Solutions to problem set $\# 2$
\＃1 a．Balancing pressure across the tube，we

$$
\Rightarrow \quad \frac{\rho_{e}}{\bar{m}} k T_{e}=\frac{\rho_{i}}{\bar{m}} k T_{i}+B^{2} / 8 \pi
$$

Since $T_{e}=T_{i}=T$ thermal equilibrimin，we have

$$
\rho_{i}-\rho_{e}=-\frac{\bar{m}}{k T} \frac{B^{2}}{8 \pi}<0
$$

\Rightarrow The flux tube is Buoyant and will rise
b．The MHD momeritum eq．in steady：state （and static）is

$$
-\nabla p+\frac{1}{c} J \times \underset{\sim}{J}+\rho q=0
$$

In the direction along the flux tube，we have

$$
\begin{aligned}
& B \cdot\left(-\nabla p+\frac{1}{c} J \times \sim\right. \\
J & B+\rho q)=0, \\
\Rightarrow & B \cdot(-\nabla p+\rho g)=0
\end{aligned}
$$

$\Rightarrow \nabla P=\rho y \Rightarrow$ hydrostatic equilbrim along the tube
C. Since hydrostatic equilibrium holds tote inside and outside the flux tube, we have

$$
\begin{aligned}
\frac{d P_{e, i}}{d z} & =-\rho_{e, i} g \quad(g=-g \hat{z}) \\
& =-\frac{\bar{m} g}{k T} P_{e, i} \\
\Rightarrow \frac{d \ln P_{e, i}}{d z} & =-\frac{\bar{m} g}{k T}
\end{aligned}
$$

integrating, gives

$$
\begin{aligned}
& \underbrace{\left.\ln P_{e, i}\right|_{z_{0}} ^{z}}=-\int_{z_{0}}^{z} d z^{\prime} \frac{\bar{m} g\left(z^{\prime}\right)}{k T\left(z^{\prime}\right)} \\
& \ln P_{e, i}(z)-\ln P_{e, i}\left(z_{0}\right) \\
\therefore \ln \left(\frac{p_{e, i}(z)}{P_{e, i}\left(z_{0}\right)}\right)= & -\int_{z_{0}}^{z} d z^{\prime} \frac{\bar{m} g\left(z^{\prime}\right)}{k T\left(z^{\prime}\right)} \\
\Rightarrow & P_{e, i}(z)=P_{e, i}\left(z_{0}\right) e^{-\int_{z_{0}}^{z} d z^{\prime} \frac{\bar{m} g\left(z^{\prime}\right)}{k T\left(z^{\prime}\right)}}
\end{aligned}
$$

Since $P_{e}=P_{i}+B^{2} / 8 \pi$ evargwhere along the tube, we have

$$
\begin{aligned}
P_{e}(z)-P_{i}(z) & =\left[P_{e}\left(z_{0}\right)-P_{i}\left(z_{0}\right)\right] e \\
& =\frac{B^{2}\left(z_{0}\right)}{8 \pi} e^{-\int_{z_{0}}^{z} d z^{\prime} \bar{m} g\left(z^{\prime}\right) / k T\left(z^{\prime}\right)} \\
& =B^{2}(z) / 8 \pi
\end{aligned}
$$

$$
\Rightarrow B(z)=B\left(z_{0}\right) e^{-\frac{1}{i} \int_{z_{0}}^{z} d z^{\prime} \frac{\bar{m} g\left(z^{\prime}\right)}{k T\left(z^{\prime}\right)}}
$$

the desired result

Note that the magnetic fried "scale heists" is turin the pressure scale height
d. There is pressure balance across the flam toke, but there is also a tension ($B^{2} / 4 \pi$) along the lines of force. The force due to this tension is

$$
\begin{equation*}
F_{T}=A B B^{2} / 4 \pi \tag{1}
\end{equation*}
$$

The Buoyant force is

$$
\begin{align*}
F_{B} & =A\left(\rho_{e}-\rho_{i}\right) g \\
& =A \frac{\bar{m} g}{k T}\left(P_{e}-\rho_{i}\right) \\
& =A \frac{\bar{m} g}{k T} \frac{B^{2}}{8 \pi} \tag{2}
\end{align*}
$$

