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Fractal image analysis: application to the topography of
Oregon and synthetic images
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The Earth's topography generally obeys fractal statistics; after either one- or two-dimensional Fourier transforms
the amplitudes have a power-law dependence on wave number. The slope gives the fractal dimension, and the unit
wave-number amplitude is a measure of the roughness. In this study, digitized topography for the state of Oregon
(-7 points/kim) has been used to obtain maps of fractal dimension and roughness amplitude. The roughness
amplitude correlates well with variations in relief and is a promising parameter for the quantitative classification of
landforms. The spatial variations in fractal dimension are low and show no clear correlation with different tectonic
settings. For Oregon the mean fractal dimension from a two-dimensional spectral analysis is D = 2.586, and for a
one-dimensional spectral analysis the mean fractal dimension is D = 1.487, which is close to the Brown noise value D
= 1.5. Synthetic two-dimensional images have also been generated for a range of D values. For D = 2.6, the
synthetic image has a mean one-dimensional spectral fractal dimension D = 1.58, which is consistent with our
results for Oregon. This approach can be easily applied to any digitized image that obeys fractal statistics.

INTRODUCTION

The concept of fractals was introduced by Mandelbrot' as a
measure of the Earth's topography, the length of a rocky
coastline. Mandelbrot2 subsequently obtained a synthetic
topography by using fractal statistics that were remarkably
realistic. The applicability of fractal concepts to the Earth's
topography should not be surprising since it requires only
scale invariance, and it has long been recognized that topog-
raphy is scale invariant in a variety of geological terrains.
One of the first things that geology students are taught is the
necessity of placing an object, e.g., a coin or person, in a
photograph of a geological scene; otherwise it is impossible
to tell the scale. It has been observed that the Earth's
topography is generally scale invariant for wavelengths from
103 to 0.1 km.

The Earth's topography is a composite of many competing
influences. Topography is created by tectonic processes
including faulting, folding, and flexure; it is modified and
destroyed by erosion and sedimentation. Some aspects of
topography are deterministic; the flexure of the elastic litho-
sphere is an example. Flexure introduces a characteristic
length of several hundred kilometers to topography, and this
length is associated with the structure of many sedimentary
basins. However, much of the Earth's topography is com-
plex and chaotic; young mountain ranges are an example.
There is also strong evidence that erosional processes lead to
complex and chaotic topography. Yet there is order in the
chaos of topography, as shown by the applicability of fractal
statistics; this order is the result of scale invariance.

The primary purpose of this paper is to illustrate the
concept of fractal mapping of digitized images; to do this we
consider the digitized topography of the state of Oregon.
We first show that the topography of the state satisfies
fractal statistics to a good approximation. We then use the
fractal dimensions and roughness amplitudes from subre-
gions to construct maps of these quantities for the entire

state. This approach can be used for the study of any digi-
tized set of data that obeys fractal statistics.

FRACTAL STATISTICS

The definition of a fractal set is given by

N = C/riD, (1)

where N. is the number of objects with a linear dimension ri,
D is the fractal dimension, and C is a constant of proportion-
ality. A generalization of Eq. (1) for a continuous distribu-
tion is

N= C/rD, (2)

where N is the number of objects with a linear dimension
greater than r. A wide variety of physical phenomena are
found empirically to satisfy Eq. (1) or (2). Examples in the
earth sciences include Korcak's empirical relation for the
number of islands with an area A greater than a specified
values,3 Rosin's law for number-size distribution of rock
fragments,4 and the Gutenberg-Richter frequency-magni-
tude relationship for earthquakes.5

The fractal definition [Eq. (1)] can be applied to the
length of a trail or the perimeter of an object as a function of
the step length. If the step length is r and the number of
steps is Ni, the length of the perimeter Pi is given by

Pi = Niri = CriD. (3)

Mandelbrot showed in his paper introducing the term frac-
tal that the length of the west coast of Great Britain satisfies
Eq. (3) with D = 1.25. This method can be used to deter-
mine the fractal dimension of a terrain from the length of a
contour on a topographic map as a function of the step
length. In mountainous areas, good agreement with Eq. (3)
is generally found, and 1.15 <D < 1.30.6 There is little or no
correlation of the D value with tectonic style or geological
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age. It should be emphasized, however, that not all regions
yield well-defined fractal dimensions 7 ; young volcanic is-
lands are an example. The applicability of either Eq. (1) or
(2) to a real data is generally over a limited range of scales.
This range suggests the range of applicability of the scale-
invariant physics. In some cases the data will yield different
fractal dimensions over different ranges of scales. This is
evidence for the applicability of different scale-invariant
physical processes.

