Reading list ...

- Fischer et al. chapter in PPVI, Exoplanet Detection Techniques
- Chapter 2 in Exoplanets (Fischer & Lovis) pg 27 - 53. (RV method)
- Wright 2018 (chapter in 2018 Handbook)

Radial Velocity (RV) Detection:

- Early 20th century RV precision ~ 1 km/s
- By late 80s / early 90s ---> 10 m/s (3 m/s by 1995, detection of 51 Peg b)
- By 2005, ~ I m/s.

RV discoveries (up to 2014)

General orientation of orbit:

reference plane tangent to celestial sphere

4.
$$a = a_1 + a_2 = \frac{P}{2\pi}(V_1 + V_2)$$

5. $M_1 + M_2 = \frac{4\pi^2}{G}\frac{a^3}{P^2}$

7.

 $1 \rightarrow \star \text{ and } 2 \rightarrow p \ (M \star >> m_p)$

 $m_p^3 \simeq \frac{P}{2\pi G} \left(\frac{V_{\star,rad}}{\sin(i)}\right)^3 M_{\star}^2$

unknowns

$$m_p^3 \simeq \frac{P}{2\pi G} \left(\frac{V_{\star,rad}}{\sin(i)} \right)^3 M_{\star}^2$$
 Still the circular (e = 0) case

Usually express the observable (RV semi-amplitude) K as function of P (or a), $M_P sin(i)$, M*.

$$K_{\star} = 28.4 \text{ms}^{-1} \left(\frac{P}{1yr}\right)^{-1/3} \left(\frac{M_p \sin(i)}{M_J}\right) \left(\frac{M_{\star}}{M_{\odot}}\right)^{-2/3}$$

K is directly proportional to $M_P sin(i)$.

$$v_{r,\star} = K(\cos(\omega + \nu)) + e\cos(\omega))$$

(rad. vel. semiamplitude) $K = (v_{r,max} - v_{r,min})/2$

note: reference plane tangent to celestial sphere

$$v_{r,\star} = K(\cos(\omega + \nu)) + e\cos(\omega)) + (\gamma + d(t))$$

TABLE 1. Radial velocity signals for different kinds of planets orbiting a solar-mass star.

Planet	a (AU)	$K_1 (m s^{-1})$
Jupiter	0.1	89.8
Jupiter	1.0	28.4
Jupiter	5.0	12.7
Neptune	0.1	4.8
Neptune	1.0	1.5
Super Earth (5 M_{\oplus})	0.1	1.4
Super Earth (5 M_{\oplus})	1.0	0.45
Earth	0.1	0.28
Earth	1.0	0.09

detection limits obtained from earlier equations.

minimum mass $m_P sin(i)$

 If planetary systems are randomly oriented (i between 0 and 90°):

Average of $sin(i) = 2/pi \sim 0.6$

• probability of i being between two values:

$$P = |\cos(i_2) - \cos(i_1)|$$

 87% chance that m_psin(i) is within a factor of 2 of actual m_p

Measuring RVs (basic idea)

Doppler Shift

relativistic part is grav. potential (at the observer) and this changes over a year due to earth's eccentricity.

- the usual beta^2 part is the 1 - v^2/ c^2 part

$$\lambda = \lambda_0 \frac{1 + \frac{1}{c}\hat{k} \cdot \vec{v}_{obs}}{1 - \frac{\Phi_{obs}}{c^2} - \frac{v_{obs}^2}{2c^2}}$$

Relativistic terms are usually ignored. However, they can vary by ~ 0.1 m/s over a year (Earth's orbit).

$$\lambda = \lambda_0 \left(1 + \frac{v}{c}\right)$$

note: vel. > 0 for motion away from observer

- must correct for Earth's motion (barycentric correction)
- This requires precise clocking of observations (including precise knowledge of where your telescope is located).

Measuring RVs (basic idea)

You must have a reference spectrum to determine the wavelength calibration.