In general, we note that

$$
\begin{aligned}
\frac{d}{d z}\left(B^{2} / g \pi\right)=\frac{d}{d z}\left(P_{e}-P_{i}\right) & =\frac{d P_{e}}{d z}-\frac{d P_{i}}{d z} \\
& =-\rho_{e} g+\rho_{i} g \\
& =-\frac{\bar{m} g}{k T}\left(P_{e}-P_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{\bar{m} g}{k T} \frac{B^{2}}{8 \pi} \\
& =-\frac{F_{B}}{A} \quad \text { (from eq, 2) }
\end{aligned}
$$

Thus, $F_{B}=-A \frac{d}{d z}\left(B^{2} / 8 \pi\right)$
Recall from (1) that

$$
\begin{aligned}
& F_{T}=A B^{2} / 4 \pi \\
& \Rightarrow \frac{d F_{T}}{d z}=\frac{d}{d z} A \frac{B^{2}}{4 \pi}=\frac{d}{d z}(A B) \frac{B}{4 \pi} \\
&=A B \frac{d}{d z} \frac{B}{4 \pi}
\end{aligned}
$$

(recall $A B=\Phi=$ constant by Frozen-in cindetio,

$$
\begin{aligned}
& =A \frac{d}{d z}\left(\frac{B^{2}}{8 \pi}\right) \\
\frac{d F_{T}}{d z} & =-F_{B}
\end{aligned} \text { The desired result }
$$

\#2 The time-independent Vlasov eq. is

$$
v \cdot \nabla f+\frac{F}{m} \cdot \nabla_{v} f=0
$$

when

$$
F=q \underset{\sim}{E}+\frac{q}{c} v_{\sim} \times \frac{B}{\sim}
$$

if $f=f(\varepsilon)$, where $\varepsilon=\frac{1}{2} m v^{2}+q \phi(\underset{\sim}{x})$

$$
=\text { constant }
$$

we have

$$
\begin{aligned}
& \frac{\partial f}{\partial \underset{\sim}{x}}=\frac{\partial f}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial \underset{\sim}{x}}=\frac{\partial f}{\partial \varepsilon}\left(q \frac{d \phi(x)}{d x}\right) \\
& \frac{\partial f}{\partial \underset{\sim}{v}}=\frac{\partial f}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial \underset{\sim}{v}}=\frac{\partial f}{\partial \varepsilon}(m \sim \sim)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
v \cdot \nabla f(\varepsilon)+\frac{E}{m} \cdot \nabla_{v} f(\varepsilon)= & v \cdot\left(\frac{\partial f}{\partial \varepsilon} q \frac{d \phi}{d x}\right) \\
& +\frac{F}{m} \cdot \nabla_{f}\left(\frac{\partial f}{\partial \varepsilon}(m v)\right) \\
= & q \frac{\partial f}{\partial \varepsilon} v_{\sim} \cdot \nabla \phi+\frac{\partial f}{\partial \varepsilon}{\underset{\sim}{v}}^{F} \cdot v
\end{aligned}
$$

note the $\underset{\sim}{F}=q \underset{\sim}{E}+\frac{q}{c} \underset{\sim}{v} \times \underset{\sim}{c}$

$$
\begin{gathered}
\Rightarrow \underset{\sim}{F} \cdot \underset{\sim}{v}=q \underset{\sim}{E} \cdot v \\
\Rightarrow \underset{\sim}{v} \cdot \nabla f(\varepsilon)+\frac{E}{m} \cdot \nabla_{v} f(\varepsilon)=\frac{\partial F}{\partial \varepsilon}[q \underset{\sim}{v} \cdot \nabla \phi+q E \cdot v]
\end{gathered}
$$

but $\nabla \phi=-\underset{\sim}{E}$, thus, the last term is 0

$$
\Rightarrow \quad v_{\sim}^{v} \cdot \nabla f(\varepsilon)+\frac{F}{m} \cdot \nabla_{a} f(\varepsilon)=0
$$

