni ¼
Xn
j¼1

Nij; ð7Þ

for a fractal tree of order n. A deterministic fractal tree
with side branching is illustrated in Fig. 4. At each
Fig. 4. Example of a binary self-similar fractal tree with side branches.
level the primary branch, say 33, has binary branching,
two 22 branches, and one 23 side branch. This simple
branching structure can be extended to all orders. This is
the basic concept of a generator for a fractal construct
(Turcotte and Newman, 1996, Newman et al., 1997).

The branch numbers Nij, ib j, constitute a square
upper-triangle matrix. This formulation is illustrated in
Fig. 5A, the branch-number matrix for the drainage
network, illustrated in Fig. 4, is also given in Fig. 5A.
For this example the primary branch 33 has two primary
second-order branches N22=2, one second-order side
branch N23=1, and two first-order side branches
N13=2. This class of fractal trees can also be quantified
in terms of branching ratios Tij, which are the average
number of branches of order i joining branches of order
j. Branching ratios are related to branch numbers by

Tij ¼ Nij

Ni
: ð8Þ

Again the branching ratios Tij constitute a square,
upper-triangle matrix. This formulation is illustrated in
Fig. 5B, the branching-ratio matrix for the drainage
network illustrated in Fig. 4 is also given in Fig. 5B. For
this example three second-order branches occur so that
N2=3. Each of these have a first-order side branch so
N12=3 and from Eq. (8) T12=1.
Fig. 5. (A) Illustration of the branch-number matrix for the fractal tree
illustrated in Fig. 4. (B) Illustration of the branching-ratio matrix for
the fractal tree illustrated in Fig. 4.



Fig. 6. Dependence of the Tokunaga ratio Tk on the order difference k
for the river networks considered by Pelletier (1999).
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Tokunaga (1978, 1984, 1994) also introduced a more
restricted class of self-similar, side-branching trees by
requiring self-similarity of side branching. We define the
self-similar Tokunaga fractal trees to be the subset of
trees for which Ti, i + k=Tk where Tk is a branching ratio
that depends on k but not on i. In addition it is required
that Tk have a power-law dependence on k

Tk ¼ Ti;iþk ¼ ack�1: ð9Þ

This is now a two parameter family of trees and we
will define fractal trees in this class to be Tokunaga trees.
For the fractal tree illustrated in Fig. 4, a=1 and c=2.

The dependence of the Tokunaga ratios Tk on the order
difference k for the river networks studied by Pelletier
(1999) is given in Fig. 6. The self-similar Tokunaga
scaling, given by Eq. (8), appears to be a reasonable
approximation, taking a=1.26 and c=2.4. The Tokunaga
scaling of river networks has also been given by Peckham
(1989). Applications of Tokunaga scaling in biology have
been studied by Turcotte et al. (1998) and Pelletier and
Turcotte (2000). Any classification study of the river
networks should certainly consider the side-branching
statistics. The Tokunaga scaling provides an important
test of any proposed model.

4. Diffusion-limited aggregation (DLA)

Although the application of the Tokunaga side-
branching statistics to the river networks has been
convincingly demonstrated (Peckham, 1989, Pelletier,
1999), the fundamental question is why? A number of
numerical simulations, proposed by statistical physicists,
have been shown to have remarkable scaling properties.
An example is the concept of diffusion-limited aggrega-
tion (DLA), introduced by Witten and Sander (1981).
They considered a grid of points on a two-dimensional
lattice and placed a seed particle near the center of the grid.
An accreting particle was randomly introduced on a
“launching” circle and was allowed to follow a random
path until: i) it accreted to the growing cluster of particles
by entering a grid point adjacent to the cluster or ii) until it
wandered across a larger “killing” circle. The resulting
sparse, tree-like structure has been taken as an excellent
representation of the dendritic growth patterns found in
nature and in industrial applications (Fowler, 1990).
Ossadnik (1992) has considered the branching statistics
of 47DLA clusters eachwith 106 particles. On average the
networks were 11th order fractal trees. The average
bifurcation ratio for the clusters was found to RB=5.15
and the average length-order ratio Rr=2.86, from Eq. (1)
the corresponding fractal dimension is D=1.56. The
concept of Tokunaga self-similar side branching had been
independently introduced into the physics literature by
Vannimenus and Viennot (1989). Using their approach
Ossadnik (1992) showed that the DLA clusters satisfy the
Tokunaga scaling, given in Eq. (8), with c=2.7.

