Pararis helvsphere model -1-Re Prelververy des cussi on basic hydrolynamis H.D. momentin eg. Viscosit $p_{\overline{Je}}^{\partial \alpha} + P_{\underline{\alpha}}^{\alpha} \cdot P_{\underline{\alpha}}^{\alpha} = -\nabla P - P_{\underline{\alpha}}^{2} - \mu \nabla^{2} \alpha^{\alpha}$ VISCOUS H.D. Navier Stones momentum 99. Can be written $\frac{\partial}{\partial t}(p_{u}) + \overline{V} \cdot (p_{u}u + P_{I}) = -p_{2} - \mu \overline{V}_{u}^{2}$ defno Re = Viscons force per volume [] = pu²/L - m^u/L² L = Coher. Scale of problem $Re = \frac{Lpu}{\mu} = \frac{Lu}{\nu} \qquad y = Static vesusiel$ μp

Alsy we should discuss Bernoullis privaple in mis case, consider the H.D. enersy of. (Isotropic pressure) (*) = (1pu² + = P=) + V. [(= P+1pu²)u] = - pu.9 (woludes work home by pravity Consider skeady flow. -> Yst >0 also, consider weaponssible case (P.U=0) Skady & concurpressible => p = constant $\frac{\partial}{\partial p} + \nabla \cdot (p_{\frac{\mu}{2}}) = 0$ mass. cr.s. p P. E. + u. Pp = 0 =>p= constant netorn to (*), steady state, we have P. [(= p+ ≥pu²) u] = -p u.3 $\Rightarrow \nabla \cdot \left[\left(\frac{3}{2} \frac{p_{f}}{p} + \frac{1}{2} u^{2} \right) p_{4}^{\alpha} \right] = - p_{4}^{\alpha} \cdot \frac{3}{2}$ * pu. V(2 1/2+ 2u2) ~ - Pu. 2

Gleo $g = \frac{GM}{r^2} + \frac{GM}{r^2}$	-3- e objed
$= -\nabla \frac{GM}{r}$	
> pa. { P (5 % + 2 m² - GM) }	
$\Rightarrow \frac{5p}{2p} + \frac{1}{2}pu^2 - \frac{GM}{F} = constan$	9
this is for a Compressible fluid!	Bernaullis principle
For can incompressible firid, we have	
$\frac{P}{S} + \frac{1}{2}u^2 - \frac{GM}{F} = constant$	
note that near fix surface of aplan the last term is	-t-
$\frac{GM}{r} = \frac{GM}{R+2} \simeq \frac{GM}{R_0} \left(1 - \frac{Z}{R_0} \right)$	2 < < R.
$\frac{f}{f} + \frac{1}{2}u^2 - \frac{g_{41}}{R_0} + \frac{g_{42}}{R_0} = cort.$ $\frac{f}{f} + \frac{1}{2}u^2 - \frac{g_{41}}{R_0} + \frac{g_{42}}{R_0} = cort.$ $\frac{f}{f} + \frac{1}{2}u^2 - \frac{g_{43}}{R_0} + \frac{g_{43}}{R_0} = \frac{g_{43}}{R_0} = \frac{g_{43}}{R_0} = \frac{g_{43}}{R_0} + \frac{g_{43}}{R_0} = g_$	22 - cret

Finally, define vorticity

 $\omega = \nabla x u$

y Vice = 0 (nonpressible), the H.D. nom. 29 Con be writen

 $(xx) \frac{\partial u}{\partial t} + u \cdot P u = -P(P_p) \qquad (i \cup v_i sci J case) \\ (no gravity)$

p= constant because it also assumed to be constant for fion whereating object

-4-

Corl

taire Px of both siles of (# *), were vector identifies, it can be shown

$$\frac{D\omega}{Dt} = (\omega \cdot P) \omega$$

if w=0 far from wtosadi resú (1.0. uniform frow), it must be zono everywhere. : co=0 (if Iw=0 for eway)

mix tow can be consider irrotation! " P.4 = 0 ~ no cupossia Dxu = 0 e no vorticity Glos no viscosity -> Inviscid note that if we write 4 = stream finiti 4= 74 Laplaces eq. => p?q=0

