They already knew:
Total power/surface area

\[P(T) = \sigma T^4 \]
\[\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \]

Also:

\[\lambda_{MAX} = \frac{b}{T} \]
\[b = 2.9 \times 10^{-3} \text{ m K} \]

But what is \(B_{\nu}(T) \)?

Question: what is the nature of radiation emitted by an object in equilibrium
A blackbody

- Body in *thermodynamic equilibrium*: i.e. in chemical, mechanical, radiative equilibrium
- Temperature is constant
- Intensity depends only on temperature
- Temperature depends on intensity
- If $I_\nu(A) > I_\nu(B) \rightarrow$ B will heat & A will cool. But that’s a contradiction: they’re same temperature

Assume 2 blackbodies of same temperature — they emit the same intensity
Kirchhoff's law

- Source Function, $S = \text{Intensity, } B$
- If $S > B$ then $I > B$, but T is the same everywhere

\[\frac{j_\nu}{\kappa_\nu} = I_\nu \]
Derive the intensity of a black body

Strategy:

- Derive the density of states \(D_\nu \)
- Derive energy of each state \(E_\nu \)
- Derive energy density \(\mu_\nu \)
- Derive intensity \(I_\nu \)

\[I_\nu = J_\nu = \frac{c}{4\pi} \mu. \]
Energy states

- Assume cavity of dimensions $L \times L \times L$
- E field must be 0 at boundary (otherwise energy dissipates out of cavity)
- Consider waves as a superposition of those in the x, y and z directions, \hat{n}_x, s.t. $k = \left(\frac{2\pi}{\lambda}\right)n$
Count the allowable states

- Density of States: assume a BB of dimensions $L \times L \times L$

- EM wave equation:

$$\frac{\delta^2 E}{\delta x^2} + \frac{\delta^2 E}{\delta y^2} + \frac{\delta^2 E}{\delta z^2} = \frac{1}{c^2} \frac{\delta^2 E}{\delta t^2}$$

- Solution ($E=0$ at walls):

$$E = E_0 \sin \frac{n_1 \pi x}{L} \sin \frac{n_2 \pi y}{L} \sin \frac{n_3 \pi z}{L} \frac{2 \pi c t}{\lambda}$$

- Where allowed frequencies are:

$$\left[\frac{n_1 \pi}{L}\right]^2 + \left[\frac{n_2 \pi}{L}\right]^2 + \left[\frac{n_3 \pi}{L}\right]^2 = \left[\frac{2 \pi}{\lambda}\right]^2$$

- Lattice points in a sphere of radius r:

$$n_1^2 + n_2^2 + n_3^2 = \frac{4L^2}{\lambda^2}$$

$$r^2 = n_1^2 + n_2^2 + n_3^2 = \frac{4L^2 \nu^2}{c^2}$$

Then: $r = 2L \nu / c$
Density of States (1-D)

Number of allowed states within \(\nu \) and \(d\nu \):

From:

\[
\nu = \frac{nc}{2L}
\]

Number of states is:

\[
N(\nu) = \left(\frac{2L}{c} \right)(\nu + d\nu) - \left(\frac{2L}{c} \right)\nu = \left(\frac{2L}{c} \right) d\nu
\]

Thus:

\[N(r)dr = N(\nu)d\nu\]
Allowable states

- For 3-D you have a 3-D lattice such that the points are defined on a shell with a width of \(dv \)
- \(N(\nu)dv = N(r)dr = 4\pi r^2 \, dr \)
- But only consider positive values:
 - \(N(\nu)dv = 1/8 \cdot 4\pi r^2 \, dr = 1/2 \pi r^2 \, dr \)
- Substitute for \(r \):
 \[N(\nu)dv = \frac{\pi}{2} \left(\frac{2L}{c} \right)^3 \nu^2 dv \]
- Multiply by 2 for 2 polarization states
 \[N(\nu)dv = \frac{8\pi V}{c^3} \nu^2 dv \]
- Each mode has an energy of \(kT \) (equipartition of energy for 2 degrees of freedom). The energy density is thus:
 \[\mu_\nu = \frac{8\pi k_B T}{c^3} \nu^2 \]
 \[B_\nu = I_\nu = \frac{c}{4\pi} \frac{8\pi \nu^2}{c^3} k_B T \]
Rayleigh – Jeans Law

\[B_\nu = I_\nu = \frac{c}{4\pi} \frac{8\pi \nu^2}{c^3} k_B T \]

