

$$\frac{1}{2}g_{\mu_{s}}^{sault} + \frac{B_{o}^{2}}{8\pi} = \frac{1}{2}g_{\mu}u_{e}^{2} + \frac{B_{o}^{2}}{8\pi} - 2 - \frac{1}{2}g_{\mu}u_{e}^{2} + \frac{1}{2}g_{\mu}u_{e}^{$$

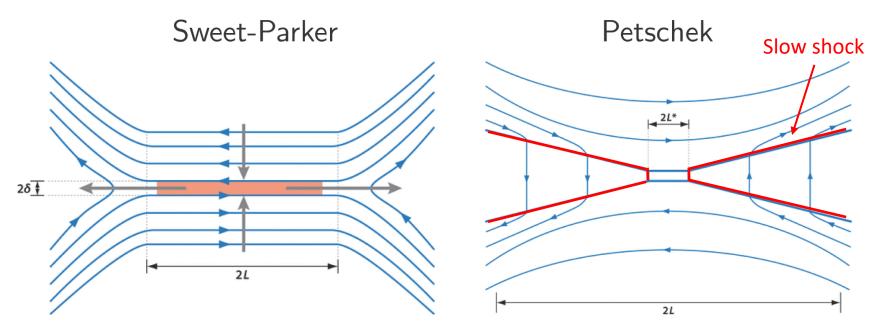
C

-

 $u_0 = \left(\frac{2\eta c^2}{4\pi L} v_x\right)^{u_2}$ う -3recall By = magneti. Repulds # $= \left(\frac{4\pi L R_{AO}}{7c^2}\right)$ $= \left(\frac{2}{R_{M}}V_{A}^{2}\right)^{\prime 2}$ 40 = $\left(\frac{2}{R_m}\right)^2 N_A^2$ Reconnectin rate in sweet - Parken mode Solar atm. Rm ~ 107 コルのとくい * Petchek model reconnecti 4 more recent

HAL METD -> mostly solves problem formatic & massutic "islands" -> turbulence

- Sweet-Parker reconnection predicts a much slower reconnection rate than observed in solar flares and Earth's magnetosphere
 - Solar flares release energy in a time frame of a few to tens of minutes.
 Sweet-Parker predicts it would be months. This model cannot work for most astrophysical situations.
- Petchek (1964) proposed a different model, involving slow-mode shocks, allowing for a more-localized reconnection region – and X-point type geometry. The reconnection rate scales as 1/ln(R_m) – fast reconnection.

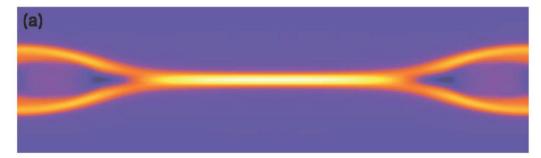


Zweibel & Yamada (2009)

- Petchek reconnection is not observed (in space or laboratory plasmas) to occur, thus this idea, is not the explanation for fast reconnection seen in space plasmas.
- So-called "Hall" reconnection does seem to agree with laboratory and space plasmas.
- What is "Hall" reconnection? To answer, this, consider the lecture on Feb 10 concerning the electric field in MHD. At the bottom of page 7 of those lecture notes, we wrote:

$$\vec{E} = -\frac{1}{c}\vec{U} \times \vec{B} + \frac{1}{nec}\vec{J} \times \vec{B} + \frac{1}{ne}\nabla P_e$$

Ideal MHD term HALL term Polarization E field

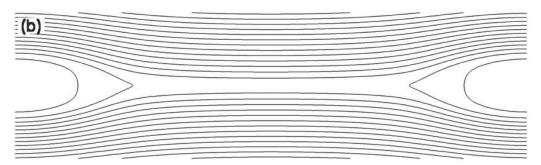


B

(a)

