PTYS558 – March 30, 2020

MHD Plasma Waves (continued)

Recall that we previously discussed an intuitive picture for magnetic waves in an ideal MHD fluid

Today we will quantify this.

Last Wednesday (March 25 lecture), we derived the general dispersion relation for (ideal) MHD waves including magnetic stresses and the gravitational force:

$$\omega^{2}\vec{u}' = C_{s}^{2}\vec{k}(\vec{k}\cdot\vec{u}') - ik(\gamma-1)\vec{g}(\vec{k}\cdot\vec{u}') + ig\vec{k}u_{r}' + \frac{1}{4\pi\rho_{0}}(\vec{k}\times\vec{k}\times(\vec{u}'\times\vec{B}_{0}))\times\vec{B}_{0}$$

-5-To quantify this intuitive picture, reform to general dispersion relatio, with 3=0, 5=0 (mag. wowes only) $\omega^{2} u' = \left\{ \underbrace{k} \left[\underbrace{k} \left(\underbrace{u'} \times \underbrace{B}_{0} \right) \right] \right\} \frac{3}{\sqrt{4\pi\rho_{0}}}$ = c²[k × {k × [4' × b] × bo b = 20/B0 = Ci fex {u' (t. b) - bo(t. u')}] = bo $\frac{\omega^{2}}{C^{2}} \frac{\omega^{2}}{\omega^{2}} = (\frac{k}{\omega}, \frac{b}{\omega})^{2} \frac{\omega^{2}}{\omega^{2}} - (\frac{k}{\omega}, \frac{\omega^{2}}{\omega}) \frac{(b - k)}{\omega} \frac{b}{\omega}$ + [k. 4' - (k. 2) (6. 4')] 4 define k.b. = le coso Q = angle beton h & B

$\frac{\omega^{2} u'}{G^{2} u'} = b^{2} cos^{2} o u' - (2 \cdot u') k cos o b$ $+ [1 \cdot u' - h cos o (6 \cdot u')] h$

~6

det with bo = 4.60 = 0 = velocity perturbated i normal to B. J×B is normal to D; not suprasing

Dot note le 40 give

62 M! = (h.u') k

 $= \left(\frac{\omega^2}{G^2} - k^2\right) \left(k \cdot g'\right) = 0$

2 Cases: (i) SHEAR Alfren ware $h \cdot \mu' = 0 \Rightarrow \frac{\mu^2}{4^2} = h^2 \cos^2 \Theta$ $\omega = \pm h \zeta_{\mu} \cos \Theta$

"poler despin" -7futures out that this wave the variables ' Shear Afren wane can show $\frac{\partial p'}{\partial t} = 0$ $\frac{\partial p'}{\partial t} = 0$ for various to, to Can also be shown (from linewiget mas. Industic es. assuming plane wave sola) $u' = -c_{A}b' = -c_{A}\frac{b}{a}$ velocity perturbati is in phone with B. you can also donostrate that this mode is caused by the fewsii part of 3×B force. Also, it can be shown

 $|B_{0} + B'| = Constant. <math>\frac{1}{5} exact Statis$ $<math>y' = -G_{n}b'$ $y' = -G_{n}b'$ $y' = -G_{n}b'$

- 😵 -

-9- -

the shear Attree wave never decays (in ideal, non-decays, MHD) Sivis plasmes are highly conducting seese waves take a long tri to decay. -> these waves, produed hear the Sm, que dways seen e 1 su and le your the other mode, case (2) Compressioned Alfren ware le. « =0 $\Rightarrow \omega^2 = h^2 C_4^2 \Rightarrow \omega = \pm h C_4$ "luis" a sourd wave Compression i Shear wave

Magneto-Sonic waves

terre 8=0

$\omega^* \alpha' = \zeta^2 \mathcal{L} \left(\mathcal{L} \cdot \alpha' \right) + \frac{1}{4mp_s} \left\{ \mathcal{L} \times \left(\mathcal{L} \times \mathcal{B} \right) \right\}_{\mathcal{P}}^{\mathcal{P}}$

<u><u>u</u>' = <u>b</u>'cos'o <u>y</u>' - (<u>k.<u>y</u>') <u>k</u> coso <u>b</u>o</u></u> + {[+ (=)](1. "1 - koso (b. ")} 1

Magneto-Sonic waves

400-1-

take S=0

$\omega^{*} \alpha' = \zeta^{2} \mathcal{L} \left(\mathcal{L} \cdot \alpha' \right) + \frac{1}{4mp_{0}} \left\{ \mathcal{L} \times \left(\mathcal{L} \times \mathcal{L} \right) \right\}_{n}^{*} \mathcal{E}_{0}$

<u>c</u>' " = <u>b</u>'cos'o y' - (k.y') k coso bo (1) + {[+ (=)](1. "1 - koso (b. ")}

4. 4	- le ³ cus ca	
4. 10	$\frac{\omega^2}{c_3} - \int l + \int \frac{(s_1)^2}{(s_1)^2} \int \frac{1}{4} \frac{1}{2}$	
	A - (A) -	

det (1) Note be to sine

(3)