-5-

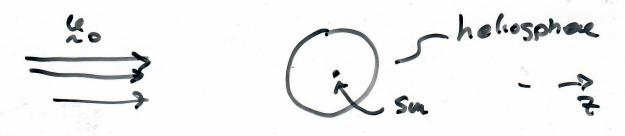
Return to Parker helizitier readel

a is wanpessible, vorteaily free, Inviscio

-6-

4= 04 flow, "o - A D'ACO gnach Solutin

 $2 = \sum_{n=0}^{n} \sum_{m=n}^{n} \left[a_{n}^{m} \mathbf{r}^{n} \pm b_{n}^{m} \mathbf{r}^{-(n+1)} \right] P_{n}^{m} \left[\cos \phi \right] e^{in\phi}$


azemutual symmetry => M=0

Parmer considered n=0 \$ n=1 \$ ames we dotain

 $u_r = -\frac{b_0}{r^2} + (a_i - \frac{2b_i}{r^3}) \cos a_i$

 $u_0 = -(a_1 + \frac{b_1}{r^3}) since$

far from the heliospher

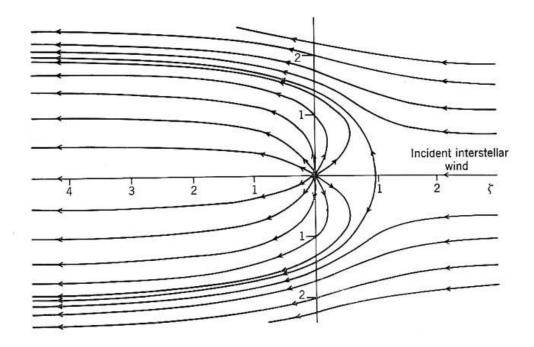
-7-

 $u = u_0 \hat{z} = u_0 (\cos \theta \hat{r} + \sin \theta \hat{\theta})$

as ris as , we have

 $u_r = q_r \cos \theta$ $u_a = -a_r \sin \theta$

if a = ao, we have unifor flor for away


when near the Sm, we want redict tow we get this if $b_1 = 0$ we set $V_s = solar = -\frac{b_0}{R_H^2} \Rightarrow b_0 = -R_H^2 V_{sw}$ speed R_H^2

This sines the final solution $u_r = u_0 \cos \alpha + V_{sw} \left(\frac{R_H}{r}\right)^2$ $u_0 = -u_0 \sin \alpha$

Parken's heliosphore Sotutin

·8-

Parker's view of the heliosphere in 1961 – from an analytic formulation. He came up with a scale of **45-90** AU from knowledge of the ram pressure at 1 AU and the estimated interstellar pressure of (1-4) x 10^{-12} erg/cm².

- The solar wind flows *supersonically* and nearly *radially* from the Sun
- Thus, its large-scale structure is determined mainly by the initial and boundary conditions at the Sun.
- The solar wind terminates at the termination shock where $\rho V_w^2 = \rho_0 (r_0/r)^2 V_w^2 = P_{ism}$.