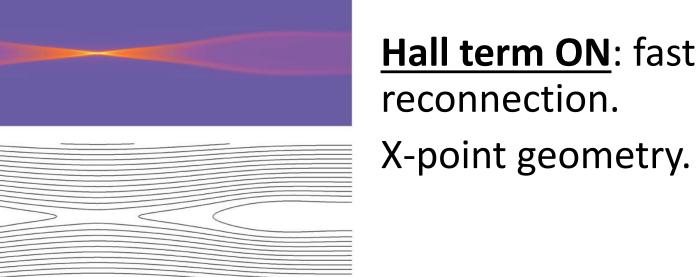
(b)

B



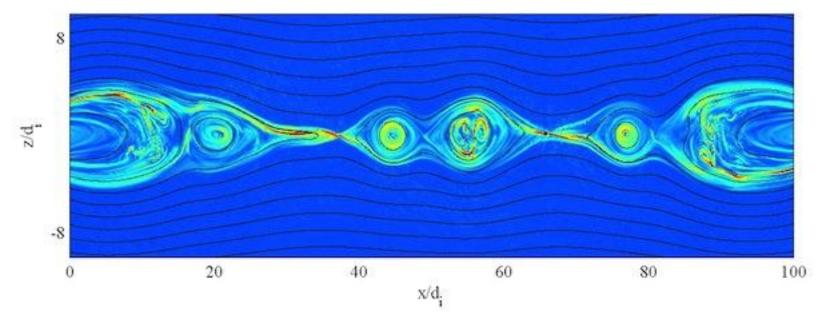
Numerical Simulations

<u>Hall term OFF</u>: resistive MHD. Sweet-Parker-like



- The inclusion of the Hall term can lead to a "tearing-mode" instability for thin current sheets at small scales.
- This has been shown from fully kinetic numerical simulations to lead to the formation of "magnetic islands", especially in the socalled "high-guide-field limit" (the guide field is the out of plane component of the magnetic field. High guide field is when this field dominates the in-plane magnetic field)

Current density, J, in a high-"guide-field" kinetic numerical simulation



Plasma Waves

$$S_{n}(\mathbf{x},t) = S_{n}(\mathbf{z},\omega)e$$

71

-4-

k = wave vector
$$\lambda = iki$$
, wave bush
 $\omega = wave frequency $\mathbf{E} = \frac{2\pi}{\omega}$, wave period
 $d = plase angle
Son = amplitude + polarisation
 $\mp \rightarrow meters to direct u di prot. (forward
plane waves$$$

example

8

ri

$$S_{N}(k, \omega) = |S_{N}|(\hat{x} - i\hat{g})$$

$$Cond propagatic along Z$$

$$Circularly polarized place cause
$$+and k = k\overline{z}$$

$$\overline{q} = 0$$

$$S_{N} = S_{N} \cos(k\overline{z} - \omega t)$$

$$S_{N} = S_{N} \sin(k\overline{z} - \omega t)$$

$$S_{N} = S_{N} \sin(k\overline{z} - \omega t)$$

$$S_{N} = S_{N} \sin(k\overline{z} - \omega t)$$$$

This is a right-hand polarised, forward -5propagating plane waver w = k. N, Up = phase volsing

der = dk. vg vg = group urloag

Recall MHD equations

 $\frac{\partial p}{\partial t} + P.(py) = 0$

 $P = \frac{\partial P}{\partial e} + P \frac{\partial P}{\partial e} = - P P + \frac{1}{4\pi} (P \times B) \times B - P R$

 $\left(\frac{\partial}{\partial t} + \frac{u}{2} \cdot \mathbf{P}\right) \left(\frac{P}{p} \mathbf{r}\right) = 0$

 $\frac{\partial B}{\partial t} = P \times (4 \times B)$

Penturb this by

 $g = g_0 + g' ; P = P_0 + P'$ u = u'; B = B + B'

P', U', P', D' Q.N Shell coupand + unprices

substitute unde MMD =!'s

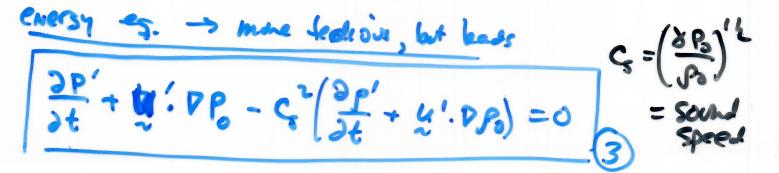
Continuity reglect - orden $\frac{\partial}{\partial t}(p_0+p')+\nabla \cdot \left[(p_0+p')u'\right] = 0$ $\frac{\partial p'}{\partial t} + p_0 p_0 q' + q_0 p_0 = 0$

-6-

momenten g.

