Lensing
Strong lensing: distortion at large angular scales
Microlensing

microlensing: distortion at small angular scales (θ ≈ 1 mas)

Einstein Ring

If a lens is exactly (or very closely) aligned with a source there are magnified images of the source at (or near) an angle equal to the Einstein radius.
DISCUSSION

LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD

Some time ago, R. W. Mandl paid me a visit and asked me to publish the results of a little calculation, which I had made at his request. This note complies with his wish.

The light coming from a star A traverses the gravitational field of another star B, whose radius is R_o. Let there be an observer at a distance D from B and at a distance x, small compared with D, from the extended central line AB. According to the general theory of relativity, let a_o be the deviation of the light ray passing the star B at a distance R_o from its center.

For the sake of simplicity, let us assume that AB is large, compared with the distance D of the observer from the deviating star B. We also neglect the ellipse (geometrical obseration) by the star B, which indeed is negligible in all practically important cases. To permit this, D has to be very large compared to the radius R_o of the deviating star.

It follows from the law of deviation that an observer situated exactly on the extension of the central line AB will perceive, instead of a point-like star A, a luminous circle of the angular radius β around the center of B, where

$$\beta = \sqrt{\frac{R_o}{D}}.
$$

It should be noted that this angular diameter β does not decrease like $1/D$, but like $1/\sqrt{D}$, as the distance D increases.

Of course, there is no hope of observing this phenomenon directly. First, we shall scarcely ever approach closely enough to such a central line. Second, the angle β will defy the resolving power of our instruments. For, a_o being of the order of magnitude of one second of arc, the angle R_o/D, under which the deviating star B is seen, is much smaller. Therefore, the light coming from the luminous circle can not be distinguished by an observer as geometrically different from that coming from the star B, but simply will manifest itself as increased apparent brightness of B.

The same will happen, if the observer is situated at a small distance x from the extended central line AB. But then the observer will see A as two point-like light-sources, which are deviated from the true geometrical position of A by the angle β, approximately.

The apparent brightness of A will be increased by the lens-like action of the gravitational field of B in the ratio q. This q will be considerably larger than unity only if x is so small that the observed positions of A and B coincide, within the resolving power of our instruments. Simple geometric considerations lead to the expression

$$q = \frac{1}{x} \cdot \frac{1 + \frac{x^4}{24l^2}}{\sqrt{1 + \frac{x^4}{4l^2}}},
$$

where

$$l = \sqrt{\alpha o D E o}.
$$

December 4, 1936

If we are interested mainly in the case $q \gg 1$, the formula

$$q = \frac{1}{x},
$$

is a sufficient approximation, since $\frac{x^2}{l^2}$ may be neglected.

Even in the most favorable cases the length l is only a few light-seconds, and x must be small compared with this, if an appreciable increase of the apparent brightness of A is to be produced by the lens-like action of B.

Therefore, there is no good chance of observing this phenomenon, even if dazzling by the light of the much nearer star B is disregarded. This apparent amplification of q by the lens-like action of the star B is a most curious effect, not so much for its becoming infinite, with x vanishing, but since with increasing distance D of the observer not only does it not decrease, but even increases proportionally to \sqrt{D}.

Albert Einstein

Institute for Advanced Study,
Princeton, N. J.
\[\alpha_{GR} = \frac{4G M_L}{c^2 b} \]
lens equation derived from geometry ... (what is the mapping between beta and theta?)