Topography can also be used to illustrate the differences
between self-similar and self-affine fractals. Studies of to-
pography involving two horizontal coordinates yield self-
similar fractals. This is because the two horizontal coordi-
nates are statistically indistinguishable. Examples include
number-area statistics for islands and length-of-perimeter
statistics. However, because of the asymmetric influences
of gravity and other physical processes, the height of topog-
raphy is not self-similar to the two horizontal coordinates.
The relief of topography h along a linear track is an example
of a self-affine fractal, and Fourier spectral analysis is a
widely accepted approach to the quantification of the fractal
dimension.

One-Dimensional Spectral Method
For a self-affine fractal the spectral energy density S of the
profile must have a power-law dependence on wave number
k (Ref. 8):

S(k) k-0. (4)

In order to relate the power-law dependence of the spectra to
the fractal dimension, we consider the specific example of a
one-dimensional topographic profile h(x). The variance Vis
defined by

V(L) = - [h(x) - ]2 dx, (5)
L o

where L is the length over which the profile is specified and h
is the mean elevation over this length. A necessary condi-
tion that the profile be a fractal is that the variance V(L)
must have a power-law dependence on the length L (Refs. 9,
10):

V(L) L2 H. (6)

The standard deviation is related to the length of the profile
L by

o-(L) = [V(L)]/ 2 LH. (7)

For fractional Brownian motion, H is in the range 0 < H < 1.
In order to define the relevant fractal dimension, we intro-
duce a reference box with a width L and a height a.9 If the
fractal were self-similar, the box would be square; however,
for self-affine fractals, arbitrary rectangular boxes must be
used. Consider a set of nth-order-smaller boxes with width
Ln = L/n and height hn = /n; n is an integer. The number
of nth-order boxes Nn required to cover a width L and a
height crn = (L/n) is

Lan 2 2 n
Lnhn e a

and, using relation (7), we find that

an (L/n) 1
a c a(L) nH'

and, combining Eqs. (8) and (9), we have

Nn = n2-H = (L/Ln)2 H.

(9)

(10)

Comparing Eq. (10) with the definition of the fractal dimen-
sion in Eq. (1), we have

D= 2-H. (11)

The spectral energy density S(L) will also have a power-
law dependence on the length L and can be related to the
variance V(L) by 0

S(L) = LV(L) LO -L

so that

D = 5 
2

(12)

(13)

For a one-dimensional profile, D is expected to lie in the
range 1 < D < 2; the corresponding range for ,B is 3 > > 1.
For Brown noise = 2, H = 0.5, and D = 1.5.

A number of authors have carried out one-dimensional
Fourier-transform studies of topography and bathymetry.11-8

These studies have found a good correlation with relation (4)
with ,B = 2 (D = 1.5) for wavelengths from 103 to 0.1 km;
topography appears to be Brown noise. The implications of
this observation have been discussed by Bell.4 For Brown
noise the amplitude is proportional to the wavelength; in
this sense, topography is truly self-similar. The topography
of the Earth as a whole can be expanded in terms of spherical
harmonics.' 9 Turcotte2 0 has shown that the spectral energy
density for this correlation also satisfies relation (4) with /3 =
2 (D = 1.5).

Two-Dimensional Spectral Method
The Fourier spectral approach of fractal analysis for one-
dimensional profiles discussed in the previous section can be
extended to two-dimensional image analysis. Consider an
N X N grid of equally spaced data points in a square with
linear size L, so that the grid spacing is LIN. The N 2 data
points are denoted by hnm, with n and m specifying the
position in the x and y directions, respectively.

The first step is to carry out a two-dimensional discrete
Fourier transform on the N 2 set of hnm data points. An N X
N array of complex coefficients Ht is obtained by the usual
definition:

H = e hnm exp[ N (sn + tm)f
n=O =O 1

(14)

where s denotes the transform in the x direction (s = 0, 1,
2, .. , N - 1) and t denotes the transform in the y direction (t
= 0, 1, 2,... , N-1). Then each transform coefficient H is
assigned an equivalent radial number by using the relation

r = (s2 + t2)1/2. (15)

The two-dimensional mean spectral energy density S2j for
each radial wave number k is given by

(8)

(16)S2j = - IHt1'
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The additional power of kj is required because of the radial
coordinates that are used in phase space. The dependence
of V(L) on L given in relation (6) is still valid, but, with the
additional dimension, the box derivation that follows now
gives

2= 3- H (18)

instead of Eq. (11) for the fractal dimension of the surface.
For the two-dimensional spectral energy density we have

(19)

(20)

.SA() L2V(L) L'+# L2 +2H,

so that

D2=7 -/3
2

for the two-dimensional case.

DATA ANALYSIS

Fig. 1. Gray-scale map of the digitized topography for Or(
The data resolution is '-.7 points/km.

where Nj is the number of coefficients that satisfy the co
tion j < r < + 1 and the summation is carried out ovei
coefficients Ht in this range.

