PTYS Undergraduate Courses

PTYS Undergraduate Courses

Click on course number within each window for information about sections, syllabi, etc.

Expand all

Alien Earths (3)

Thousands of planets have been discovered orbiting nearby stars. How many of these worlds can we expect to be Earth-like? We explore this question from the perspective of astronomers, geologists, and historians. We look back at Earth’s geologic history to periods when our planet itself would appear very alien to us today. We study the nearby planets Venus and Mars, which were once more Earth-like than today. We discuss not only the evolution of Earth, Venus, and Mars as habitable worlds but also how human understanding of these planets has evolved. Finally, we apply these perspectives to the search for alien Earths in our galaxy. This interdisciplinary treatment of Earth, its neighboring planets, and planets being discovered around nearby stars allows us to consider the potentially unique position of Earth as a habitable world not only in space but in time.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: Writing
Course Level Other: Tier I NATS

Universe and Humanity: Exploring Our Place in Space (3)

This course places the Earth and humanity in a broad cosmic context and seeks to answer fundamental questions about our surroundings. Where are we and where do we come from? What is matter made of and what processes created it? What are different types of stars like and where does our Sun fit in? What is the role of stars in shaping the cosmos and the planets orbiting them? How did the Sun, the Earth, and the other planets in the solar system form? What are the planets in the solar system like and are there other planetary systems like ours? In addition to exploring these questions, this course will help students to understand how we have arrived at our current view of the universe, with a focus on the scientific method and the history of astronomy.

Course Level: GenEd: Exploring Perspectives - Natural Scientist, GenEd: Quantitative Reasoning, GenEd: Writing
Course Level Other: Tier 1 NATS

Exploring Our Solar System (3)

Our Solar System is filled with an incredible diversity of objects. These include the sun and planets, of course, but also many hundreds of moons—some with exotic oceans, erupting volcanoes, or dynamic atmospheres. Billions of asteroids and comets inhabit the space between and beyond the planets. Each body is unique, and has followed its own evolutionary history. This class will explore our current understanding of the Solar System and emphasize similarities that unite the different bodies as well as the differences between them. We will develop an understanding of physical processes that occur on these bodies, including tectonics, impact cratering, volcanism, and processes operating in their interiors, oceans, and atmospheres. We will also discuss planets around nearby stars and the potential for life beyond Earth. Throughout the class, we will highlight the leading role that the University of Arizona has played in exploring our Solar System.

Course Objectives: Students who engage with this course will develop a broad understanding of many fundamental concepts in planetary science and gain an appreciation for the discoveries and reasoning that leads to this understanding. They will learn to collect their own data as well as gather relevant supporting information from a variety of outside sources. Throughout the semester students will be demonstrating their grasp of course material by composing written assignments at a level their peers outside of the class will understand (a.k.a., Students on the Street, or SOS). During the term project students will be assisted in working with telescopes to obtain astronomical images using their own smart phone cameras. Students will learn during in-class workshops how to use their own images to then construct a time-lapse animation. Expected Learning Outcomes: Upon successful completion of this course students will be able to (1) access and use information and data from a variety of sources, including their own activities, (2) critically evaluate this information and data for reliability in supporting fundamental concepts, (3) effectively communicate an understanding of these concepts to their SOS peers by synthesizing the information and data they have gathered, (4) demonstrate practical skills with a variety of software, including Word, Excel, Keynote, PowerPoint, and image/video editing apps.

Course Level: GenEd: Exploring Perspectives - Natural Scientist, GenEd: Quantitative Reasoning, GenEd: Writing, PTYS Minor Elective
Course Level Other: Tier 2 NATS

The Science and Politics of Climate Change (3)

This course explores the science of climate change and the political and commercial issues related to global warming. The first part of the course focuses on the scientific basis of climate change. Students will investigate the concepts and principles required for understanding planetary climates. They will assess the observational evidence for climate change and quantify the relative roles of natural and human drivers in causing it. They will connect and compare recent changes to historical climate trends and examine predictions for the impact of future climate change on the environment and our lives. The second part of the course focuses on the political and commercial issues related to climate change mitigation. Students will analyze policies designed to reduce greenhouse gas emissions and explore their impacts from the perspectives of policymakers, commercial interests and the public.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: Writing, PTYS Minor Elective
Course Level Other: Tier 2 NATS

Life in the Cosmos (3)

This course explores key questions in astrobiology and planetary science about the origin and evolution of life on Earth and the possibility that such phenomena have arisen elsewhere in the Universe. We examine what it means for a planet to be alive at scales ranging from cellular processes up to global impacts of biological activity. We survey international space-exploration activities to search for life within the Solar System, throughout our Galaxy, and beyond.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: World Cultures & Societies, PTYS Minor Elective
Course Level Other: Tier 2 NATS

Planetary Geoscience (3)

The course introduces to the students the formation and evolution of solar system with a focus on its major bodies—major body evolution and their landforms resulted by geological activities, impact cratering, planetary volcanisms, aeolian and fluvial processes, planetary volatile reservoirs and astrobiological perspectives. GEOS is home department. Enrollment requirement: GEOS 251.

