intermediate-age galactic cluster NGC7789 is reported. Metal abundances are determined from high-resolution spectroscopic observations of six giant stars. The abundance of iron in this cluster is \([\text{Fe/H}] = -0.1\) relative to the sun, and the mix of elements is approximately solar. No star-to-star differences among the six giants are detected.

The discrepancy between the spectroscopically derived masses and the cluster turn-off mass is explored.

AMATEUR OBSERVING BY THE A.L.P.O. MINOR PLANETS SECTION

FREDERICK PILCHER

Illinois College, Jacksonville, Illinois

The Minor Planets Section of the Association of Lunar and Planetary Observers acts to support and coordinate the observation of minor planets by amateurs. Photographs of astrometric quality are currently underutilized due to difficulties of access to measuring engines, and an appeal is made to improve accessibility. Visual surveys of faint asteroids by dedicated amateurs are finding and correcting significant discrepancies in published magnitudes. Visual light curves continued over long time intervals have proved a useful supplement to photoelectric light curves restricted by telescope assignment to a few days. Cooperative programs between amateur and professional minor planet observers are described.

NARROW-BAND PHOTOMETRY AND THE REDDENING OF CYGNUS A *

KARL D. BAKOS AND NORBERT FIALA

Institute for Astronomy, University of Hawaii

A new procedure was used (Rakos and Fiala 1985) to calculate the total amount of reddening of Cygnus A. Supposing that the light of Cyg A comes from an average elliptical galaxy with average solar chemical composition without strong nonthermal components, and that the standard reddening law can be applied to the dark matter within elliptical galaxies, we get \(A_v = 1.53\) magnitudes. The first estimation of reddening of Cyg A was discussed by Sandage (1972), he found \(A_v = 0.90\). This was significantly lower than the value \(A_v = 2.26\) that Osterbrock and Miller (1975) have obtained. Finally, van den Berg's (1976) photometry yields a galactic foreground reddening of \(A_v = 1.30\), close to our estimation of 1.53 magnitudes for the total amount of reddening.

*Poster paper.