Any problems here?
"Ultraviolet Catastrophy"

- Rayleigh-Jeans law doesn’t make sense!
- Doesn’t agree with the oven measurements!
Towards an explanation

- Average energy according to Boltzmann Distribution:
 \[P(E) = \frac{e^{E/k_BT}}{k_BT} \]
 \[\bar{E} = \frac{\int_0^\infty EP(E)dE}{\int_0^\infty P(E)dE} = k_BT \]

- If the states could have discrete energies, e.g. 0, \(\Delta E\), 2\(\Delta E\)... Then
 - If \(\Delta E \ll kT\): \(\bar{E} \sim kT\)
 - If \(\Delta E \gg kT\): \(\bar{E} < kT\)
Planck’s desperate idea

- Let the interval ΔE of allowed states depend on v

- Let’s try $\Delta E = hv$ and derive h from the intensity (i.e. less energy from the high v light)

- Fit the data: get $h = 6.63 \times 10^{-34}$ J sec

- Actual value of “Planck’s constant”: 6.626068×10^{-34} J s.

- Oven experiment indicates that light comes only in quantized packets!
The probability of finding a state of energy \(E_j \), \(P(E_j) \), is proportional to \(e(-E_j/kT) \).

Where does this general statement come from?

It is proportional to the number of states having this energy & number of states accessible to larger system having energy \(E-E_j \):

\[
P_j \propto N(E^0 - E_j)
\]

Work with natural log because #states depends on \(E \). Expand log of number

\[
E_j \ll E^0 \quad \rightarrow \quad \ln N(E^0 - E_j) = \ln N(E^0) + \left[\frac{d\ln N'}{dE'} \right]_0 (-E_j)
\]

From thermodynamics: \(\beta = 1/kT \)

\[
\ln N(E^0 - E_j) = (\ln N(E^0)) - \beta E_j.
\]

\[
P(E_j) = N(E^0 - E_j) = C e^{-\beta E_j}
\]

Let \(g_j \) be the # of states with energy \(E_j \) i.e. the degeneracy

\[
P(E_j) = \frac{g_j e^{-\beta E_j}}{\sum_0^\infty g_i e^{-\beta E_i}}
\]
Types of particles

- Maxwell–Boltzmann statistics
 - Distinguishable
 - Each particle has an energy
 - Obey classical mechanics

- Fermions
 - Energy, location & state not specified but by probability
 - \(\frac{1}{2}\) integral spin
 - Obeys Fermi’s law: only one per state
 - Protons, neutrons, electrons, quarks..

- Bosons
 - Also quantum mechanical
 - Integer spin
 - More than one can exist in a state
 - Force carriers (photons, gluons, gravitons & W & Z bosons)
 - For photons – there are an unspecified # of particles
Mean number of photons in a state

- Mean number of photons in a state: Sum states weighted by probability that it occurs

\[
\bar{n}_s = \frac{\sum n_1, n_2 \ldots n_s n_s e^{-\beta(n_1 \epsilon_1 + n_2 \epsilon_2 + \ldots)}}{\sum n_1, n_2 \ldots n_s e^{-\beta(n_1 \epsilon_1 + n_2 \epsilon_2 + \ldots)}}
\]

- OR

\[
\bar{n}_s = \frac{\sum n_s e^{-\beta n_s \epsilon_s} \sum_{n_1, n_2 \ldots} e^{-\beta(n_1 \epsilon_1 + n_2 \epsilon_2 + \ldots)}}{\sum_{n_s} e^{-\beta n_s \epsilon_s} \sum_{n_1, n_2 \ldots} e^{-\beta(n_1 \epsilon_1 + n_2 \epsilon_2 + \ldots)}}
\]

