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ABSTRACT Symmetries have played an important role in
a variety of problems in geology and geophysics. A large
fraction of studies in mineralogy are devoted to the symmetry
properties of crystals. In this paper, however, the emphasis
will be on scale-invariant (fractal) symmetries. The earth’s
topography is an example of both statistically self-similar and
self-affine fractals. Landforms are also associated with drain-
age networks, which are statistical fractal trees. A universal
feature of drainage networks and other growth networks is
side branching. Deterministic space-filling networks with
side-branching symmetries are illustrated. It is shown that
naturally occurring drainage networks have symmetries sim-
ilar to diffusion-limited aggregation clusters.

Symmetries appear in a wide variety of contexts in geology and
geophysics. Rocks are made up of minerals and the symmetry
aspects of minerals constitute a major part of any course in
mineralogy.Many advances in x-ray diffraction weremotivated
by studies of minerals. The symmetries of crystalline structures
are generally associated with translations, rotations, and re-
flections. In this paper, however, we will focus our attention on
a fourth symmetry: scale invariance. Scale invariance is gen-
erally associated with fractals and self-similarity. The classic
example is the Cantor set, illustrated in Fig. 1. At each order,
the remaining line segments are divided into three parts and
two are retained. The fractal dimension is D 5 log(N2yN1)y
log(r1yr2), where N is number and r is length for the Cantor set
D 5 log2ylog3 5 0.6309, intermediate between the Euclidean
dimension of a line (D 5 1) and a point (D 5 0).
It should be remembered that Mandelbrot (1) introduced

the concept of fractals in terms of the length of a rocky
coastline. The length of a rocky coastline scales with the length
of the measuring rod used as a fractional inverse power (2).
This is a statistical symmetry rather than a deterministic
symmetry. An illustration of this is given in Fig. 2. On the left
is a third-order Koch triadic island. This is a deterministic
fractal with D 5 log4ylog3 5 1.262, intermediate between the
Euclidean dimension of an area (D 5 2) and a line (D 5 1).
On the right is the map of an actual island, Dear Island, Maine.
Using either the measuring-rod method or the box-counting
method (2), this island satisfies fractal statistics to a good
approximation, with D ' 1.4. Rocky coastlines generally
exhibit statistical scale-invariant symmetries. Other examples
of scale-invariant symmetries in geology and geophysics in-
clude fragments, faults, earthquakes, ore deposits, oil fields,
and volcanic eruptions. The fractal dimension associated with
a scale-invariant symmetry is a quantitative measure of tex-
ture; increased fractal dimensions correspond to increased
roughness.
Self-similar symmetries can also be associated with self-

affine fractals; some statistically self-similar time series are

examples of self-affine fractals. A deterministic, self-affine
fractal is illustrated in Fig. 3. The vertical scale is arbitrary
relative to the horizontal scale, thus the self-affine terminol-
ogy. At first order, the width ro is divided in four parts and the
height ho is divided into two parts, and the generator for the
fractal construction is illustrated in Fig. 3b. At second order,
as illustrated in Fig. 3c, each first-order, straight-line segment
in Fig. 3b has been replaced by the rescaled generator. The
construction is continued to third order in Fig. 3d. This
construction is a deterministic example of a ‘‘random’’ walk in
that yyho 5 (xyro)

1y2. Using rectangular boxes with dimensions
hoyn and royn, n 5 1, 2, 3, . . . , the box-counting fractal
dimension of this construction is D 5 1.5.
Fractional Brownian walks are examples of statistical self-

affine fractals. Examples of both fractional Gaussian noises (a)
and fractional Brownian walks (b) are given in Fig. 4. In all
cases, the power spectral density S is related to the frequency
f by the relation S } f2b (an equivalent relation is An ; fn2by2,
where An is the Fourier coefficient corresponding to the
frequency fn). The example given in Fig. 4a for b 5 0 is a
Gaussian white noise. A random value is chosen from a
Gaussian distribution at each time step; adjacent values are
uncorrelated.
The fractional Gaussian noises given in Fig. 4a have been

obtained using a standard filtering technique. The Fourier
coefficients of the white noise have been increased or de-
creased to give the appropriate b and the resulting Fourier
series inverted to give the fractional Gaussian noise. For b 5
0.5 and 1.0, adjacent values became correlated, since the high
frequency noise has been filtered out. For b 5 20.5 and21.0,
adjacent values become anticorrelated.
A Brownian walk is the running sum of a Gaussian white