Although the DLA model produces Tokunaga
scaling, the network is too sparse to be representative
of drainage networks. A modification of the DLA model
that does produce networks that are statistically identical
to drainage networks was introduced by Masek and
Turcotte (1993). Again, a square grid of sites was
considered. A number of seed particles were placed
along one or more boundaries of a square region.
Additional particles were added to randomly selected
unoccupied sites in the interior of the grid. The particles
were allowed to randomly “walk” through the grid until
they reached a site adjacent to the growing network. The
resulting network is fractal, typically with D≈1.85.
This modified DLA network also satisfies the Tokunaga
side branching statistics with c=2.5.

The modified DLA model can be considered to be
analogous to the headward migration of an evolving
drainage network into a plateau. “Precipitons” of rain
water randomly migrate across the plateau until they
reach the river network, and cause headward migration.
The concept of migrating “precipitons” was introduced
in a model for landform evolution by Chase (1992).

5. Depositional processes

As discussed above, a robust feature of landforms is
that the scaling statistics are well approximated by a
Brownian walk along linear tracks. A simple model
illustrates the creation of the Brownian topography
(Pelletier and Turcotte, 1997). Consider a linear set of
sites on which “particles” are randomly dropped. If the



Fig. 7. Illustration of the sediment deposition model. At each time step a site is chosen randomly and a “particle” is dropped on that site. If an adjacent
site is lower, the particle is moved to that site as shown.
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randomly selected site on which a particle falls is lower
(has fewer “particles”) than its adjacent sites, the particle
remains there. If either adjacent site is lower, the particle
is moved to that site. This model is illustrated in Fig. 7.
Fig. 8 illustrates a surface produced by the model with a
lattice size of 1024. The simulation was run for some
time to build up a rough surface. Fig. 9 shows the average
power spectrum of the surfaces produced by 50 inde-
pendent simulations. The power spectrum is proportion
to k−2, indicating that the surface is statistically the same
as a Brownian walk.

Fig. 10, shows the variations in surface elevation
(subtracted from the mean height of the surface) at the
central site of our simulation. Fig. 11 gives the average
power spectrum of the difference from the mean height
of the central site produced in 50 simulations. The
power spectrum is proportional to f−3/2. As recognized
by Family (1986), a continuous version of the discrete
model is provided by a one-dimensional diffusion
equation with a Gaussian white noise term:

Ah x; tð Þ
At

¼ D
A
2h x; tð Þ
Ax2

þ l x; tð Þ; ð10Þ
where μ(x,t) is the Gaussian white noise. This equation
represents a model in which channels avulse randomly
Fig. 8. Surface constructed from the depositional model on a 1024
grid.
in time and in space across the alluvial plain and the
sediment transport is governed by the diffusion equa-
tion. This equation and the variants of it have been
studied extensively in physics (where it is known as the
linear Langevin equation or the Edwards–Wilkinson
equation) as a model for the growth of surfaces with
random deposition and subsequent diffusion.

The application of the diffusion equation to erosion is
known as the Culling model. In this model (Culling,
1960, 1963) the rate of the material transport is assumed
to be proportional to the slope. With this assumption,
erosion satisfies the heat (diffusive transfer) equation
and is controlled by the magnitude of the transfer
coefficient, D. From studies of foreland basins Flemings
and Jordan (1989) concluded that D is in the range 102–
103 m2/yr, and from studies of erosion as a driving
mechanism for mountain growth Avouac and Burov
(1996) conclude that D is in the range 103–104 m2/yr.
Solutions of the heat equation have been successful in
explaining the morphology of alluvial fans, propogating
river deltas, and eroding fault scarps (Wallace, 1977,
Nash, 1980a,b, Begin et al., 1981, Gill, 1983a,b, Hanks
Fig. 9. Average power spectrum of the surfaces constructed from 50
independent simulations on a 1024 grid as function of the wave
number k. An exponent of 2 corresponds to a Brownian walk.



Fig. 10. Difference from the mean height of the central site on the
lattice as a function of the time step. Fig. 12. The nondimensional thickness of sediments hσ /D in a

sedimentary basin as a function of nondimensional time tσ2 /D for a
sequence in which the ratio of the standard deviation δ to the mean
subsidence rate η is 0.1. Also illustrated is the record of deposition if
sediments are removed (eroded) when the deposition rate exceeds the
subsidence rate. The horizontal lines are the resulting unconformities.

308 D.L. Turcotte / Geomorphology 91 (2007) 302–310
et al., 1984, Kenyon and Turcotte, 1985, Hanks and
Wallace, 1985, Hanks and Andrews, 1989).

The deposition model, based on a white noise driver
for the Culling model, gives the Brownian walk
behavior associated with landforms. The deposition
model given above can also be used to model rates of
deposition and the completeness of the sedimentary
record. The nondimensional height of topography, hσ /
D (D diffusion coefficient, σ standard deviation of the
white noise), is given in Fig. 12 as a function of
nondimensional time, tσ2 /D for a nondimensional
subsidence rate σ /η (η velocity of subsidence).