Gaudi (2012)
Recall that:

\[\alpha_{GR} = \frac{4GM_L}{c^2 b} \]

\[R_s = \frac{2GM_L}{c^2} \]

\[\theta_s = \theta_1 - 2R_s \frac{D_{LS}}{D_L D_S} \frac{1}{\theta_1} \]

(the “lens equation”)

(basic quad. eq.)

\[y_{\pm} = \pm \frac{1}{2} \left(\sqrt{u^2 + 4} \pm u \right) \]
\[\theta_s = \theta_1 - 2R_s \frac{D_{LS}}{D_L D_S} \frac{1}{\theta_1} \]

\[\theta_\pm = \frac{1}{2} \left(\theta_s \pm \sqrt{\theta_s^2 + 4\theta_E^2} \right) \]

(lens equation)

\[\alpha_{GR} = \frac{4GM_L}{c^2 b} \]

\[R_s = \frac{2GM_L}{c^2} \]

“angular and linear Einstein Radii”

\[\theta_E = \left[\frac{\alpha_{GR} D_{LS}}{D_L D_S} \right]^{1/2} \]

\[R_E = \theta_E D_L \]
\[\alpha_{GR} = \frac{4G M_L}{c^2 b} \]

\[R_s = \frac{2G M_L}{c^2} \]

“angular and linear Einstein Radii”

\[\theta_E = \left[\alpha_{GR} \frac{D_{LS}}{D_L D_S} \right]^{1/2} \]

\[R_E = \theta_E D_L \]

For solar-mass lens halfway to galactic center:

\[\theta_E \sim 1 \text{ mas} \]

\[R_E \sim 4 \text{ AU} \]
theta (~ mas) usually too small to resolve spatially, observe total flux

\[\theta_{\pm} = \frac{1}{2} \left(\theta_s \pm \sqrt{\theta_s^2 + 4\theta_E^2} \right) \]

for \(\theta_s \neq 0 \) -> two images!

see also Paczynski (1996)

image centroid moves in a non-linear path (think astrometry)
Microlensing (magnification)

Lensing conserves surface brightness, so think of lensing as a magnification of the surface. Flux = Area x surface brightness!

magnification is the ratio of image area to source area.
Microlensing (magnification)

magnification is the ratio of image area to source area

\[
u = \frac{\theta_S}{\theta_E}
\]

\[
y = \frac{\theta}{\theta_E}
\]

\[
A = \frac{I \times w}{A_{\pm}} = \frac{1}{2} \left[\frac{u^2 + 2}{u \sqrt{u^2 + 4}} \right] \pm 1
\]

(mag is time-dependent change in area)

(approximated by projected area above)

Gaudi (2012)
\[\theta_{\pm} = \frac{1}{2} \left(\theta_s \pm \sqrt{\theta_s^2 + 4\theta_E^2} \right) \]

\[A_{\pm} = \left| \frac{y_{\pm}}{u} \frac{dy_{\pm}}{du} \right| = \frac{1}{2} \left[\frac{u^2 + 2}{u\sqrt{u^2 + 4}} \pm 1 \right] \] (time-dependent)

Animation is in the rest-frame of the lens (foreground star)
from Scott Gaudi: http://www.astronomy.ohio-state.edu/~gaudi/movies.html
single-lens observables

• time of peak-flux

• time of maximum magnification

• “duration”, Einstein-radius crossing time, t_E

Events near the galactic bulge: t_E range \sim days to years

$$t_E \simeq 24.8 \text{ days} \left(\frac{M}{0.5 \, M_\odot} \right)^{1/2} \left(\frac{\pi_{\text{rel}}}{125 \, \mu\text{as}} \right)^{1/2} \left(\frac{\mu_{\text{rel}}}{10.5 \, \text{mas year}^{-1}} \right)^{-1}$$

depends on both lens mass and distance
Microlensing Probability
(lensing optical depth)

\[P = \frac{\text{Area covered by rings}}{\text{Area of sky}} \]

\[\tau = \frac{1}{\Omega} \int_0^{D_s} n(D_l)\Omega D_l^2 \pi \theta_E^2 dD_l = \int_0^{D_s} n(D_l) D_l^2 \pi \theta_E^2 dD_l. \]