noise. The Gaussian white noise in Fig. 4a (b 5 0) has been
summed to give the Brownian walk in Fig. 4b (b 5 2). Each of
the fractional Gaussian noises in Fig. 4a has been summed to
give the fractional Brownian walks in Fig. 4b. The b of theThe publication costs of this article were defrayed in part by page charge
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FIG. 1. Illustration of the Cantor set; the line segment at zero order
is divided into three equal parts and two are retained. The two line
segments at first order are each divided into three equal parts and two
are retained at second order. This is a fractal construction with fractal
dimensions D 5 log2ylog3 5 0.6309. This is an example of scale-
invariant symmetry.
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summed fractional Brownian walk bfw is related to the b of the
fractional Gaussian noise bfn by bfw 5 bfn 1 2. A Gaussian
white noise has a flat spectrum so that bwn 5 0, thus the
Brownian walk has bbw 5 2. The fractal dimension of a
fractional Brownian walk obtained by box counting is related

to bfw by D 5 (5 2 bfw)y2. Thus the fractal dimension of a
Brownian walk (b 5 2) is D 5 1.5, the same fractal dimension
as the deterministic fractal illustrated in Fig. 3. Fractional
Brownian walks with 1 , bfw , 3 are self-affine fractals with
2 . D . 1.
There are many examples of self-similar time series in

geology and geophysics. One is the height of topography along
a linear track; to a good approximation, the height of topog-
raphy is a Brownian walk. Thus, if you walk a distance x in a
straight line, your mean change in elevation Dh will be given
by Dh 5 cx

1y2, where the constant c depends on the roughness
of the local terrain. The temporal variations of the earth’s
magnetic field and the spatial variations of the earth’s gravity
field have also been modeled as self-affine time series.

Self-Similar Networks

We now turn our attention to fractal trees and growth net-
works. Drainage networks are a classic example of statistical
fractal trees. A small example is illustrated in Fig. 5a. The
100-m scale is shown, because without the specified scale it
would be impossible to tell whether the drainage network
covered 1 km or 1000 km.
An example of a binary deterministic fractal tree is given in

Fig. 5b. This is a highly ordered structure in which the single
stem bifurcates into two branches, each with one-half the
length of the stem. These two branches in turn bifurcate to
form four branches, each with one-quarter the length of the
stem. Obviously this construction could be carried to higher
and higher orders.

FIG. 2. Island constructions exhibiting deterministic and statistical
scale-invariant symmetries. (Left) The deterministic third-order Koch
triadic island. This is another fractal construction with fractal dimen-
sionD5 log4ylog35 1.262. (Right) A map of Dear Island, Maine. The
rocky coastline of this island exhibits a statistical scale-invariant
symmetry; the fractal dimension is D ' 1.4.

FIG. 3. Illustration of a deterministic self-affine fractal. (a) At zero
order, a rectangular region of width ro and height ho is considered. (b)
The first-order fractal, which is also the generator. (c) Each straight-
line segment in b is replaced by a scaled generator to give the
second-order fractal. (d) Each straight-line segment in c is replaced by
a scaled generator to give a third-order fractal.

FIG. 4. (a) The white Gaussian noise b 5 0, has been filtered to give
fractional Gaussian noises with b 5 21.0, 20.5, 0.5, and 1.0. (b) Each
of these noises has been summed to give fractional Brownian walks.
The walks are self-affine fractals.
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However, a major difference between this binary tree and
the drainage network is the absence of side branching.
Branches that terminate originate from branches of all orders.
A fractal tree with side branching is given in Fig. 5c. To
quantify fractal trees, it is necessary to introduce a stream
ordering system. In the Strahler (3) system for drainage
networks, a stream with no upstream tributaries is a first-order
(i 5 1) stream. When two first-order streams combine, they
form a second-order (i 5 2) stream; when two second-order
streams combine, they form a third-order (i 5 3) stream; and
so forth. The total number of ith order streams is Ni and their
mean length is ri. Tokunaga (4) modified the Strahler system
to include side branching. A first-order branch joining another
first-order branch is denoted 11 and the number of such
branches is N11; a first-order branch joining a second-order
branch is denoted 12 and the number of such branches is N12;
a second-order branch joining a second-order branch is de-
noted 22 and the number of such branches is N22; and so forth.
This classification of branches is illustrated in Fig. 5.
The branch numbers Nij, i # j, constitute a square, upper

triangular matrix. This formulation is illustrated in Fig. 6a. The
branch-number matrices for the drainage network and deter-
ministic fractals illustrated in Fig. 5 a–c are given in Fig. 6 b–d.
The total number of streams of order i, Ni, is related to the Nij
by:

Ni 5 O
j51

n

Nij , [1]

for a fractal tree of order n as illustrated in Fig. 6.
Horton (5) defined the bifurcation ratio Rb according to:

Rb 5
Ni
Ni11

. [2]

He also introduced the length-order ratio:

Rr 5
li11
li
. [3]

Empirically it was recognized that both Rb and Rr are nearly
constant for a range of stream orders in all drainage basins, and
this observation constitutes two of Horton’s laws. The fractal
dimension D of a drainage basin can be expressed in terms of
the bifurcation and length-order ratios according to:

D 5
log Rb
log Rr

. [4]

Thus the validity of Horton’s laws implies drainage networks
are fractal trees.
The deterministic fractal tree illustrated in Fig. 5b has Rb 5

2 and Rr 5 2 so that D 5 1, from Eq. 4. The deterministic
fractal illustrated in Fig. 5c has Rr 5 2 but Rb is not constant.
However, it is easy to show that Rb3 4 for large i. Thus from
Eq. 4 D 3 2 for large i.
Tokunaga (4) found that a broader classification of the

symmetries of drainage basins could be expressed in terms of
branching ratios Tij. These are the average number of branches
of order i joining branches of order j, i , j. Branching ratios
are related to branch numbers by:

Tij 5
Nij
Nj
. [5]

Again the branching ratios Tij constitute a square, upper
triangular matrix, as illustrated in Fig. 7a. The branching ratio
matrices for the drainage network and deterministic fractals
illustrated in Fig. 5 a–c are given in Fig. 7 b–d.
Peckham (6) has determined the branching-ratio matrices

for the Kentucky River basin in Kentucky and the Powder
River basin in Wyoming, and his results are given in Fig. 8.
Both river basins are eighth order, with the Kentucky River
basin having an area of 13,500 km2 and the Powder River basin
an area of 20,181 km2. For the Kentucky River basin, the
bifurcation ratio is Rb 5 4.6, the length-order ratio is Rr 5 2.5,
and the fractal dimension from Eq. 4 is D 5 1.67; for the
Powder River basin the bifurcation ratio is Rb 5 4.7, the
length-order ratio is Rr 5 2.4, and the fractal dimension from
Eq. 4 is D 5 1.77.
Tokunaga (4) defined a more restrictive class of fractal trees

by requiring Ti,i1k 5 Tk, where Tk is a branching ratio that
depends only on k 5 j 2 i. It is seen from Fig. 7d that the
deterministic side branching network illustrated in Fig. 5c
satisfies this condition with T12 5 T23 5 T1 5 1. The condition
is also satisfied if the construction is extended to higher orders.
The Tokunaga condition is seen to be approximately valid for
the drainage networks considered in Fig. 8.
Tokunaga (4) introduced a more restricted class of self-

similar side-branching trees by requiring for self-similarity of
side-branching that:

Tk 5 ac k21 [6]

This is now a two-parameter family of trees. For the fractal tree
illustrated in Fig. 5c, we have a5 1 and c5 2. Both the results
for the Kentucky River basin and the Powder River basin
correlate well with Eq. 6, taking a 5 1.2 and c 5 2.5.
As discussed above, the deterministic fractal illustrated in

Fig. 5c becomes space filling (D3 2) for large order. Another
fractal construction that becomes space filling in two dimen-
sions (D3 2) for large order is illustrated in Fig. 9. The large
circle in Fig. 9a is the original (O-order) node (bud) and three
branches (line segments) emanate from it. The small circles are
first-order nodes (buds) and there are two types, three exterior
nodes and a single interior node. The interior node bisects the
interior branch; the nodes are equally spaced. In Fig. 9b, three
tip branches (line segments) emanate from each tip node and
two side branches (line segments) emanate from the interior
node. Eleven tip nodes and five interior nodes are introduced
at this order. The construction is continued in Fig. 9 c and d.
The length-order ratio for the construction is Rr 5 2.

FIG. 5. (a) Example of a fourth-order drainage network. (b) Binary
self-similar fractal tree. (c) Binary self-similar fractal tree with side
branches.