$\Rightarrow f(\varepsilon)$ is a solution to thie-independut rlasor eq.
\#3 (a) Corent3 force on plasma

$$
\underset{\sim}{F}=\frac{1}{c} J \times B
$$

Where $\quad \underset{\sim}{B}=\frac{c}{r^{2}} \hat{r}+\frac{b}{r} \sin \theta \hat{\phi}$

$$
\Rightarrow \quad F=-\frac{b^{2}}{2 \pi r^{3}} \cos \theta \sin \theta \widehat{\theta}
$$

$$
\begin{aligned}
& \Rightarrow \quad J=\frac{C}{4 \pi} \nabla \times B \\
& =\frac{c}{4 \pi}\left\{\left(\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\left(\sin \theta B_{\phi}\right)-\frac{1}{r \sin \theta} \frac{\partial \beta_{0} \theta^{0}}{\partial \phi}\right) \hat{r}\right.\right. \\
& +\left(\frac{1}{r \sin \theta} \frac{\partial B P^{0}}{\partial \phi}-\frac{1}{r} \frac{\partial}{\partial r}\left(H B_{\phi}^{\prime}\right)\right) \hat{\theta} \\
& \left.+\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \hat{B}_{\theta}^{0}\right)-\frac{1}{r} \frac{\partial \overrightarrow{B r}_{r}^{0}}{\partial \theta}\right) \hat{\phi}\right\} \\
& =\frac{s}{4 \pi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\frac{b}{r} \sin ^{2} \theta\right) \hat{r} \\
& =\frac{b c}{2 \pi r^{2}} \cos \theta \hat{r} \\
& \left.\Rightarrow\left|\underset{\sim}{F}=\frac{1}{c} J \times \underset{\sim}{B}=\frac{1}{c}\right| \begin{array}{ccc}
\hat{r} & \hat{\theta} & \hat{\phi} \\
\frac{b c}{2 \pi r^{2}} \cos \theta & 0 & 0 \\
\frac{a}{r^{2}} & 0 & \frac{b}{r} \sin \theta
\end{array} \right\rvert\, \\
& =-\frac{1}{c} \frac{b^{2} c \cos \theta \sin \theta}{2 \pi r^{3}} \hat{\theta}
\end{aligned}
$$

(b) the electric field in ideal MHD is

$$
\begin{aligned}
\underset{\sim}{E} & =-\frac{1}{c} \underset{\sim}{u} \times \underset{\sim}{B} \quad, \underset{\sim}{r}=v_{0} \hat{r} \\
\Rightarrow \quad \underset{\sim}{E} & =-\frac{1}{c}\left|\begin{array}{ccc}
\hat{r} & \hat{\theta} & \hat{\phi} \\
v_{0} & 0 & 0 \\
\frac{a}{r^{2}} & 0 & \frac{b}{r} \sin \theta
\end{array}\right|=-\frac{1}{c}\left(-v_{0} \frac{b}{r} \sin \theta \hat{\theta}\right) \\
\Rightarrow & E=\frac{v_{0}}{c} \frac{b}{r} \sin \theta \hat{\theta}
\end{aligned}
$$

the resulting change distribution from Poisson' las is

$$
\begin{aligned}
q^{*} & =\frac{D_{0} E}{4 \pi}=\frac{\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta E_{\theta}\right)}{4 \pi} \\
& =\frac{1}{4 \pi r \sin \theta} \frac{\partial}{\partial \theta}\left(\frac{V_{0}}{c} \frac{b}{r} \sin ^{2} \theta\right) \\
q^{*} & =\frac{v_{0} b \cos \theta}{2 \pi r^{2} c}
\end{aligned}
$$

(c) the electric force res unit volume on plasma ir

$$
\begin{aligned}
& F_{\sim E}=q^{*} E=\left(\frac{V_{0} b \cos \theta}{2 \pi r^{2} c}\right)\left(\frac{V_{0}}{c} \frac{b}{r} \sin \theta\right) \hat{\theta} \\
&=\left(\frac{V_{0}}{c}\right)^{2} \frac{b^{2}}{2 \pi r^{3}} \cos \theta \sin \theta \hat{\theta} \\
&=\left(\frac{V_{0}}{c}\right)^{2}\left(-F_{-L}\right) \text {; if } V_{0} \ll c \text {, we can neglect } \\
& \text { this force! }
\end{aligned}
$$

