CV: Niranjana Shankarappa

🖾 niranjanats@arizona.edu

Education

University of Arizona

PhD, Physics Thesis: *Modelling dissipation of turbulence in solar wind* Advisor: Kristopher G Klein

Indian Institute of Science Education and Research (IISER)Pune, IndiaBS-MS, Physics2014 - 2019MS Thesis: The role of plasma heating and expansion in the energetics of solar CMEsAdvisor: Prasad Subramanian

Fellowships

Kishore Vaigyanik Protsahan Yojana (KVPY) Fellow

2014 - 2019

Tucson, USA

August 2019 - present

KVPY, Indian Institute of Science It is a highly competitive fellowship awarded by the Government of India to encourage undergraduates to pursue research careers in basic sciences.

Publications

- Niranjana Shankarappa, Kristopher G. Klein, and Mihailo M Martinović. Estimation of turbulent proton and electron heating rates via Landau damping constrained by Parker Solar Probe observations. Accepted in The Astrophysics Journal, page arXiv:2301.09713, January 2023
- Debesh Bhattacharjee, Prasad Subramanian, Angelos Vourlidas, Teresa Nieves-Chinchilla, Niranjana Thejaswi, and Nishtha Sachdeva. On the specific energy and pressure in near-Earth magnetic clouds. Accepted in Astronomy and Astrophysics, page arXiv:2210.16571, October 2022

Conferences

AGU	Chicago
Relative heating of ions and electrons in the young solar wind due to turbulent dissipation mediated by Landau damping	December 2022
SHINE	Honululu
Relative heating of ions and electrons in the young solar wind due to	June - July 2022
turbulent dissipation mediated by Landau damping	

Parker Two Relative heating of ions and electrons in the young solar wind due to turbulent dissipation mediated through Landau damping	APL, JHU June 2022
AGU Modeling Proton and Electron Heating Rates in Early Parker Solar Probe Encounters	New Orleans December 2021
Parker One Estimation of relative heating of ions and electrons in the young solar wind	Online June 2021
Parker Solar Probe Scholars meeting Relative heating of ions and electrons in the young solar wind due to turbulent dissipation mediated through Landau damping	Online April 2021
AGU Relative heating of ions and electrons in the young solar wind due to turbulent dissipation mediated via Landau damping	Online December 2020
APS Division of Plasma Physics The relative heating of ions and electrons due to turbulent dissipation through Landau damping	Online November 2020
National Space Science Symposium (NSSS)-2019 'Why do solar coronal mass ejections expand as they propagate out- wards?'	Pune University, India January 2019
Computation skills	

Computation skills

o Programming Languages: FORTRAN, Python, bash, MATLAB

• **Other skills:** High Performance Computing, gnuplot

Teaching experience

 $_{\odot}$ I have taught Introductory Mechanics Lab to undergraduates for an year.

 I have taught Physics and Mathematics to high school students through an online tutoring platform called 'Gotit'.