(For lensing < or = theta_E or A > ~ 1.34)
Microlensing Probability
(lensing optical depth)

\[P = \frac{\text{Area covered by rings}}{\text{Area of sky}} \]

\[\tau = \frac{1}{\Omega} \int_0^{D_s} n(D_i) \Omega D_i^2 \pi \theta_E^2 dD_i = \int_0^{D_s} n(D_i) D_i^2 \pi \theta_E^2 dD_i. \]
Microlensing Probability
(lensing optical depth)

\[P = \frac{\text{Area covered by rings}}{\text{Area of sky}} \]

\[\tau = \frac{1}{\Omega} \int_0^{D_s} n(D_i) \Omega D_i^2 \pi \theta_E^2 dD_i = \int_0^{D_s} n(D_i) D_i^2 \pi \theta_E^2 dD_i. \]

\[n = \frac{\rho}{M} \]
\[\pi \theta_E^2 \propto M \]

\[\tau = \frac{4\pi GD_s^2}{c^2} \int_0^1 \rho(x) x(1 - x) dx. \]

depends on mass density (not mass function) along line-of-sight.
\[\theta_s = \theta_1 - 2R_s \frac{D_{LS}}{D_L D_S} \frac{1}{\theta_1}\]

\[\theta_\pm = \frac{1}{2} \left(\theta_s \pm \sqrt{\theta_s^2 + 4\theta_E^2} \right)\]

(lens equation)

\[\alpha_{GR} = \frac{4GM_L}{c^2 b}\]

\[\theta_E = \left[\alpha_{GR} \frac{D_{LS}}{D_L D_S} \right]^{1/2}\]

\[R_E = \theta_E D_L\]

\[R_s = \frac{2GM_L}{c^2}\]
Microlensing Event Rate

\[\Gamma = \frac{2}{\pi} \frac{\tau}{t_E} ; \quad t_E = \frac{\theta_E}{\mu_{rel}} \]

does depend on mass function along line-of-sight
look to the Bulge!

Observe towards the Galactic bulge to increase stellar density
microlensing is rare ...

- lensing optical depth toward Galactic Bulge is $\sim 10^{-6}$

- median timescale of event ~ 20 days

- rate for lens event / star $\sim 10^{-5}$ per year!

- OGLE survey monitors $\sim 2.5\times10^8$ sources over 80 square degrees $\sim 1,500$ events / 8 month observing window.
Microlensing + planets
Binary Lens: adds three more parameters:

- mass ratio

- projected separation of binary at time of event

- angle between source-lens trajectory and binary axis at time of event
Lens Source

mapping between source and lens planes (beta <----> theta)

solution to lens magnification for multiple lens:

\[A_j = \left| \frac{1}{\det J} \right|_{\theta=\theta_j} \]

caucustic curves: source positions where \(\det J = 0 \)
critical curves: image positions

Gaudi (2012)
pretty “caustics”
pretty “caustics”

Caustics from http://www.mpa-garching.mpg.de/mpa/
planet (angular sep.)

host

"caustics" (typically 2 to 3 for one planet)

$q = 0.003$
Microlensing

Planetary perturbation example:

Magnified images along the Einstein ring pass near the planet and are magnified again ("the source crosses the planetary caustic")
For solar-mass lens halfway to galactic center:

\[\theta_E \sim 1 \text{ mas} \]

\[R_E \sim 4 \text{ AU} \]
effect of changing planet/source track angle:
effect of changing separation:

http://www.astronomy.ohio-state.edu/~gaudi/Movies/lcp_b.gif
What can you learn?

Planetary Perturbation

• Same as for the main event: measure time of maximum magnification, maximum magnification, and duration

• The duration is proportional to $q^{1/2} t_E$. With t_E from the main event, you get $q = M_p / M_s$

• The time and magnitude of the perturbation give the separation and position angle of the planet
What can you learn?