FIG. 6. (a) Illustration of the branch-number matrix. (b–d) Branch
number matrices for the fractal trees illustrated in Fig. 5 a–c.

FIG. 7. (a) Illustration of the branching-ratio matrix. (b–d) Branch-
ing-ratio matrices for the fractal trees illustrated in Fig. 5 a–c.
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The branch-number and branch-ratio matrices for this con-
struction are given in Fig. 10 a and c. The branching ratios for
arbitrary order are given by:

Tk 5 0, for k 5 1

5 2k21, for k 5 2, 3, . . . [7]

The construction is a Tokunaga fractal tree. The branch
numbers and bifurcation ratios are given in Fig. 10b. Again, for
large order trees,Rb becomes independent of order and for this
case Rb3 4; thus D3 2 and the construction becomes space
filling.
In Fig. 11, the space-filling tree given is Fig. 9 is used to

construct a hierarchy of synthetic drainage networks that drain
a square island. The drainage basin boundaries are illustrated
by dashed lines. There are clearly many symmetries in this
construction. For actual drainage basins the area-order ratio
RA is defined as:

RA 5
Ai11
Ai

[8]

where Ai is the drainage area of a basin of order i. Horton (5)
has shown that RA is generally a constant in a region inde-
pendent of order, with a typical value being RA 5 5. For the
networks illustrated in Fig. 11 we have RA 5 4.
The discussion given above has been restricted to the

two-dimensional platform of drainage networks. To develop a
full understanding of how drainage networks are related to
erosion, it is necessary to include topography. Again, this can
be done using empirical symmetries obtained for drainage
basins. The slope-order ratio Rs is defined by:

Rs 5
ai

ai11
[9]

FIG. 8. Branching-ratio matrices for (a) the Kentucky River basin
and (b) the Powder River basin, as obtained by Peckham (6).

FIG. 9. An illustration of an area-filling Tokunaga fractal tree. The
generator for this fractal tree is illustrated in (a). Three tip branches
emanate from the central node. Three exterior nodes are placed at the
tips and an internal node bisects the internal branch. In b, nine tip
branches emanate from the tip nodes and two side branches emanate
from the internal node. Eleven exterior nodes are placed at the tips and
five internal nodes bisect the internal line segments. The construction
is continued in c and d. The length-order ratio for the construction is
2.

FIG. 10. (a) Branch-number matrix for the Tokunaga tree illus-
trated in Fig. 9. (b) Branch numbers and bifurcation ratios. The
bifurcation ratio approaches 4 (D 3 2) for high orders. (c) Branch-
ratio matrix for the tree.

FIG. 11. The synthetic drainage network illustrated in Fig. 9 is used
to construct a hierarchy of networks that drain a square island. The
divides between drainage networks are illustrated by dashed lines. The
orders of the drainage networks are 2, 3, 4, and 5. The area-order ratio
is RA 5 4.
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where ai is the slope of a stream of order i. Horton (5) also
found that Rs is also constant in a drainage basin independent
of order, with a typical value being Rs 5 1.8.
Taking Rs 5 2, synthetic topography has been constructed

from the synthetic drainage basins illustrated in Fig. 11; the
result is given in Fig. 12a. Clearly this synthetic topography is
much more deterministic than typical topography; however,
the drainage network on the Wasatch front near Mapleton,
UT, illustrated in Fig. 12b certainly resembles the synthetic
system.
A space-filling fractal network can also be constructed in

three dimensions. An example is given in Fig. 13. The con-
struction is on a body-centered cubic lattice. Eight branches
emanate from a central node. First-order nodes are placed at
the tips of these branches and seven tip branches emanate from
each exterior nodes. At the next order, Fig. 5b, exterior nodes
are placed at the tips and eight internal nodes bisect the
internal branches. At the next order, seven tip branches would
emanate from each of the tip nodes and six branches from each
of the internal nodes. The length-order ratio for the construc-
tion is 2.
The branch-number and branch-ratio matrices for this con-

struction are given in Fig. 14 a and c. The branching ratios for
arbitrary are given by:

Rk 5 0, for k 5 1

5 6 3 2k22, for k 5 2, 3, 4, . . . [10]

Again the construction is a Tokunaga fractal tree. The branch
numbers and bifurcation ratios are given in Fig. 14b. For
large-order trees, Rb3 8 so that D3 3, and the construction
becomes volume filling. Tokunaga branching statistics provide an excellent basis for

analyzing the taxonomy of networks and trees. However, it
does not provide any information on how the networks form.
One approach to the generation of statistical branching net-
works is diffusion-limited aggregation (DLA).