- A photon can have all possible states regardless of occupation

“-s” means that state “s” is not in sum
Mean number of photons in a state

- A photon can have all possible states regardless of occupation

\[\bar{n}_s = \frac{\sum n_{1,n_2...n_s} n_s e^{-\beta(n_1\epsilon_1 + n_2\epsilon_2 + ...)}}{\sum n_{1,n_2...n_s} e^{-\beta(n_1\epsilon_1 + n_2\epsilon_2 + ...)}} \]

- OR

\[\bar{n}_s = \frac{\sum n_s e^{-\beta n_s \epsilon_s} \sum_{n_{1,n_2...n_s}} e^{-\beta(n_1\epsilon_1 + n_2\epsilon_2 + ...)}}{\sum n_s e^{-\beta n_s \epsilon_s} \sum_{n_{1,n_2...n_s}} e^{-\beta(n_1\epsilon_1 + n_2\epsilon_2 + ...)}} \]

\[\bar{n}_s = \frac{\sum n_s n_s e^{-\beta n_s \epsilon_s}}{\sum n_s e^{-\beta n_s \epsilon_s}} \]
Mean number of Particles in a State

Now just a little math

\[\bar{n}_s = \frac{\sum n_s e^{-\beta n_s \epsilon_s}}{\sum n_s e^{-\beta n_s \epsilon_s}} \]

\[\bar{n}_s = \frac{-(1/\beta) \frac{d}{d\epsilon_s} \sum e^{-\beta n_s \epsilon_s}}{\sum e^{-\beta n_s \epsilon_s}} = -\frac{1}{\beta} \frac{d}{d\epsilon_s} \ln(\sum e^{-\beta n_s \epsilon_s}) \]

\[\bar{n}_s = \frac{1}{\beta} \frac{d}{d\epsilon_s} \ln(1 - e^{-\beta \epsilon_s}) = \frac{e^{-\beta \epsilon_s}}{1 - e^{-\beta \epsilon_s}} \]

\[\bar{n}_s = \frac{1}{e^{\beta \epsilon_s} - 1} \]
Calculate the average energy of radiation of frequency ν:
Designate each state, n, be that of n photons each with $E = h\nu$
The nth state is $E_n = nh\nu$
The mean energy is the sum weighted by probability that energy occurs

$$\bar{E}(\nu) = \frac{\sum_{n=0}^{\infty} nh\nu e^{-\beta nh\nu}}{\sum_{n=0}^{\infty} e^{-\beta nh\nu}}$$

That is just*:

$$\bar{E}(\nu) = h\nu\bar{n} = \frac{h\nu}{e^{\beta h\nu} - 1}$$

The energy density is then

$$\mu = \frac{8\pi \nu^2 h\nu}{c^3(e^{h\nu/k_BT} - 1)}$$

The blackbody intensity:

$$B_\nu = I_\nu = \frac{c}{4\pi} \mu = \frac{2h\nu^3}{c^2(e^{h\nu/k_BT} - 1)}$$

* Not KT
Blackbody Intensity

- **Average energy:**
 \[
 \bar{E}(\nu) = h\nu\tilde{n} = \frac{h\nu}{e^{\beta h\nu} - 1}
 \]

- **Derive \(h \) from measurements:**
 \[h = 6.63 \times 10^{-34} \text{ Jsec.}\]

- **Derived intensity:**
 \[
 B_\nu = I_\nu = \frac{c}{4\pi}\mu = \frac{2h\nu^3}{c^2(e^{h\nu/k_BT} - 1)}
 \]

- **Compared to classical:**
 \[
 I_\nu = \frac{c}{4\pi} \frac{8\pi\nu^2}{c^3} k_BT.
 \]
Results presented at the German Physical Society on December 14, 1900

A good reference to thermodynamics and black-body radiation is F. Rief, Fundamentals of Statistical and Thermal Physics.

Nobel Prize in 1918