The two-dimensional equivalent of relation (4) i 2 '
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One-Dimensional Analysis
As a specific example, we will consider digitized topography
for the state of Oregon (Fig. 1). Combining Defense Map-
ping Agency 1 deg X deg data with topographic maps, the
U.S. Geological Survey (Flagstaff) has produced digitized
topography on a grid scale of -7 points/km. We have previ-
ously used this technique to study the topography of Arizo-
na. 2 2

In order to examine the fractal behavior of the data, one-
dimensional spectral analyses are carried out first on three
areas with different geomorphic and tectonic settings. The

(17) Willamette lowland is dominated by sedimentary processes,
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Fig. 2. Plots of one-dimensional spectral energy density versus wave number selected from three regions in Oregon with different tectonic and
geomorphic settings: (a) Willamette lowland, (b) Wallowa Mountains, (c) Klamath Falls.
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Table 1. Regional Averages over One-Dimensional
Profiles of Oregon Topography

Root
Area Dimension Roughness Mean Square

Willamette Lowland
latitude 1.436 5.948 0.205
longitude 1.507 6.354 0.182

Wallowa Mountains
latitude 1.499 6.549 0.163
longitude 1.485 6.830 0.166

Klamath Falls
latitude 1.492 5.825 0.178
longitude 1.500 5.963 0.170

the Wallowa Mountains are associated with a major tectonic
uplifting, and the Klamath Falls area belongs to the basin
and range tectonic regime. For each of the three regions, 20
equally spaced one-dimensional profiles of length 512 are
analyzed in both the latitudinal and longitudinal directions.
One-dimensional Fourier spectral analyses are performed on
them by using the classical periodogram approach. Log-log
plots of the spectral energy density versus wave number
show a good power-law dependence in all three regions (Fig.
2), which indicates fractal behavior. The average one-di-
mensional fractal dimensions shown in Table 1 are close to D
= 1.5, and the small variation in the values in the two per-
pendicular directions suggest that the Oregon topography is
relatively isotropic.

Fractal Mapping of Oregon
The fact that fractal statistics is a good approximation for
topography that has been shown in the last section permits
us to make fractal maps of a region of diverse tectonics.
Using digitized topography of Oregon, we can make plots of
spectral density versus wave number for subregions. From
these plots a fractal dimension (slope) and unit wave-num-
ber amplitude will be obtained from each subregion. The
amplitude is a measure of roughness. We are basically car-
rying out a texture analysis, using the fractal statistics as a
basis.

In this study, fractal dimensions and roughness ampli-
tudes will be obtained by using subregions of 32 X 32 data
points. Thus fractal dimensions and roughness amplitudes
will be obtained for each 4.5 X 4.5-km subregion in the state;
maps are generated. We have also carried out studies by
using square subregions with 16 X 16 and 64 X 64 data
points. The 32 X 32 set was chosen because it generally
gives well-defined fractal spectra; for the smaller regions the
errors in fractal dimension and roughness become substan-
tially larger. For larger regions, the spatial resolution of the
map is degraded.

The following technique is used to obtain a fractal dimen-
sion and roughness amplitude for each subregion:

(1) A 32 X 32 set of digitized elevations is chosen to form
each subregion (N = 32).

(2) The mean and linear trends for each subset of data
are removed.

(3) A two-dimensional discrete Fourier transform is car-

ried out, and an N X N array of complex Fourier coefficients
Hst is obtained by using Eq. (14).

(4) Each coefficient Hst is assigned an equivalent radial
wave number r by using Eq. (15). The two-dimensional
mean spectral energy density S2j is obtained for each radial
integer wave number kj by using Eq. (16).

(5) The mean slope on a log-log plot of S2j versus kj
obtained by a least-squares regression yields a fractal di-
mension D2 by using relations (17) and (20); the intercept at
kj = 1 cycle/km yields a roughness amplitude.

Examples for four randomly selected subregions in Ore-
gon are given in Fig. 3. The mean two-dimensional fractal
dimension for all of Oregon is D2 = 2.586 (Table 2). This
value is remarkably close to the mean value D2 = 2.59, which
we previously obtained for the state of Arizona. It is seen
that our results are in good agreement with the relation D2 =

1+ D.
Maps of fractal dimension and roughness amplitude are

given in Figs. 4(a) and 4(b), respectively. As expected, there
is relatively little variation in the fractal dimension about
the mean value, although the range is approximately 2.40 <
D < 2.90. The variation in the roughness amplitude in Fig.
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Fig. 3. Plots of mean spectral energy density versus radial wave
number for four typical 32 X 32 point subregions in Oregon. The
linear trend on a log-log plot indicates a power-law fractal distribu-
tion.