This result is the same as that given in Fig. 10 with a
constant velocity deposition superimposed. It is then
assumed that in periods when the rates of sedimentation
are greater than the rate of subsidence the topography is
Fig. 11. Average power spectrum of the difference from the mean
height of the central site for 50 independent simulations as a function
of frequency in time steps −1. The power spectrum is proportional to
f−3/2.
eroded and gives uniformities as illustrated in Fig. 12.
The result is a reduction in the mean rate of sedi-
mentation R as the time interval T increases. This depen-
dence is given in Fig. 13, the nondimensional deposition
rate R /n is given as a function of the nondimensional
time interval Tσ2 /D. The nondimensional rate of
sedimentation has a power-law dependence on the non-
dimensional time span with exponent −3/4.

Sadler (1981) has compiled measurements of the
rates of fluvial sedimentation from the geological
literature with time scales of minutes to 100 million
years. His data (Sadler and Strauss, 1990) are plotted in
Fig. 14. A least-squares linear fit to the logarithms (base
10) of the data yields a slope of −0.75. This result is in
Fig. 13. Average rate of sedimentation, R /η, as a function of the
nondimensional time span, Tσ2D, for the sediment column of Fig. 12.



Fig. 14. Observed sedimentation rates as a function of time span, from
Sadler and Strauss (1990). The data have been binned logarithmically
to obtain a uniform distribution of points in log–log space. A least-
squares linear fit to the logarithms of the data yields a slope of −3/4.
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agreement with the analysis of the model given in
Fig. 13.

These results can also be obtained from theoretical
fractal relations. Fractional Brownian walks have the
property that the standard deviation of the time series
has a power-law dependence on time with a fractional
exponent called the Hausdorff measure, Ha:

rheTHa: ð11Þ

The power spectral exponent of a time series and its
Hausdorff measure have been related theoretically by
(Turcotte, 1997)

Ha ¼ b� 1
2

: ð12Þ

As seen in Fig. 11, β =3/2 is a good approximation
for the deposition model. And from Eqs. (11) and (12),
Ha=1/4 and σh∼T1/4. Taking the rate of sedimentation
R to be the ratio of σh to T results in

R ¼ rh
T eT�3=4: ð13Þ

This is in good agreement with the results given in
Figs. 13 and 14. Details of this analysis have been given
by Pelletier and Turcotte (1997).

6. Discussion

A fundamental objective is to understand the origin
of landforms and drainage networks. Clearly a wide
range of landforms exist. Some are very deterministic
and can be understood in terms of classical applied
mathematics. We give three examples. The first example
is the morphology of ocean ridges. This is explained by
conductive cooling of a half space, thermal contraction,
and isostacy (Turcotte and Schubert, 2002, pp. 153–
161). The second example of alluvial fans and
propagating river deltas was discussed in Section 4
using the Culling model for erosion. A third example is
the remarkably symmetric structure of volcanic land-
forms, i.e. Mount Fuji. This structure can be explained
by the balance between gravity and flow resistance
through a porous matrix (Lacey et al., 1981, Turcotte
and Schubert, 2002, pp. 387–390).

The focus of this paper has been on the more
complex aspects of landforms and drainage networks.
The basis of quantification is the fractal scaling. Many
fundamental questions remain concerning this scaling.
Fractal (power-law) scaling is the only scaling that is
scale invariant and it is widely accepted that many
geological forms are scale invariant. Fractal scaling is
ubiquitous in all branches of science and engineering.
Many attempts have been made to model this behavior.
The most successful have involved simulations. A
classic example is DLA. We have discussed in some
detail the association of DLAwith the fractal structure of
drainage networks. The generation of self-affine fractal
surfaces is also widely recognized, but has not been easy
to generate. The use of stochastic differential equations,
i.e. the Langevin equation, has been the most successful.
We have shown how this approach can give the Brown-
ian motion behavior of landforms and the deposition
structure of sedimentary layering.

7. Conclusions

Landforms and drainage networks satisfy fractal
scaling laws in a variety of ways. For landforms, exam-
ples include coastlines, topography along linear tracks,
and lakes. For drainage networks the branching statistics
are fractal both in terms of the Horton–Strahler primary
branching and the Tokunaga side branching. Explana-
tions for this behavior come from several models
developed by statistical physicists. For landforms the
applicable model is the Langevin equation. The
Langevin equation is the heat equation with a stochastic
(white) noise driver. The applicability of the heat equa-
tion to deposition is known as the Culling model.

Fractal branching statistics are generated by the
diffusion-limited aggregation (DLA) model. This model
also satisfies the Tokunaga self-similar side-branching
statistics. A modified version of the DLA model is in
quantitative agreement with the statistics of drainage
networks.
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