 $(\mathcal{P}_{0}+g')\frac{\partial}{\partial t}(x') + (\mathcal{P}_{0}+g')g' \cdot \mathcal{P}g'$ = - \nabla (\mathcal{P}_{0}+g') + \frac{1}{4\pi}(\mathcal{P}_{X}(\mathcal{B}_{0}+g')]x(\mathcal{P}_{1}+\mathcal{O}_{0})

- (Pots' 1 9 h.s. quil.
$P_{a} \frac{\partial 4'}{\partial t} = - PP' + \frac{1}{4} (P \times B) \times B'$	$P_{0} = -P_{0}J$ $P_{1}B_{0} = 0$ und.
- <i>S</i> '9	2 fidd



magnetic Inducti $\frac{\partial B'}{\partial \epsilon} = \nabla x (\mathcal{L}' \times \mathcal{B}_{0}) \qquad (\mathcal{H})$ taxe d'it is 2, then substitute from 0,8,4 to give the general wave equation $= c_{2}^{2} v(v.u') - (v-i) g(v.u')$ grui + 1 [[x v x (4 x 8)] x 8. Stap

PTYS 558 3/28/18 Sprivs 18 Recap the general og. for pentithed is (were eq.) $\frac{\partial^2 u'}{\partial t^2} = C_1^2 \mathcal{D} (\mathcal{D} \cdot u') - (v - 1) \mathcal{B} (\mathcal{D} \cdot u') - \mathcal{B} u'$ + 1 [V × V× (4'× 8)] × 8. vone es. assume plane-wave $i \not d \cdot \chi - i \omega t + \phi$ u'(x,t) = u'(t,v)eV > it wi- ext $-\omega^{2} \frac{\sqrt{2}}{\sqrt{2}} = -q^{2} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \cdot \frac{y'}{\sqrt{2}} \right) - (\sqrt{2} - i) \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{y'}{\sqrt{2}} (-i\lambda)$ general despersion relation for MHD waves ω² 2 = G24 (k.y') - ik(+-1) 9 (k.y') + is & up' + ing [& x & x (4' × Bo)] * Do

-2-Sound Waves ture 9=0, B = 0 dot no h $\left(\frac{\omega}{c^2}-k^2\right)\left(k\cdot u'\right)=0$ get w2 = le2 c2 ; w = ± le cs y 1. " =0 these one sound waves. one their existing Inphasel = ± Cs to compressibility Ng = tcs of gas. k.u' to =) 0.4' to Econquessil6

Magnetic Waves

Intuitive pretive recal the fordering force is EJXB this had a pressure part & tensis part. Considir Lewin. From physics of waves on strings, it is found $v_{p} = \left(\frac{T}{p}\right)^{n}$ T= tensici of string, p* = mass por budle of the storing. for the analog to MHD T> 844 p* -> p $n_{p} = \left(\frac{B^{2}/4\pi}{p}\right)^{n} = \left(\frac{B^{2}}{\gamma \pi p}\right)^{n} = C_{A}$ Alfren SRE 1. considi pressure part recall P/y = const. $C_s^2 = \frac{\delta P}{P}$ qualos sond pressere il can be By = const. (normal to B) shown p = const. (normal to B) derived for weres derived for form flox the.

-3-

-4- $B_{P2}^{\prime} = conrt.$ $\frac{D^2/8\pi}{p^2} = cmet$. Pm Cw = SPM = 878 = * & B' = * C' y=2, the pressure part of the 3×B "Some " frice is analogous to twans movin win speer C. S. KASIL $\gamma - B \rightarrow$ XU pressore variative in field strength ->