\#\# The enersy equatio is

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\frac{1}{2} \rho u^{2}+\frac{1}{\gamma-p} p\right)+\frac{\partial}{\partial x}\left[\left(\frac{1}{2} \rho u^{2}+\frac{\gamma}{\gamma-1} p\right) u+\varphi_{x}\right]=0 \\
\Rightarrow & \frac{\partial}{\partial t}\left(\frac{1}{2} \rho u^{2}\right)+\frac{\partial}{\partial x}\left(\frac{1}{2} \rho u^{3}\right)+\frac{1}{\gamma-1} \frac{\partial p}{\partial t}+\frac{\gamma}{\gamma-1} \frac{\partial}{\partial x}(p u)=-\frac{\partial Q_{x}}{\partial x}
\end{aligned}
$$

look at (a) term

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho u^{2}\right)+\frac{\partial}{\partial x}\left(\frac{1}{2} \rho u^{3}\right)=\frac{1}{2} \rho u \frac{\partial u}{\partial t} & +\frac{1}{2} u \frac{\partial}{\partial t}(\rho u) \\
& +\frac{1}{2} \rho u^{2} \frac{\partial u}{\partial x}+\frac{1}{2} u \frac{\partial}{\partial x}\left(\rho u^{2}\right)
\end{aligned}
$$

recal $\rho \frac{D u}{D t}=-\nabla p \Rightarrow \rho \frac{\partial u}{\partial t}=-\rho u \frac{\partial u}{\partial x}-\frac{\partial p}{\partial x}$

$$
\frac{\partial}{\partial t}(\rho u)=\frac{\partial}{\partial x}\left(p u^{2}+p\right)
$$

$$
\left.\left.\begin{array}{rl}
\therefore \text { (a) } & =-\frac{1}{2} \rho u^{2} \frac{\partial u}{\partial x}-\frac{1}{2} u \frac{\partial p}{\partial x}
\end{array}\right)-\frac{1}{2} u \frac{\partial}{\partial x}\left(\rho u^{2}\right)-\frac{1}{2} u \frac{\partial p}{\partial x}\right)
$$

Add thin to (b) to give

$$
-u \frac{\partial p}{\partial x}+\frac{1}{\gamma-1} \frac{\partial p}{\partial t}+\frac{\gamma}{\gamma-1} \frac{\partial}{\partial x}(p u)=-\frac{\partial Q_{x}}{\partial x}
$$

$$
\begin{align*}
& \Rightarrow-u \frac{\partial p}{\partial x}+\frac{1}{\gamma-1} \frac{\partial p}{\partial t}+\frac{\gamma}{\gamma-1} p \frac{\partial u}{\partial x}+\frac{\gamma}{\gamma-1} u \frac{\partial p}{\partial x}=-\frac{\partial Q_{x}}{\partial x} \\
& \Rightarrow \frac{1}{\gamma-1} \frac{\partial p}{\partial t}+\frac{\gamma}{\gamma-1} p \frac{\partial u}{\partial x}+\frac{1}{\gamma-1} u \frac{\partial p}{\partial x}=-\frac{\partial Q_{x}}{\partial x} \tag{**}\\
& \text { vecall } \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)=0 \\
& \Rightarrow \frac{\partial \rho}{\partial t}+\rho \frac{\partial u}{\partial x}+u \frac{\partial \rho}{\partial x}=0 \\
& \Rightarrow \frac{\partial u}{\partial x}=-\frac{1}{\rho}\left(\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}\right) \\
&=-\frac{\partial \ln \rho}{\partial t}-u \frac{\partial \ln \rho}{\partial x}
\end{align*}
$$

Insentiug into ($* *$) gives

$$
\frac{\partial p}{\partial t}+\gamma p\left(-\frac{\partial \ln \rho}{\partial t}-u \frac{\partial \ln \rho}{\partial x}\right)+u \frac{\partial p}{\partial x}=-(\gamma-1) \frac{\partial Q_{x}}{\partial x}
$$

divide throush by p to give

$$
\begin{aligned}
& \frac{\partial}{\partial t}(\ln p-\gamma \ln \rho)+u \frac{\partial}{\partial x}(\ln p-\gamma \ln \rho)=-\frac{\gamma-1}{p} \frac{\partial Q_{x}}{\partial x} \\
& \Rightarrow \quad \frac{D}{D t} \ln p / \rho_{\rho} \gamma=-\frac{\gamma-1}{p} \frac{\partial Q_{x}}{\partial x}
\end{aligned}
$$

The desired result.