DLA

The concept of DLA was introduced byWitten and Sander (8).
They considered a grid of points on a two-dimensional lattice
and placed a seed partice near the center of the grid. An
accreting particle was randomly introduced on a ‘‘launching’’
circle and was allowed to follow a random path until: (i) it
accreted to the growing cluster of particles by entering a grid
point adjacent to the cluster, or (ii) until it wandered across a
larger ‘‘killing’’ circle.
Ossadnik (9) has considered the branching statistics of 47

off-lattice DLA clusters, each with 106 particles; a typical
example is illustrated in Fig. 15. The sparse dendritic structure
results because particles are more likely to accrete near the tips

FIG. 12. (a) Synthetic topography based on the synthetic drainage
network given in Fig. 11. (b) Photograph of the drainage network on
the Wasatch Front near Mapleton, UT (7).

FIG. 13. An illustration of a volume-filling Tokunaga fractal tree.
The construction is based on a body-centered cubic lattice. The large
node at the center of the cube emits eight tip branches to the corners
of a cube. The eight smaller nodes at the tips of these branches each
emit seven tip branches. Fifty-six exterior nodes are placed at the tips
of these branches and eight internal nodes bisect the internal branches.
At the next order, each tip node would emit seven tip branches and
each internal node would emit six tip branches. The length-order ratio
is 2.

FIG. 14. (a) Branch-number matrix for the Tokunaga tree illus-
trated in Fig. 13. (b) Branch numbers and bifurcation ratios. The
bifurcation ratio approaches 8 (D 3 3) for high orders. (c) Branch-
ratio matrix for the tree.
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of the cluster rather than the deep interior. The networks were
typically found to be 11th order. The average bifurcation ratio
for the clusters was found to Rb 5 5.15 6 0.05 and the average
length-order ratio Rr 5 2.86 6 0.05, and from Eq. 4, the
corresponding fractal dimension is D 5 1.56.
To analyze the branching statistics of DLA clusters, Ossad-

nik (9) used the ramification matrix introduced for DLA by
Vannimenus and Viennot (10). In terms of the branching
ratios Tij, the terms of the ramification matrix are defined by:

Rij 5
TijO
i
i,j

Tij
[11]

The terms of the ramifications matrix obtained for DLA by
Ossadnik are given in Fig. 16. For a Tokunaga self-similar
fractal tree for which (Eq. 6) is valid, the terms of the
ramification matrix are given by:

Rij 5
c j2i21

O
i
i,j

cj2i21
[12]

For large values of j, this becomes:

Rij 5
1
c j21 S1 2

1
cD [13]

Taking c 5 2.7, this relation is compared with the DLA data
given in Fig. 16. It is seen that the DLA clusters are Tokunaga
self-similar fractal trees to a good approximation.

Conclusions

One of the most important symmetries in geology and geo-
physics is scale invariance. In general, this symmetry is statis-
tical rather than deterministic, is only approximate, and ex-
tends over only a finite range of scales. Landforms are a prime
example of this symmetry. The length of coastlines or topo-
graphic contours are classic examples of self-similar fractals.
Topography along a linear track is a classic example of a
self-affine fractal. Both exhibit power-law scaling.
A ubiquitous feature of landforms on the Earth are drainage

networks. These also exhibit scale-invariant symmetries and
are recognized as fractal trees. Power-law scaling for fractal
trees include the bifurcation ratio, the length-order ratio, the
area-order ratio, and the slope-order ratio. A more complete
taxonomy of drainage networks (and other networks) involves
the statistics of side branching. Tokunaga (4) proposed a
self-similarity of side branching applicable to symmetric de-
terministic trees, actual drainage networks, and DLA clusters.
This taxonomy should be applicable to a wide range of growth
networks in biology and other fields.
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FIG. 15. A two-dimensional, off-lattice DLA cluster with 106
particules (9).

FIG. 16. Dependence of the terms of the ramification matrix Rij for
the branching statistics of a DLA cluster on the branch order i for
various branch orders j. Branches of order i join branches of order j,
so that i , j. The data points are for an average of 47 off-lattice DLA
clusters, each with 106 particles (9). The straight-line correlation is
with the Tokunaga relation (Eq. 13), taking c 5 2.7.
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