Teaching Teams Professional Development Workshop (3)

Professional development for undergraduates of all disciplines in areas of peer instruction and mentoring, leadership, public speaking, group dynamics, and interview skills; also assists students with preceptorships.

Course Level Other: Undergraduate Workshop

Life on Mars: Fact and Fiction (3)

Life on Mars is likely to be a scientific "hot topic" for the rest of your life. After this class, you should have a good understanding of what planetary scientists think about the chances of life on Mars, why they think that, and how current and future spacecraft missions plan to address that. In addition, since life on Mars has been the subject of some classic science fiction for more than 100 years, with no signs of letting up, you should understand how that science fiction relates to science. My real goal is that as the current debate resolves itself, and as spacecraft explore Mars during the next few decades, you'll understand what's going on and which claims are important, and that as you read or watch science fiction dealing with Mars, you'll appreciate how it relates to past and present science and sci-fi. PTYS 342 may not be applied toward the PTYS undergraduate minor.

Course Level Other: PTYS Minor Elective

Teaching Teams Internship (3)

Internship for students who have completed PTYS 297A (formerly LASC 297A), with at least one semester as a preceptor of a university-level course) to continue their reaching team education. Course covers elements of learning environments, communication skills, providing feedback, performance evaluation, and cooperative learning strategies.

Course Level Other: Undergraduate Internship

Special Topics in Planetary Science (1)

This one-unit colloquium course features discussion on topics in Planetary Science. Topic and instructor vary by term. Units: 1.00. Grading basis: Student Option ABCDE/PF. Pass/Fail Option Available to Qualified Students Regular or Alternative Grades: ABCDE grading. Typically offered: Fall and Spring

Course Level: Undergraduate Special Topics

Professional Development in a Digital Age (2-3)

Professional development in areas that are affected by transition to digital formats. Students will learn about elevator pitches, communication, utilizing professional technologies, resumes and curriculum vitaes, online resumes and portfolios, professionalism within social media, searching for jobs online, and interviewing.

Course Level Other: Undergraduate Workshop

Physics of the Solar System (3)

Survey of planetary physics, planetary motions, planetary interiors, geophysics, planetary atmospheres, asteroids, comets, origin of the solar system. Prerequisites: PHYS 142 or 240. PTYS 403 is a required course for the PTYS Minor. Equivalent to ASTR/GEOS/PHYS 403.

Course Level: PTYS Minor Core Course

Chemistry of the Solar System (3)

Abundance, origin, distribution, and chemical behavior of the chemical elements in the Solar System. Emphasis on applications of chemical equilibrium, photochemistry, and mineral phase equilibrium theory. Prerequisites: CHEM 142/152/162 and MATH 129 or their equivalents. PTYS 407 is required for the PTYS Minor. PTYS 407 is equivalent to CHEM 407 (not cross-listed).

Course Level: PTYS Minor Core Course
Course Level Other: PTYS Minor Core Course

Geology and Geophysics of the Solar System (3)

Geologic processes and landforms on satellites and the terrestrial planets, their modification under various planetary environments, and methods of analysis. PTYS 411 is equivalent to GEOS 411 and HWRS 411 (cross-listed). PTYS 411 is required for the PTYS Minor.

Course Level: PTYS Minor Core Course
Course Level Other: PTYS Minor Core Course

Planetary Materials (3)

This course discusses chemical thermodynamics and applies it to the origins and history of primitive planetary materials. The types of planetary materials will be discussed together with an overview of the chemical setting of their origins. We will discuss thermodynamic formalism, the various chemical pathways through which planetary materials are believed to have formed, the characterization and numerical methods we use to quantify such origins, and we will consider several case studies. May be co-convened with PTYS 513.

Course Level: PTYS Minor Elective

Introduction to Plasma Physics (3)

The purpose of this course is to present an introduction to the physics of plasmas. Topics include fundamental plasma scales and interactions, single particle motion, magnetohydrodynamic and fluid models, linear waves, kinetic theory, plasma stability, magnetic reconnection, and non-linear processes. The roles of these processes are considered in a variety of systems, including the Sun and stars, their extended atmospheres, planetary magnetospheres, and laboratory devices.  The emphasis throughout will be on basic physical processes and the various approximations used in their application to realistic and relevant problems. The graduate course is identical to ASTR/ATMO/PHYS 514, with PTYS as the home department.