- use telluric lines (Griffin & Griffin, 1973)
- gas-cell (Walker & Campbell, 1979, HF), lodine is the modern choice. HIRES/Keck
- simultaneous references spectrum, Thorium-argon lamp (lamp + star spectrum recorded simultaneously) ELODIE, SOPHIE, CORALIE, HARPS
- other "fancy" methods ...

cross-dispersed echelle spectrograph

wavelength

star+lamp spectrum (51 Peg)

orders

Quality Factor and theoretical RV limit

Bouchy et al. 2001

Quality Factor and theoretical RV limit

Spectral Resolution:

- Resolving Power: $R = \lambda / \Delta \lambda = c / \Delta v$
- R = 100,000 --> dlam ~ 0.05 angst, in the optical.
- I m/s shift ---> I/3000 of a resolution element, for R ~ 100,000.
- Typical RV instruments disperse light such that 1 m/s doppler shift corresponds to a shift on the detector of ~ 1/1000 of a pixel.

Quality Factor and theoretical RV limit

- Measuring tiny fractions of a pixel requires many spectral lines. Usual spectrum might contain ~ 1000 good lines.
- Modeling and cross-correlation techniques allow greater RV precision than is achieved on a single line.
- 30 m/s per line can result in 1 m/s (for high SNR spectrum with many lines).

cross-correlation of many orders

high SNR

low SNR

blaze wavelengths

blaze wavelengths

RV precision depends on:

- number of spectral lines / wavelength
- FWHM of the lines (contrast with continuum)
- signal-to-noise (SNR) of the data
- stability of the instrument and wavelength reference

- The goals are to measure relative RV (not absolute) to high precision and have repeatability, night-to-night, for many years.
- The instrument must be ultra-stable or the calibration near-perfect and repeatable (preferably both).

What are the things you might control?

- changes in spectrograph
- variation in instrument illumination

What is the source of this wavelength shift (~ 1.3 angst.)?

What is the source of this wavelength shift (~ 1.3 angst.)?

Thermal stability

- A I-meter optical bench made of aluminum expands or contracts by ~ 20 microns for every I K change in temperature.
- 20 microns is about the size of one CCD pixel.
- Such shifts are comparable to, or larger than, the RV change one wants to measure.

Image Stability

 A changes in the illumination across the entrance of the spectrograph can produce wavelength shifts exceeding 100 m/s. Telescope guiding never good enough.

Fiber-scramblers:

Single Mode = Single Light Path

< 10 um (perfect scramble)

a.

Multi-Mode = Multiple Light Paths

50 -- 500 um (good scramble)

input

output (intermediate)

output (to spectrograph)

"perfect" multi-mode fiber (I is good, 2 is better, aka double-scrambler)

(Queloz 1999)

Very stabilized instruments: HARPS @ 3.6m at ESO/Chile

Spectrograph on a rigid bench, which is housed in a vacuum tank.

Very stabilized instruments: HARPS @ 3.6m at ESO/Chile

Spectrograph on a rigid bench, which is housed in a vacuum tank.

The tank itself is housed in a climate controlled room that is never opened.

- Pressure controlled to 10⁻³ mbar
- Optical bench controlled to 1 mK
Very stabilized instruments: HARPS @ 3.6m at ESO/Chile

Spectrograph on a rigid bench, which is housed in a vacuum tank.

The tank itself is housed in a climate controlled room that is never opened.

Light is coupled from the telescope with fiber optics that "scramble" the light.

Very stabilized instruments: HARPS @ 3.6m at ESO/Chile

Spectrograph on a rigid bench, which is housed in a vacuum tank.

The tank itself is housed in a climate controlled room that is never opened.

Light is coupled from the telescope with fiber optics that "scramble" the light.

A second fiber feed a simultaneous calibration source.

Very stabilized instruments: HARPS @ 3.6m at ESO/Chile

Gas cell technique

Radial Velocity Technique The star's chemical fingerprints 1. Receding star 2. Approaching star spectrograph camera

Radial Velocity Technique The star's chemical fingerprints 1. Receding star 2. Approaching star spectrograph camera

Radial Velocity Technique iodine lines The star's chemical fingerprints 1. Receding star 2. Approaching star spectrograph camera

Gas cell technique: It is a little more complicated (involves forward modeling of spectrum)

Butler et al. 1996, PASP, 108, 500

Calibrated instruments: HIRES@ 10m Keck telescope in Hawaii

Spectrograph not particularly stabilized.