Planet-Star System

• With the mass ratio \((q)\), you need to find some way to get the lens mass

• Finite source effects, and some assumptions about the source distance, give you a mass-distance relation for the lens

• Measure photometry and/or spectroscopy of the lens itself

• Measure the proper motion of the system

• Detect the microlens parallax

• Detect orbital motion of the planets
Powerful statistical probe of exoplanet population:

- very sensitive to planets > snow line
- magnification does not depend on planet mass (sensitive to low mass planets)
- sensitive to long-period planets (and free-floaters)
- probes galactic planet distribution
- detects multi-planet systems.
Microlensing Highlights: OGLE-2005-BLG-390Lb

$M_p = 5.5 \ M_{\text{earth}}$

$a = 2.6 \ \text{AU}$

$M_s = 0.20 \ M_{\text{sun}}$

(with big errors)

=> Super-Earths must be common

Beaulieu et al. 2006, Nature, 439, 437
Microlensing Highlights:
OGLE-2006-BLG-109Lb

A Jupiter-Saturn analog system around a M = 0.5 M_\text{sun} star

Orbital motion of the outer planet was detected

Gaudi et al. 2008, Science, 319, 927
Microlensing Highlights: Unbound Planets?

1.8$^{+1.7}_{-0.8}$ planetary mass objects at >10 AU per star

Sumi et al. 2011, Nature, 473, 349
TRIPLE MICROLENS OGLE-2008-BLG-092L: BINARY STELLAR SYSTEM WITH A CIRCUMPRIMAR Y URANUS-TYPE PLANET

Poleski et al. (2014)
microlensing and WFIRST

WFIRST-AFTA will:

- Detect 2800 planets, with orbits from the habitable zone outward, and masses down to a few times the mass of the Moon.
- Be sensitive to analogs of all the solar system’s planets except Mercury.
- Measure the abundance of free-floating planets in the Galaxy with masses down to the mass of Mars.
Finite Source Effects & Microlensing Parallax Yield Lens System Mass

- **Finite source effects**

 Angular Einstein radius \(\theta_E = \theta_* t_E / t_* \)

 \(\theta_* = \) source star angular radius

 \(D_L \) and \(D_S \) are the lens and source distances

- **Microlensing Parallax**

 (Effect of Earth’s orbital motion)

 Einstein radius projected to Observer

 OR

- **One of above**

 Lens brightness & color (AO, HST)

 mass-distance relation \(\Rightarrow D_L \)

\[
M_L = \frac{c^2}{4G} \theta_E^2 \frac{D_S D_L}{D_S - D_L}
\]

\[
M_L = \frac{c^2}{4G} \tilde{r}_E \frac{D_S - D_L}{D_S D_L}
\]

\[
M_L = \frac{c^2}{4G} \tilde{r}_E \theta_E
\]
Figure 3. Left: Keck image of OGLE-2005-BLG-169 in H band ($\sim 24'' \times 21''$). Middle: a zoom on the target showing the lens on the upper left and the source. They are separated by ~ 61 mas. The extra star on the right was part of the measured blending in the microlensing light curve. Right: zoom on the target showing the flux contours.
microlensing and WFIRST

![Graph showing microlensing and WFIRST parameters]

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Bennett2015</th>
<th>Gould2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_E</td>
<td>days</td>
<td>41.8 ± 2.9</td>
<td>43 ± 4</td>
</tr>
<tr>
<td>θ_E</td>
<td>mas</td>
<td>0.965 ± 0.094</td>
<td>1.00 ± 0.22</td>
</tr>
<tr>
<td>H_S</td>
<td>...</td>
<td>18.81 ± 0.08</td>
<td>18.83 ± 0.09</td>
</tr>
<tr>
<td>t_*</td>
<td>days</td>
<td>0.0202 ± 0.0017</td>
<td>0.019 ± 0.004</td>
</tr>
</tbody>
</table>

Distance, and the relative lens–source proper motion, μ_{rel}, where:

$$t_E = \frac{\theta_E}{\mu_{rel,geo}}, \quad \theta_E^2 = \kappa M_L \pi_{rel},$$

$$\pi_{rel} = A U \left(\frac{1}{D_L} - \frac{1}{D_S} \right)$$

and

$$\kappa = \frac{4G}{c^2 AU} = 8.144 \text{ mas } M_\odot^{-1}.$$ (1)

$M_H = H_L - A_H - \text{DM} = H_L - A_H - 5 \log \frac{D_L}{10 \text{ pc}}$