Course Level: PTYS Minor Elective
Course Level Other: PTYS Undergraduate Course

Asteroids, Comets and Kuiper Belt Objects (3)

This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. PTYS 416 may be co-convened with PTYS 516.
 

Course Level: PTYS Minor Elective

Astronomical Instrumentation (2)

Radiant energy; signals and noise; detectors and techniques for imaging, photometry, polarimetry and spectroscopy. Examples from stellar and planetary astronomy in the x-ray, optical, infrared and radio. Equivalent to ASTR 418. ASTR is home department.

Course Level: PTYS Minor Elective

Physics of the Earth (3)

Fundamentals of the physics of the solid earth, including thermodynamics, rheology, geomagnetism, gravity, and planet tectonics. Prerequisite(s): MATH 254. GEOS is home department. May be convened with: PTYS/GEOS 519.

Course Level: PTYS Minor Elective

Moons (3)

We study the natural satellites (moons) of planets, starting with a survey of our own solar system, and introduce the principles and theories of their formation and evolution. How do Galilean satellites form? What causes Triton’s plumes? Is the Saturn system young? How old is the Moon? Why are binary asteroids and KBOs so common? Is Phobos falling apart? Then we will consider the science questions motivating current and planned missions of exploration, and the discovery of exomoons. The class will emphasize quantitative approaches and will therefore rely upon a common understanding of mechanics and calculus. Familiarity with geology is helpful but is not required. May be co-convened with PTYS 523.

Course Level: PTYS Minor Elective

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Prerequisite: PHYS 426 or consent of instructor. ATMO is home department.

Course Level: PTYS Minor Elective

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Prerequisite(s): ATMO 300A, ATMO 300B, PHYS 426 or consent of instructor. ATMO is home department. Usually offered: Spring.

Course Level: PTYS Minor Elective

Mars (3)

In-depth class about the planet Mars, including origin and evolution, geophysics, geology, atmospheric science, climate change, the search for life, and the history and future of Mars exploration. There will be guest lectures from professors and research scientists with expertise about aspects of Mars. There will be lots of discussion of recent results and scientific controversies about Mars. Graduate-level requirements include the completion of a research project that will be presented in class as well as a report. The research project could be analysis of Mars datasets, a laboratory experiment, or new theoretical modeling. Regular grades are awarded for this course: A B C D E. Prerequisite(s): PTYS 411, Geology of the Solar System is recommended but not required. Equivalent to/crosslisted: ASTR 442, GEOS 442. May be convened with: PTYS 542.

Course Level: PTYS Minor Elective

Origin of the Solar System and Other Planetary Systems (3)

This course will review the physical processes related to the formation and evolution of the protosolar nebula and of protoplanetary disks. In doing that, we will discuss the main stages of planet formation and how different disk conditions impact planetary architectures and planet properties. We will confront the theories of disk evolution and planet formation with observations of circumstellar disks, exoplanets, and the planets and minor bodies in our Solar System. This course is cross-listed with ASTR 450 and may be co-convened with PTYS 550.

Course Level: PTYS Minor Elective

Planetary Astrobiology (3)

This course will explore the processes related to planet formation, the properties of planets and the planetary conditions required for the emergence of life. We will study the formation of our Solar System and exoplanetary systems, the distribution and properties of exoplanets, and the potential habitability of other planets/moons in our system or extrasolar systems. The course will also review science cases and possible future astrobiology studies, both in site and via remote sensing, of astrobiologically relevant environments. Toward the end of the semester a few guest lectures will highlight particularly exciting and timely topics. This course may be co-convened with PTYS/ASTR 575. ASTR is home department.

Course Level: PTYS Minor Elective

Advanced Teaching Teams Internship (3)

This advanced internship is for students who have completed PTYS 393. Course covers elements of learning environments, communication skills, providing feedback, performance evaluation, and cooperative learning strategies; it requires students to peer lead workshop sections within the Teaching Teams Program alongside a faculty/staff mentor.

Course Level Other: Undergraduate Internship

Special Topics in Planetary Science (2-3)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 595B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 3x (or up to 9 units). Regular grades assigned (ABC).

Course Level: PTYS Minor Elective

Independent Study (1-5)

Qualified students working on an individual basis with professors who have agreed to supervise such work. Units. 1.00 - 5.00.  Independent Study Required. Typically Offered: Fall, Spring, Summer 1 and 2. Alternative Grading: S, P, F