Which stars to observe?

Solar-type (The Sun) stars:

quantum-efficiency

quantum-efficiency

Rotational Broadening:

• young stars have larger rotational velocities, and are more active.

- near peak of QE
- low Vsin(i)
- metal-rich
- old FGK-type = sweet-spot

Problem: areas on the surface with different velocities and brightnesses + changes with time

P-modes (acoustic pressure waves)

The sun oscillates with a characteristic timescale of five minutes.

The timescale scales as sqrt(density), so lowermass stars have longer timescales, and highermass stars have shorter timescales.

Amplitude is approximately 1 m/s.

Granulation

Convective cells on the surface. The bright center is the upwelling of hot gas, and the dark edges are the downward motion of cooler gas.

Length ~ 1000 km Timescale ~ 10 minutes Velocity ~ 1 km/s Number ~ 10⁶

Spots

A few words about Fourier Transforms

Fourier Transform f(a)

$$\sigma) = \int_{-\infty}^{\infty} F(x) e^{2\pi i x \sigma} dx$$

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Inverse Fourier Transform

$$F(x) = \int_{-\infty}^{\infty} f(\sigma) e^{-2\pi i x \sigma} dx$$

$$f(\sigma) = \int_{-\infty}^{\infty} F_{\rm R}(x) \cos 2\pi x \sigma dx + i \int_{-\infty}^{\infty} F_{\rm I}(x) \cos 2\pi x \sigma dx$$
$$+ i \int_{-\infty}^{\infty} F_{\rm R}(x) \sin 2\pi x \sigma dx - \int_{-\infty}^{\infty} F_{\rm I}(x) \sin 2\pi x \sigma dx$$

Fig. 2.1. The arbitrary real function $F_{\rm R}(x)$ is multiplied by $\sin 2\pi x \sigma$ to give the bottom curve. The area is the value of the transform $f(\sigma)$ for one value of σ .

see Gray, 3rd ed. chapter 2

The professor's watch

Time

The professor's watch

Frequency (Hz)

Sub-saturn mass planet HD3651

"Power Spectrum" (or Lomb-Scargle periodogram, Lomb 1976)

$$P_{v}(\omega) = \frac{1}{N} |FT_{v}(\omega)|^{2}$$

$$= \frac{1}{N_{0}} \left| \sum_{j=1}^{N_{0}} v(t_{j}) \exp(-i\omega t_{j}) \right|^{2}$$

$$= \frac{1}{N_{0}} \left[\left(\sum_{j} v_{j} \cos(\omega t_{j}) \right)^{2} + \left(\sum_{j} v_{j} \sin(\omega t_{j}) \right)^{2} \right]$$

$$P_{v}(\omega) = \frac{1}{N} |FT_{v}(\omega)|^{2}$$
$$= \frac{1}{N_{0}} \left| \sum_{j=1}^{N_{0}} v(t_{j}) \exp(-i\omega t_{j}) \right|^{2}$$
$$= \frac{1}{N_{0}} \left[\left(\sum_{j} v_{j} \cos(\omega t_{j}) \right)^{2} + \left(\sum_{j} v_{j} \sin(\omega t_{j}) \right)^{2} \right]$$

Example from HARPS southern survey, some planets orbiting active star BD-08 2823 (Hebrard et al. 2010)

How many planets do you see?

How many planets do you see?

Combined Fits to the data

What about the planet at 1 day?

This is an active star

Seven planets around a single star (HD10180)

Seven planets around a single star (HD10180)

Lovis et al. 2011, A&A, 528, 112

Activity and RVs

HD166435: spots masquerading as a planet!

Queloz et al. 2001, A&A, 379, 279

Activity and RVs

HD166435: spots masquerading as a planet!

Queloz et al. 2001, A&A, 379, 279