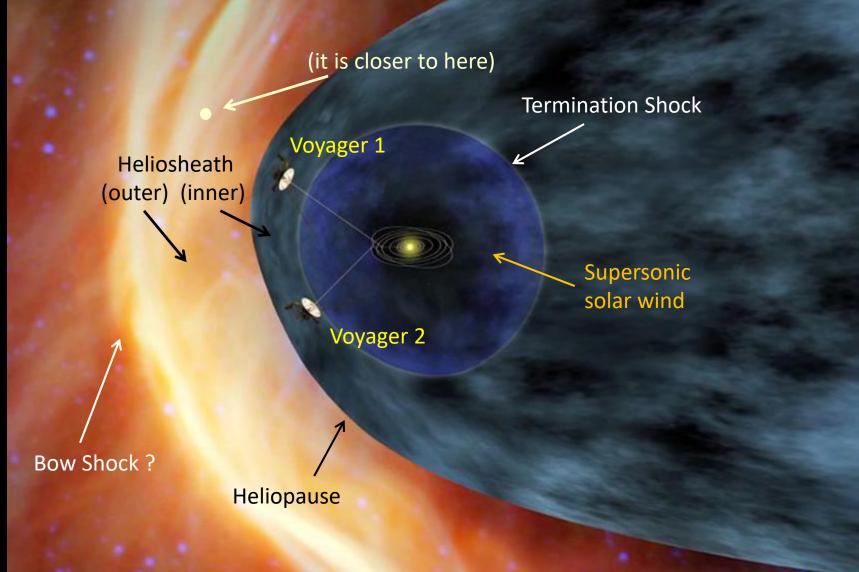
ASTROSPHERES


As the Sun moves through its local environment, it carves out a region –the heliosphere – that is analogous to astrospheres seen surrounding other stars

LL Orionis Visible Hubble

> Mira Ultraviolet GALEX

BZ Cam Visible R. Casalegno

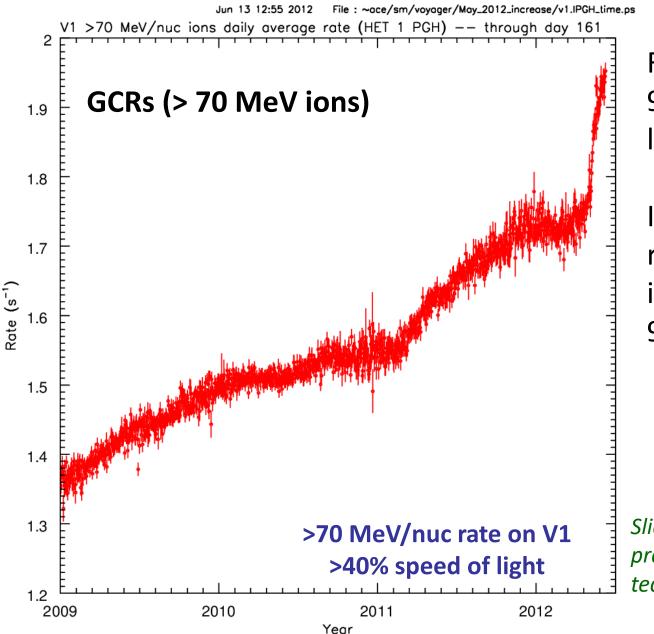

An instructive analog

Why we study the outer heliosphere

- The heliosphere represents the first of several boundaries shielding Earth from radiation coming outside our solar system – it is important to understand how it does this (especially if we *really* want to send humans to Mars or the moon, or elsewhere)
- NASA has several missions aimed at understanding the heliosphere (Voyager, IBEX, ACE, Ulysses, etc.) with rich data sets open for interpretation.
- It is a important laboratory for studying the physics of multicomponent plasmas (interstellar neutral atoms, pickup ions, solar wind ions, cosmic rays), and particle acceleration.
- The source of many interesting and puzzling physics problems!

The Heliosphere

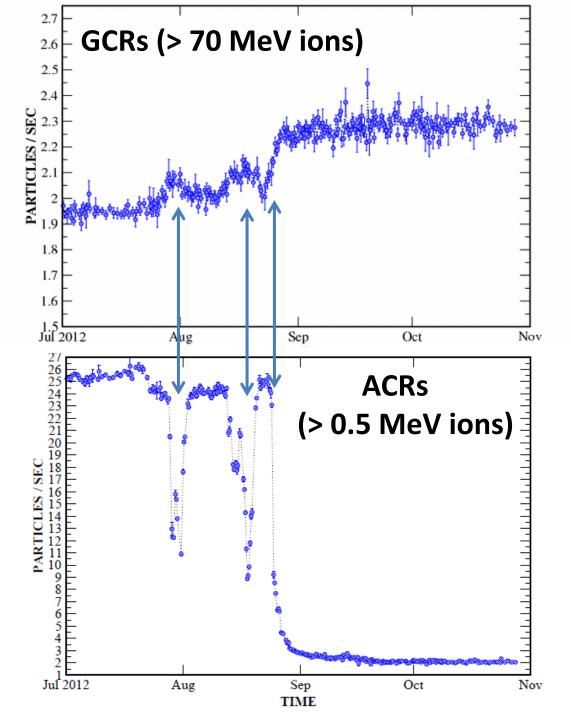
Another model suggests it is "Croissant" chaped (Opher et al., Astrophys. J. Lett., 2015, and Opher et al., Astrophys. J., 2017)