Table 2. Summary of Mean Fractal Dimensions
Estimated by One-Dimensional and Two-Dimensional
Spectral Analysis for Both the Topography of Oregon

and Synthetic Images

Two-Dimensional One-Dimensional
Analysis Analysis

Standard Mean Root
Data Average D Deviation Average D Mean Square

Oregon 2.586 0.123 1.487 0.149
Topography

Synthetic 2.60 - 1.58 0.167
Topography 2.70 - 1.65 0.192

3.00 - 1.91 0.205
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(a) ; (b)
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Fig. 4. Gray-scale maps for Oregon: (a) fractal dimension, (b) roughness amplitude.
fractal dimension; however, the roughness amplitude is sensitive to texture changes.
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Fig. 5. Synthetic fractal images on a 512 X 512 grid; (a) white
noise without fractal filtering, (b) filtered with P = 1 and D = 3.0, (c)
filtered with l = 1.8 and D = 2.6.
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4(b) is much more impressive. The sedimentary Willamette
lowland shows low overall roughness, while the erosional
system associated with the nearby mountain ranges and the
Wallowa mountains in the northeast stand out as regions of
high roughness. The roughness contrasts in the southern
basin and range region are also quite remarkable. The frac-
tal analysis gives a quantitative measure of roughness.

FRACTAL ANALYSIS OF SYNTHETIC IMAGES

It is also of interest to generate synthetic fractal maps that
can be compared with actual maps. The synthetic map is
generated in a square region composed of pixels. The syn-
thetic fractal image is generated as follows:

(1) Each pixel is given a random number based on a
Gaussian probability distribution:

p(y)dy = 1 e-Y2/2dy. (21)

(2) Using Eq. (14), we obtain a set of two-dimensional
Fourier coefficients Ht from the N 2 set of random values
given above.

(3) A fractal dimension D2 is specified, and the corre-
sponding value for 3 is obtained from Eq. (20). A new set of
complex coefficients are obtained from the relation

Ht* = Hst/k,~s'2. (22)

(4) An inverse two-dimensional Fourier transform is car-
ried out to generate a new image.

Three examples of synthetic images are given in Fig. 5. In
Fig. 5(a) the original random data are given without fractal
filtering. This is white noise so that ,3 = 0. In Fig. 5(b) the
result is given for :3 = 1 (D = 3.0) and in Fig. 5(c) for 3 = 1.8 (D
= 2.6). The synthetic result for D = 2.6 looks quite realistic
for a typical topographic map. This result is consistent with
our fractal mapping of the state of Oregon, for which we
found the mean fractal dimension to be D = 2.586.

We have also carried out one-dimensional spectral decom-
positions of linear profiles of our synthetic data in the same
format as our one-dimensional analysis for Oregon data.
The results for synthetic topography with D = 2.6, 2.7, and
3.0 are given in Table 2. For realistic topography with D =
2.6-2.7, we find that the corresponding one-dimensional
profiles give D = 1.58-1.65. This result is consistent with
the previously published results for one-dimensional bathy-
metric and topographic profiles for which values near D =
1.5 have been found as discussed above. Again, it is close to
our results for Oregon for which we found that the mean
fractal dimension associated with one-dimensional spectral
decompositions is D = 1.487.

CONCLUSIONS

We have developed a technique for two-dimensional fractal
analysis of digitized topography. Given a digitized data set
that exhibits fractal behavior, the texture of the data can be
quantitatively analyzed in terms of the fractal dimension
and roughness amplitude. We have demonstrated the ap-

proach by using the digitized topography of the state of
Oregon. The map of roughness amplitude shows consider-
able variation and provides information on geological and
geomorphic processes. We find that the mean two-dimen-
sional fractal dimension for the topography of Oregon is D =
2.586. We have also obtained the mean one-dimensional
fractal dimension for the topography of Oregon and have
found that D = 1.487. Thus the one- and two-dimensional
fractal dimension approximately differ by unity.

Synthetic two-dimensional images for a range of D values
are also generated. We find that for a synthetic image with
D = 2.6, the corresponding one-dimensional spectral decom-
position gives D = 1.58. This is consistent with our results
for the topography of Oregon and with the results of previ-
ous investigations. A number of authors have shown that
one-dimensional spectral analyses of topography or bathym-
etry give fractal dimensions near D = 1.5, corresponding to
Brown noise.13 Thus our results are consistent with those of
previous authors. It should be emphasized that this tech-
nique can be applied to any digitized image that satisfies
fractal statistics. The results are generally expected to have
a similar pattern to those given here. The fractal dimension
is expected to have limited variability, whereas the rough-
ness amplitude is a sensitive measure of texture.
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