Machine Learning & Deep Nets

Leon F. Palafox December 4th, 2014

Introduction

- What is Machine Learning?
 - Is a rebranding of Artificial Intelligence, since we don't really care about replicating intelligence.
 - Is a set of tools to analyze data to make predictions and get insights out of it.
 - Is a sub- branch of computer science and statistics.
- Areas of Machine Learning
 - Supervised Learning: Classification, Regression.
 - Unsupervised Learning (Knowledge Discovery): Clustering, Mixture Models.

Supervised Learning

The set of elements that describe a single datum are called features, in this case, the features are the words in the e-mails.

Each category (spam, not spam) will have features that will characterize them.

Spam: Offer, Viagra, medicine, Free, Conference in China

Not Spam: Hamilton, LPL, DTM, Mom, Dad

Mail Inbox

The set of elements that describe a single datum are called features, in this case, the features are the words in the e-mails.

Each topic (clusters) will have features that will characterize them.

Research: Mars, Proposal, DTM, HiRISE, Machine Learning, Deep Nets, Bayesian
Family: Mom, House, Mexico
Promotions: Computer, PS4, Cheap, Amazon, Deal
Classes: Grades, Homework, Questions, Office Time

http://cs.stanford.edu/people/karpathy/nips2014/ http://sarah-palin.herokuapp.com/

Preprocessing Data

• It's a pain, but is needed

Preprocessing Data

Who uses Machine Learning

- Google: Spam Detection (Gmail), Ranking Algorithms (Google Search), Image Recognition (Google Image)
- Amazon: Recommendation Engines
- Facebook: Feed personalization, News personalization.
- Disney, NTT, Toyota, Ford, etc.

So what are Deep Nets?

- First we need to understand what are Neural Networks (NN).
 - NNs have gone through a heavy rebranding thorough the years.
 - In 1943, McCulloch and Pitts created the first model of an artificial neuron.
 - By 1958, Rosenblatt had come up with the Perceptron, the cornerstone of modern NN.
 - In 1986, Rumelhart started the connectionism euphoria.

Background

- Processing power was still an issue and until 2006, common NNs were researched by only small clusters of people.
- Training was expensive, and the results only marginally better (or worse) than SVMs or Logistic Regression.
- In 2006, Hinton and Bengio made huge discoveries on how to train NNs and they rebranded them as Deep Nets.
- During this time, Convolutional Neural Networks (CNN) had been a great tool for image pattern recognition.

Motivation

- Deep Nets and CNNs, are by today standards the best algorithm for Image Pattern Recognition.
- The three Big Kahunas of NNs and Deep Nets, Geoffrey Hinton, Yann LeCun and Yoshua Bengio are working actively with Google, Facebook and University of Toronto, respectively.

Motivation

- In January Google bought DeepMind, a startup with no WebPage, no Product, a single NIPS (AI conference) Demo.
- They bought it for \$500 million.
- Facebook was deeply interested as well.

Perceptron

• Tries to mimic a real NN, since it has a nucleus that processes some inputs and give an output.

• $h_{w,b}(x)$ is a function of all the inputs, and is composed of two terms.

Perceptron

$$h_{w,b}(x) = f\left(\sum_{i=1}^{3} W_i x_i + b\right)$$

f is called the activation function, and it works as a way to discretize the outputs of the perceptron.

One of the most common activations functions is the sigmoid function:

$$f(z) = \frac{1}{1 + \exp(z)}$$
 This looks very familiar

Neural Network

 Naturally, a NN is going to be a set of perceptrons interconnected within each other.

$$\begin{aligned} a_1^{(2)} &= f(W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{13}^{(1)}x_3 + b_1^{(1)}) \\ a_2^{(2)} &= f(W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2 + W_{23}^{(1)}x_3 + b_2^{(1)}) \\ a_3^{(2)} &= f(W_{31}^{(1)}x_1 + W_{32}^{(1)}x_2 + W_{33}^{(1)}x_3 + b_3^{(1)}) \\ h_{W,b}(x) &= a_1^{(3)} = f(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}) \end{aligned}$$

Neural Network

- We can add as many layers and outputs as we want, for example a two binary output allows us to classify in four classes.
- We also regularize NNs, since they can be also prone to overfitting.

Problems of NNs

- We need to answer two questions:
 - How many layers are enough to solve a problem?
 - How many hidden units should we use per layer?
- As you can imagine, training complexity increases as we increase hidden units.
 - This can be reduced by avoiding a full interconnection.
- The elephant in the room is called "Vanishing Gradient"

Autoencoders

• An autoencoder is a NN where the output and the input are the same.

MNIST Dataset

- Dataset of handwritten digits
- Has a training set of 60,000 examples, and a test set of 10,000 examples.
- Each digit is an 28x28 image (784 pixels)
- Each digit has a label that identifies which digit it represents. (9 labels)

Autoencoders

- Why would I want both the input and the output to be the same.
- MNIST dataset as an example (28x28 input images)

10 hidden units in Autoencoder

80 hidden units in Autoencoder

Autoencoders

500 hidden units in Autoencoder

196 hidden units in Autoencoder

Autoencoders and Deep Nets

• We train an autoencoder, and plug it in a NN then train.

• This simple modification is one of the most important advancements in NN practice in the past 20 years.

Demo

<u>http://www.clarifai.com/</u>

Important notes

- We are still not entirely sure why it works:
 - Some people say is because using this as a random start saves us much hassle.
 - Some say that this artificially moves us to a better search space.
- Using the autoencoder as a preprocessing step, has been proven to help us save steps when it comes to preprocessing algorithms.
- The autoencoder can find circles, edges, etc by itself.