PTYS558 - Plasma Physics with Astrophysical and Solar System Applications
Problem Set \#4 - Due Wednesday, March 25

1. Determine the rate at which mass is being removed from the Sun by the solar wind as a function of the solar wind density and flow speed. Calculate the total amount of mass lost during the Sun's 4.6 Gy lifetime assuming the solar wind speed and density at 1 AU have remained constant ($4 \times 10^{7} \mathrm{~cm} / \mathrm{s}$, and 5 particles $/ \mathrm{cm}^{-3}$, respectively) during this time.
2. In class we considered the Parker-spiral magnetic field for the case of a non-radial solar wind speed. We assumed that the magnetic stresses were small at large distances from the Sun and ignored the terms involving the magnetic field. In this problem, we'll relax this assumption and include the magnetic stresses. Assume perfectly conducting solar wind plasma in steady state, azimuthally symmetric about the rotation axis of the Sun. For this problem, assume that the magnetic and rotation axes are aligned. Assume that the velocity and magnetic field are given by:

$$
\begin{aligned}
\mathbf{V} & =V_{r} \hat{r}+V_{\phi} \hat{\phi} \\
\mathbf{B} & =B_{r} \hat{r}+B_{\phi} \hat{\phi}
\end{aligned}
$$

a. Show that

$$
L=r V_{\phi}-\frac{r B_{r} B_{\phi}}{4 \pi \rho V_{r}}=\text { constant }
$$

What is the physical significant of L ?
b. Obtain an equation for V_{ϕ}. Use this equation (which should have a singularity) to show that

$$
L=R_{A}^{2} \Omega_{\odot} \sin \theta
$$

where R_{A} is the called the "Alfven radius".
c. Given that the total angular momentum flux density carried by the solar wind across a spherical surface at a heliocentric distance r is $\rho V_{r} \operatorname{Lsin} \theta$ (where ρ is the solar wind mass density), show that the rate of solar angular momentum loss is related to the rate of solar mass loss by

$$
\frac{d J_{\odot}}{d t}=\frac{2}{3} R_{A}^{2} \Omega_{\odot} \frac{d M_{\odot}}{d t}
$$

d. Determine the rate at which the Sun's rotation is slowing down (i.e. the characteristic time scale of angular momentum loss). Take the Alfven radius $=$ $8.5 \times 10^{11} \mathrm{~cm}$, the present solar mass $=1.99 \times 10^{33} \mathrm{~g}$, rotation frequency $=2.8 \times 10^{-6} \mathrm{sec}^{-}$ ${ }^{1}$, and total angular momentum $=1.9 \times 10^{48} \mathrm{~g}-\mathrm{cm}^{2} / \mathrm{s}$. (Other potentially useful parameters are: solar wind speed $=4 \times 10^{7} \mathrm{~cm} / \mathrm{s}$ and solar wind number density at 1 $\mathrm{AU}=5 \mathrm{~cm}^{-3}$).