(2)

equite (2) \$ (3) 2-- h³ cus a $\frac{\omega^{2}}{c^{2}} - \left[1 + \left(\frac{c_{1}}{c_{2}}\right)^{2}\right] \lambda^{2}$ C2 k cuso leads to $\omega^{*} - \omega^{2} h^{2} (c_{q}^{2} + c_{s}^{2}) + h^{*} c_{s}^{2} c_{q}^{2} c_{0s} c_{0s} = 0$ general dispersi relati for magneto-acousti a aves Soloti $k^{2}(\zeta_{1}^{2}+\zeta_{2}^{2}) \neq \sqrt{k^{4}(\zeta_{1}^{2}+\zeta_{2}^{2})^{2}} - 4k^{4}\zeta_{1}^{2}\zeta_{1}^{2}\omega^{2}o$ $v_{phase} = \omega = \pm \{\frac{1}{2}(c_{A}^{2}+c_{s}^{2}) \pm \frac{1}{2}[c_{A}^{4}+c_{s}^{4}-2c_{s}^{2}c_{$ general phase speed of MHD Waves $\rightarrow (C_A^1 + C_S^2)^{n_2}$ fast mode In firmediate -> 5,000 not easily write here. Slow mode

Dispersion relation for magneto-sonic waves in an ideal MHD fluid

$$\left(\frac{\omega}{k}\right)^2 = \frac{1}{2}(C_A^2 + C_S^2) \pm (C_A^4 + C_S^4 - 2C_A^2 C_S^2 \cos 2\theta)^{1/2}$$

Phase-velocity polar diagram of MHD waves

-3-Decay of Shear Alfren waves approximite detraination of the scale own which the shear Alfren wave. decays - Not days! what is effect of veristivit? look at MHD every eq. it (Energy Lensich) + P. (Energy flow) = j. E Isnore pressure, drog 202 -order terms -> j.E=0 J = JVXB E = - ZMXB + 7J j.E = j. [-= 1x + 4J] $= -\frac{1}{2} \cdot \frac{1}{2} (P \times B) \cdot (E \times B) + 7 J^2$ can be manipulated to give V. (STE*xB) E* = - 24×B

-4- $\varphi = 75^2$ $\nabla \cdot s = -\varphi$ $S = \blacksquare \left(\begin{array}{c} S \\ \neg \pi \end{array} \right) \begin{array}{c} \varepsilon \\ \neg \pi \end{array} \left(\begin{array}{c} S \\ \neg \pi \end{array} \right) \begin{array}{c} \varepsilon \\ \neg \pi \end{array} \right)$ co-cluste 5 \$ 9 really want < 5> -> <>= avg. own wane pærid | wavebusta < ?> < 3> = < 5 = + x B > = ミ く く と と シ メ と > ~ -1 < Bel \$ \$ 300 t - CA B/B for shear Alfre wave $\langle S \rangle \simeq \frac{C_A}{4\pi} \langle S R^2 \rangle \overline{Z} \ll \operatorname{propegatic direction}_{(B')^2} direction of B$ $(B')^2 (face B = B_0 \overline{Z})$ $(Q) = \langle \gamma J^2 \rangle = \gamma \frac{e^2}{(4\pi)^2} \langle (\nabla x B) \rangle$ J'= SVxB' $\mathcal{J}(\mathbf{x},\omega) = \mathcal{J}(-i)\mathbf{x}\mathbf{x}\mathbf{y}'$ = 7(47)= h2 < 583> J'g'=J'= (+) (+ 1)' (8')2

-5this gives V.S. -> # S.S. = # (S. (S. S. S. S.) =-<9) =-7 -2 k < 803 : $\frac{d}{dz}(S_{2})^{2} = -\frac{7c^{2}h^{2}}{S_{4}}(S_{2})^{2}$ =) <802> ~ et unch 2 y is very small, > lowph scale of Lecay Id ~ HTT CA is very large this approal works for waves it and wandengte much shallen tren ld.

Plasma oscillation -6-
Considir a perturbation of electron momente of

$$M_e n_e \frac{\partial u_e}{\partial t} + m_e n_e u_e \cdot P u_e = -\nabla P_e - e n_e u_e \times P_e$$

 $- \frac{\partial u_e}{\partial t} + m_e n_e u_e \cdot P u_e = -\nabla P_e - e n_e u_e \times P_e$
 $- \frac{\partial u_e}{\partial t} + m_e n_e u_e \cdot P u_e = -\nabla P_e - e n_e u_e \times P_e$
 $- \frac{\partial u_e}{\partial t} + m_e n_e u_e \cdot P u_e = -e n_e u_e$
 $m_e n_e \frac{\partial u_e}{\partial t} + m_e n_e u_e \cdot P u_e = -e n_e u_e$
 $\nabla \cdot E = 4\pi e (n_p - n_e)$
 $\frac{\partial n_e}{\partial t} + n_e \nabla \cdot u_e + u_e \nabla n_e = 0$
 $u_e = u'$ (no instribution)
 $\overline{u} = \overline{u}$
 $n_e = n_o + n'$ ($n_p = n_b$)

$$me n_{0} \frac{\partial u'}{\partial t} = -en_{0} E' -7-$$

$$\nabla \cdot E' = -4\pi en'$$

$$\frac{\partial n'}{\partial t} = -n_{0} \nabla \cdot u'$$

$$\nabla \cdot (top eq.), \text{ subs.} for bottom eq. 4 middle
$$\frac{\partial n}{\partial t} = -n_{0} \nabla \cdot u'$$

$$\frac{\partial (1 - n_{0})}{\partial t} = -en_{0} (-4\pi en')$$

$$\frac{\partial^{2} n'}{\partial t^{2}} = \frac{4\pi m_{0} e^{2}}{me} n'$$

$$\frac{\partial u}{\partial t} = \frac{1}{me} n'$$

$$\frac{\partial u}{\partial t} = \frac{1}{$$$$

Plasma waves detected by Voyager in distant heliosphere (Voyager at ~120 AU)

These were interpreted as Langmuir waves, with a frequency equal to the electron plasma frequency, generated locally at Voyager 1's location, by a disturbance, presumably a shock wave

