neodore **Broeren**

PHD STUDENT · APPLIED MATHEMATICS

University of Arizona: Tucson AZ, USA

🛿 (+1)920-680-5256 | 🔤 broeren@arizona.edu | 🏶 sites.google.com/math.arizona.edu/broeren | 🛅 theodore-broeren-b3012712a

Education

The University of Arizona

PHD & MS IN APPLIED MATHEMATICS (EXPECTED GRADUATION: SPRING 2024)

• Focus in mathematical modeling, data analysis, and space plasma physics

Northwestern University

BS IN ENGINEERING SCIENCES & APPLIED MATHEMATICS

Focus in mathematical modeling, numerical simulations, and mechanical engineering

Experience

NASA HelioSwarm Mission

THE UNIVERSITY OF ARIZONA (SUPERVISED BY DR. KRISTOPHER KLEIN)

- Created new mathematical models to maximize the accuracy of magnetic field reconstructions from a known configuration of spacecraft.
- Used Bayesian Inferencing to learn equations that quantify the uncertainty of the wavevectors reconstructed in space plasmas using multispacecraft in-situ data.
- Utilized high performance computing resources to perform calculations on large data-sets.

Sandia National Laboratory

URA GRADUATE RESEARCH FELLOWSHIP (SUPERVISED BY DR. WILLIAM LEWIS)

- Worked in the Radiation Electrical & High Energy Density Science Research Foundation where I programmed fluid simulations of the 2D Rayleigh-Taylor Instability.
- Using the weakly non-linear theory as a guide, I learned equations of evolution for the surface perturbation from the RT instability simulations
- I then generalized these equations to be applicable at arbitrary Atwood numbers (i.e. density ratios).

Undergraduate Research

NORTHWESTERN UNIVERSITY (SUPERVISED BY DR. DANIEL ABRAMS)

- Assessed the validity of applying the Kuramoto Model of Synchronization to the early behavior of matter near Saturn, to study how it aggregated into the planet's rings and moons.
- Created numerical models in Matlab, and used Mathematica and Maple to solve generalized mathematical systems.

SpaceICE CubeSat Team

NORTHWESTERN UNIVERSITY (SUPERVISED BY DR. DAVID DUNAND)

- Designed a CubeSat payload to explore the viability of freeze-casting in the temperatures and pressures of space.
- Analyzed satellite structure to determine its integrity in reaction to loads, vibrations, and thermal gradients.
- Machined and assembled components and mounts for optical and thermal sensors.

Formula SAE Suspension Team

NORTHWESTERN FORMULA RACING

- Programmed and documented a dynamic vehicle model in Matlab to simulate brake thermal characteristics utilizing vehicle speed data.
- Used Solidworks to design mechanical components and analyzed them using hand calculations, numerical analysis, and Finite Element Analysis
- Manufactured racecar components using mills, lathes, saws, and other tools.

Skills

Programming Python, Matlab, LaTeX Software SolidWorks, Excel, Autodesk Inventor Manufacturing Manual and CNC mill, lathe, saw, laser cutter, router

Tucson AZ, USA

2020 - Current

2015 - 2018

Tucson AZ, USA 2019 - Current

Albuquerque NM, USA Summer 2022

Evanston IL, USA 2017 - 2018

2017 - 2018

Evanston IL, USA

2015 - 2018

1

Evanston IL, USA

Honors

FELLOWSHIPS

2022 URA Summer Graduate Fellowship, Summer research experience at Sandia National Laboratories

AWARDS

2018 Best Oral Presentation, Undergraduate Research Expo: 'Advancements in Science & Engineering' Panel

GRANTS

- 2018 Summer Undergraduate Research Grant McCormick School of Engineering and Applied Sciences
- 2017 Undergraduate Research Assistant Program Grant Northwestern University

SCHOLARSHIPS

- Current Graduate College Dean's Tuition Award The University of Arizona
- Current Graduate College Merit Fellowship The University of Arizona
- 2015 Great Lakes National Scholarship Great Lakes Educational Loan Services, Inc
- 2015 Bennett Scholarship Wisconsin Society of Professional Engineers
- 2015 Arlie McNeill Scholar Dolphin Scholarship Foundation
- 2015 Bay Sesquicentennial Scholarship Greater Green Bay Community Foundation
- 2015 Resch Scholarship Greater Green Bay Community Foundation
- P&G Scholarship The Procter & Gamble Company 2015

Conferences & Presentations

ISSI International Team: Cross-scale Energy Transfer in Space Plasmas Bern, CH Feb. 2023 STARTED OPEN COLLABORATION WITH INTERNATIONAL PLASMA PHYSICISTS STUDYING TURBULENCE • Presented research on multi-spacecraft analysis techniques and their application to the study of space plasma turbulence AGU Fall Meeting (American Geophysical Union) Chicago IL, USA POSTER SESSION: REVEALING MULTISCALE PLASMA DYNAMICS AND PROPERTIES OF TURBULENCE IN THREE DIMENSIONS Dec. 2022 • Presented graduate research Minimizing Error in the Classification of Space Plasma Waves using the Wave-Telescope Technique on HelioSwarm **HelioSwarm Science Team Meeting** Chicago IL, USA INVITED TALK AT THE PHASE B SCIENCE TEAM MEETING Dec. 2022 • Presented uncertainty quantification research of the wave telescope technique and its application to HelioSwarm. **Machine Learning in Heliophysics** Boulder CO, USA COMPLETED TUTORIAL USING THE PYTHON MACHINE LEARNING TOOL scikit-learn Mar. 2022 AGU Fall Meeting (American Geophysical Union) New Orleans LA, USA

POSTER SESSION: REVEALING MULTISCALE PLASMA DYNAMICS AND PROPERTIES OF TURBULENCE IN THREE DIMENSIONS Dec. 2021

• Presented graduate research Reconstruction of Turbulent Magnetic Fields from a Multi-Point, Multi-Scale Spacecraft Observatory

Publications _____

Data-Driven Uncertainty Quantification of the Wave-Telescope Technique: General Equations and Application to HelioSwarm	Astrophys. J., Suppl. Ser.
preprint arXiv:2303.12907	
Magnetic Field Reconstruction for a Realistic Multi-Point, Multi-Scale Spacecraft	Front. Astron. Space Sci.
Observatory	
T. Broeren, K G Klein, J M Tenbarge, Ivan Dors, O W Roberts and Daniel Verscharen	Sept. 2021
• doi: 10.3389/fspas.2021.727076	