Define Local Thermodynamic Equilibrium
IR spectra of planetary atmospheres
First realistic RT model of an atmosphere
Local Thermodynamic Equilibrium

- The population of excited states, e.g. the number of molecules n_i in state i and that n_j in state j obey the Boltzmann distribution:

$$\frac{\bar{n}_j}{\bar{n}_i} = \frac{g_j}{g_i} e^{-(E_j - E_i)/k_B T}$$

- In that case, even if the temperature varies we have LTE, and the Planck function is the source function, but not the intensity.
Earth’s Spectrum: sum of 2 parts
Earth’s Spectrum: sum of 2 parts

What is the source function on this side?

What is the source function on this side?
Planetary emission
Earth’s surface temperature

New et al. 2002, Reynolds et al. 2002
Constant Source Function

\[I_\nu(\tau_\nu) = I_\nu(0) \ e^{-\tau_\nu} + \int_0^{\tau_\nu} S_\nu e^{-(\tau_\nu - \tau'_\nu)} \ d\tau' \]

How do you solve this equation for a constant source function?
Constant Source Function

\[
I_\nu(\tau_\nu) = I_\nu(0) \ e^{-\tau_\nu} + \int_0^{\tau_\nu} S_\nu e^{-(\tau_\nu - \tau_\nu')} d\tau'
\]

\[
I_\nu(\tau_\nu) = I_\nu(0) \ e^{-\tau_\nu} + S_\nu (1 - e^{-\tau_\nu})
\]

As tau goes to infinity, I \rightarrow ???
Constant Source Function

\[I_\nu(\tau_\nu) = I_\nu(0) \ e^{-\tau_\nu} + \int_0^{\tau_\nu} S_\nu e^{-(\tau_\nu - \tau_{\nu}')} d\tau' \]

\[I_\nu(\tau_\nu) = I_\nu(0) \ e^{-\tau_\nu} + S_\nu \ (1 - e^{-\tau_\nu}) \]

\[I_\nu(\tau_\nu) = S_\nu + e^{-\tau_\nu} (I_\nu(0) - S_\nu) \]

Note: as tau goes to infinity, I \to S!
Familiar Source Function

\[B_\nu = I_\nu = \frac{c}{4\pi} \mu = \frac{2\hbar \nu^3}{c^2(\nu h/k_B T) - 1} \]
Emission Spectra: which planets are these?
Primary vs Secondary Transits:

Light curve of brightest “Hot Jupiters”:

- ~0.2%

Planet approaches **secondary eclipse**
enabling measurements
of emission spectra of
the dayside hemisphere

Planet in **primary eclipse**
enables measurements
of transmission spectra
of the terminator

- ~0.2%

- ~1.5%

Secondary Transit provides information on Temperature & Composition Profiles
RT Equation

- Assume IR radiation only, in an atmospheric slab of constant temperature. Simplify this:

\[I_\nu(\tau_\nu) = I_\nu(0) e^{-\tau_\nu} + \int_0^{\tau_\nu} S_\nu e^{-(\tau_\nu - \tau'_\nu)} d\tau'. \]
Assume IR radiation only, in an atmospheric slab of constant temperature. Simplify this:

\[I_{\nu}(\tau_{\nu}) = I_{\nu}(0) \, e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} S_{\nu} e^{-(\tau_{\nu}-\tau')} d\tau'. \]

\[I_{\nu}(\tau_{\nu}) = I_{\nu}(0) \, e^{-\tau_{\nu}} + B_{\nu} (1 - e^{-\tau_{\nu}}). \]
To calculate the intensity emerging from the top of an atmosphere, what do we do?

\[I_\nu(\tau_\nu) = I_\nu(0) e^{-\tau_\nu} + B_\nu(1 - e^{-\tau_\nu}) \]
Assumption: Atmospheric scale height is small compared to the radius of the planet.
To calculate the intensity emerging from the top of an atmosphere, what do we do?

\[I_{\nu}(\tau_{\nu}) = I_{\nu}(0) \ e^{-\tau_{\nu}} + B_{\nu}(1 - e^{-\tau_{\nu}}). \]
\[I_v^1 = I_{\text{observed}} \quad \tau_1 \ll 1 \]

\[T_1, P_1, \rho_1, \Delta \tau_1 \quad Z_2, \tau_2 \]

\[I_v^2 \]

\[\vdots \]

\[I_v^i = I_v^{i+1} e^{-\Delta \tau_v} + B_v(T_i)(1 - e^{-\Delta \tau_v}) \quad Z_i, \tau_i \]

\[T_i, P_i, \rho_i, \Delta \tau_i \quad Z_{i+1}, \tau_{i+1} \]

\[I_v^{i+1} \]

\[\vdots \]

\[I_v^N = B_v(T_N) \quad Z_N, \tau_N \gg 1 \]

or surface
Consider a few atmospheres

- Constant temperature, variable tau
- Variable temperature, constant tau
- Variable temperature, variable tau

What kind of a spectrum would you get from these?
Why are these absorption features?
Contribution functions

- RT Eq. \(I_{\nu}(\tau_{\nu}) = B_{\nu}(\tau_{surf}) \ e^{-\tau/\mu} + \frac{1}{\mu} \int_{\tau_{surf}}^{0} B_{\nu} e^{-\tau/\mu} \ d\tau. \)

- No surface \(I_{\nu}(\tau_{\nu}) = \frac{1}{\mu} \int_{\infty}^{0} B_{\nu} e^{-\tau/\mu} \ d\tau. \)

- Weighting & Contribution Functions:
 \(I_{\nu}(\tau_{\nu}) = \int_{\infty}^{0} B_{\nu} \ WF(P) \ d\ln P, \quad I_{\nu}(\tau_{\nu}) = \int_{\infty}^{0} CF(P) \ d\ln P. \)

 \(WF(P) = e^{-\tau/\mu} \frac{d(\tau/\mu)}{d\ln P} \)

 \(CF(P) = B_{\nu} e^{-\tau/\mu} \frac{d(\tau/\mu)}{d\ln P} \)
Earth’s IR spectrum

[Graph of intensity vs. wavenumber]

[Graph of intensity vs. wavelength]

[Graph of pressure vs. temperature]

Mesosphere

EARTH

Stratopause

Stratosphere

Tropopause

Troposphere
Example: CO in Titan’s atmosphere
Determine TP profile with CH4 features
Results:
47 ± 8 ppm of CO, uniform with latitude.
Vertical abundance constant above condensation level
Consistent with long chemical lifetime (500 Myr)
Origin: unknown
Possibly from Comets (like CO2 and H2O)
Possibly from interior
composition from data
Start with model & then fit the data
Atmospheres are tricky

- We are still trying to understand the composition & structure of the well measured 8 Solar System planets.
- Take Titan. We don’t know where the oxygen and carbon species in the atmosphere come from.
- For exoplanets, we are mostly looking at Hot Jupiters which has no surface. This helps because we don’t have to worry about subsurface sources and surface chemistry...