This class is scheduled to be taught in the in person modality.

Class Website
d2l.arizona.edu (student login required)

Instructor
Isamu Matsuyama
Office: Kuiper Space Sciences 527A
(520) 621-4002, isamu@arizona.edu

Office hours
Please email me to arrange an in person or a remote meeting time

Class meetings
Tuesdays and Thursdays, 11AM - 12:15PM, Kuiper Space Sciences Building, Room 312

Textbook
There is no required textbook. The following textbooks are recommended:
• An introduction to Planetary Physics, Kaula
• Solar System Dynamics, Murray and Dermott (Errata)
• Planetary Sciences, de Pater and Lissauer
• Lecture notes on the formation and early evolution of planetary systems, Armitage
Copies of these books are on reserve at the LPL library (Kuiper Space Sciences 409) and are also available for in-library use in the UA Library’s Special Collections.

Objectives and expected learning outcomes
The students will develop a broad understanding of the importance of physical processes that shape planetary systems. For example, they will acquire a quantitative understanding of the two-body problem, Kepler's laws of motion, planet formation by core accretion and gravitational instability, rotational and tidal distortions, and energy dissipation. At the end of the course, students will know how to derive Kepler's laws of motion by solving the two-body problem; understand the dynamical origin and evolution of planetary systems; and understand the physical processes that shape planetary interiors.

Class format
Class meetings will generally be built around reading assignments. Students are expected to be prepared with the material assigned prior to each class. We will use a combination of traditional lectures, open discussions and student-led presentations, according to topic and material. Although no formal attendance record will be made, class participation will be part of the grade, and homework assignments are likely to make more sense if you've been to class.
Grading
The grades will be on an A (90% and higher), B (80-89%), C (70-79%), D (60-69%), E (59% and lower) scale, and will be based on three components: class participation (25%), randomly collected homework assignments (25%) and three exams (50%, 16.7% each).

Due dates, late work, absences
Assignments are due in class on the due date. I would rather have late work than no work, although you should expect it to be for reduced credit. If you anticipate an absence on the due date of an assignment, please either turn in your work early or discuss alternative arrangements with me.

Classroom attendance
• If you feel sick, or may have been in contact with someone who is infectious, stay home. Except for seeking medical care, avoid contact with others and do not travel.
• Notify your instructor if you will be missing a course meeting or an assignment deadline.
• Non-attendance for any reason does not guarantee an automatic extension of due date or rescheduling of examinations/assessments.
• Please communicate and coordinate any request directly with your instructor.
• If you must miss the equivalent of more than one week of class, you should contact the Dean of Students Office DOS-deanofstudents@email.arizona.edu to share documentation about the challenges you are facing.
• Voluntary, free, and convenient COVID-19 testing is available for students on Main Campus.
• COVID-19 vaccine is available for all students at Campus Health.
• Visit the UArizona COVID-19 page for regular updates.

Academic integrity
You are expected to know and to abide by the University’s Academic Integrity policy. Two primary points you need to know are these: (1) When you turn in (or present) work that uses published material (journal articles, web sites, etc.), you are expected to give the appropriate credit and cite the source(s). (2) Collaboration is encouraged on most assignments, as I strongly believe that we learn more by asking questions and explaining our answers to others’ satisfaction. However, if you do work with someone, the work you turn in for grading must be written by you in your own words; if I get identical answers, I will divide the credit evenly.

Students with Disabilities
If you anticipate barriers related to the format or requirements of this course, please meet with me so that we can discuss ways to ensure your full participation in the course. If you determine that disability-related accommodations are necessary, please register with Disability Resources (621-3268; http://drc.arizona.edu) and notify me of your eligibility for reasonable accommodations. We can then plan how best to coordinate your accommodations.

Other classroom issues
We try to keep the classroom clean, and ask for your help. Please do not bring any food or drink (other
than bottled water) into the classroom. If there are problems with a seat or with its writing table, please
let me know, so that the problems can be addressed as soon as possible. Also, the common-sense rules of
good conduct apply, such as cell phones turned off and no web-surfing or irrelevant extra-curricular
activity during class.

Topics Covered
• Celestial mechanics: the two-body problem, the three-body problem.
• Protoplanetary disks: observations, MMSN, vertical structure, radial force balance, surface density
evolution.
• Planetesimal formation: aerodynamic drag, planetesimal formation by coagulation, planetesimal
formation by gravitational instability.
• Terrestrial planet formation: time scale for formation, gravitational focusing and the Safronov
number, Impulse approximation.
• Giant planet formation: core accretion, envelope structure, gravitational instability.
• Planet migration: in gaseous disks in planetesimal disks.
• Spherical planets in hydrostatic equilibrium: equation of state, polytropes, relation between pressure-
density and mass-radius.
• Static distorted planets: spherical harmonic representations, gravity anomalies, moments of inertia.
• Rotational distortion: Maclaurin and Jacobi theory, Radau-Darwin approximation.
• Tidal distortion: tides, hydrostatic response, Love numbers.
• Rigid-body motion: moment of inertia tensor, angular momentum of a rigid body, Euler’s equations,
effect of dissipation.
• Energy sources in planets: gravitational binding energy, thermal energy, radioactivity, tidal dissipation.

Safety on Campus and in the Classroom
For a list of emergency procedures for all types of incidents, please visit the website of the Critical
Incident Response Team (CIRT): https://cirt.arizona.edu/case-emergency/overview.
Also watch the video available at https://arizona.sabacloud.com/Saba/Web_spfi/NA7P1PRD161/common/
learningeventdetail/crtfy000000000003560.

Nondiscrimination and Anti-harassment Policy
The University of Arizona is committed to creating and maintaining an environment free of
discrimination. In support of this commitment, the University prohibits discrimination, including
harassment and retaliation, based on a protected classification, including race, color, religion, sex,
national origin, age, disability, veteran status, sexual orientation, gender identity, or genetic information.
For more information, including how to report a concern, please see: http://policy.arizona.edu/human-
resources/nondiscrimination-and-anti-harassment-policy

University Policies
All university policies related to a syllabus are available at: https://catalog.arizona.edu/syllabus-policies.

Subject to Change Notice
Information contained in the course syllabus, other than the grade and absence policies, may be subject to change with reasonable advance notice, as deemed appropriate by the instructor of this course.

Graduate Student Resources
Please consider including a link to the University of Arizona's Basic Needs Resources page: http://basicneeds.arizona.edu/index.html