How do we observe the Heliosphere?

- *in situ* observations made possible by the two Voyager spacecraft have been essential to our present understanding.
- However, because of the turbulent, *essentially unpredictable* variations in the solar wind and large-scale structure at a given position and time, *remote* observations are also essential to provide a more-global view.
 - Cosmic rays (solar, galactic, anomalous). They provide us with valuable remote probes.
 - Radio-wave emissions.
 - Backscatter of photons from interstellar neutral atoms.
 - Also interstellar neutral atoms (e.g. IBEX, Cassini/INCA, Stereo, SoHO, and others before) and pickup ions (e.g. Ulysses, ACE).

The interpretation of these remote probes relies on theory and modeling.

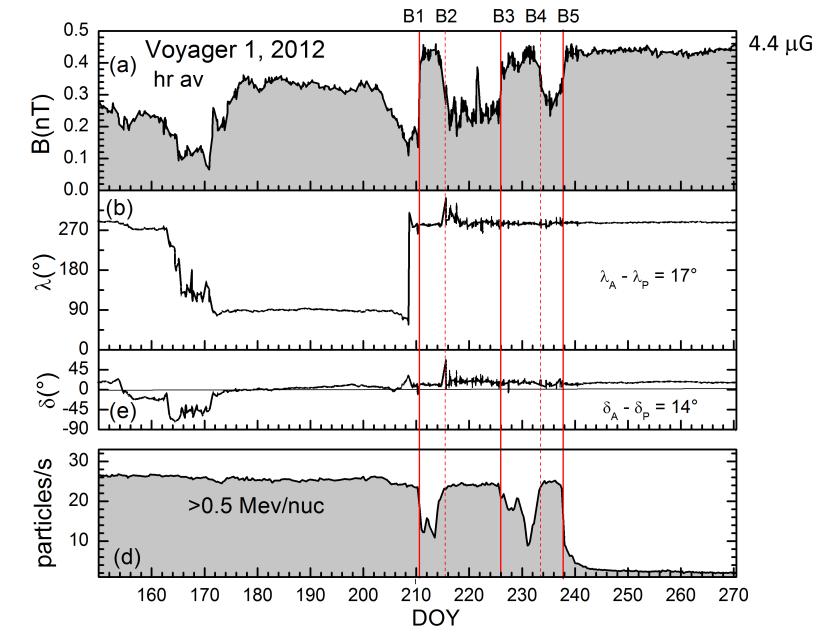
V1 crossing of the heliopause in 2012


Rate of Cosmic Rays Diffusing in from Galaxy

Rate increased 9% per year over last 3 years

In May 2012 the rate increased 5% in one week and 9% in a month

Slide from E.C. Stone's presentation at Voyager team meeting, Dec. 2012



Cosmic rays from outside increased at the same time as ions from inside escaped

Is Voyager 1 in interstellar space, or is there a new region inside that is connected to interstellar space outside?

voyager.gsfc.nasa.gov

Slide from E.C. Stone's presentation at Voyager team meeting, Dec. 2012

Slide from Len Burlaga's presentation at Voyager team meeting, Dec. 2012

The science of the heliosphere received some attention in the popular media

Ed Stone on the "Colbert report"

http://www.cc.com/video-clips/g14s8s/the-colbert-report-ed-stone