PTYS558: April 8, 2020

- Two-stream instability in a proton-electron plasma
- Turbulence

2- Stream withhility is a plasma

exhauss
to -00

this is a 1-0 problem only variaties in

for simplicity, assure cold plasma, un-magnified

Basic equation

$$\frac{\partial n_i}{\partial t} + \frac{\partial}{\partial x}(n_i u_i) = 0$$

$$\frac{\partial n_e}{\partial t} + \frac{\partial}{\partial x}(n_e u_e) = 0$$

$$n_i m_i \frac{\partial u_i}{\partial t} + n_i m_i u_i \frac{\partial u_i}{\partial x} = e n_i E$$

$$n_e m_e \frac{\partial u_e}{\partial t} + n_e m_e u_e \frac{\partial u_e}{\partial x} = -e u_e E$$

$$\frac{dE}{dx} = 4\pi e(n_i - n_e)$$

$$M_i = N_0 + n_i'$$
 $N_i' < c n_0$
 $N_i' < c$

The Unearized eg. 5 has perturbed qualified (drapping 200 order terms)

$$\frac{\partial n_i}{\partial t} + n_0 \frac{\partial u_i}{\partial x} + u_{0i} \frac{\partial n_i}{\partial x} = 0$$

$$\frac{\partial n_e}{\partial t} + n_0 \frac{\partial u_e}{\partial x} + u_{0i} \frac{\partial n_e}{\partial x} = 0$$

$$\frac{\partial n_0}{\partial t} + n_0 \frac{\partial u_i}{\partial x} + n_0 \frac{\partial u_i}{\partial x} = c n_0 \epsilon'$$

$$\frac{\partial n_0}{\partial t} + n_0 \frac{\partial u_i}{\partial t} + n_0 \frac{\partial u_i}{\partial x} = -e n_0 \epsilon'$$

$$\frac{\partial n_0}{\partial t} + n_0 \frac{\partial u_i}{\partial t} + n_0 \frac{\partial u_i}{\partial t} = -e n_0 \epsilon'$$

$$\frac{\partial n_0}{\partial t} + n_0 \frac{\partial u_i}{\partial t} + n_0 \frac{\partial u_i}{\partial t} = -e n_0 \epsilon'$$

$$\frac{\partial n_0}{\partial t} + n_0 \frac{\partial u_i}{\partial t} + n_0 \frac{\partial u_i}{\partial t} = -e n_0 \epsilon'$$

assume plane - wave soln' to fine $-\omega n_i' + n_o k u_i' + u_o k n_i' = 0$ $-\omega n_e' + n_o k u_e' + u_o k n_e' = 0$ $-\omega n_o u_i' + n_o u_i u_o k u_i' = -i e n_o e'$ $-\omega n_o u_i' + n_o u_i u_o k u_i' = -i e n_o e'$ $-\omega n_o u_o u_i' + n_o u_o k u_o' = i e n_o e'$ $-\omega n_o u_o u_i' + n_o u_o k u_o' = i e n_o e'$ $k e' = -i 4\pi e (n_i' - n_o')$

write this

A. B=0 A -> 5×5 matrix.

2 2 B -> 5×1 matrix

/A/ = 0 giver the dispersion relation

we find

| A | = (-w+ku;) {(-w+ku,e) (-w+ku,e) k

+ nok (- (-w+kuoi) 4ne2)

+ no k { - (+w+ woek) i = (-i4re(-w-ku))

divide by (-w+u0: k)2 (-w+u0e k)2

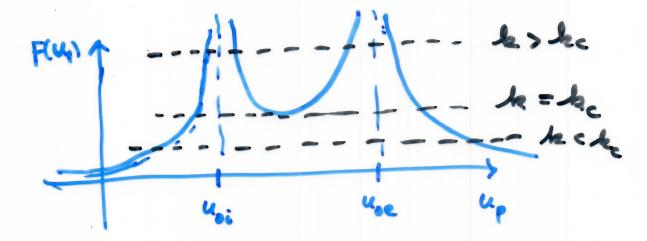
 $\frac{|A|}{|C|^2} = k - \omega_e^2 k \frac{1}{(-\omega + k\omega_e)^2} - \omega_i^2 k \frac{1}{(-\omega + k\omega_e)^2}$

 $1 = \frac{\omega_e^2}{(-\omega + ku_{ee})^2} + \frac{\omega_i^2}{(-\omega + ku_{ei})^2}$

define up = w/k = phase velocity

we get
$$1 = \frac{we^2}{b^2(-u_p + u_{oe})^2} + \frac{w_i^2}{b^2(-u_p + u_{oi})^2}$$

$$\Rightarrow 18^{2} = (u_{p} - u_{e})^{2} + \frac{\omega_{i}^{2}}{(u_{p} - u_{o})^{2}}$$
 (*)



get be, we find

Aske => 4 real roots => works.

Lecke = 2 real roots

2 coops p reals

for le < le , there are 2 amples 1015, one of these is associates with wave growth => Two-STREAM INSTABILITY

Consider a position - elector plasma and oppositions flows uoi = uo uoe = -uo ui = we

k² = √2 we

and the dispersi velatii âu be shown

ω = 1 1 2 4 0 + we = + (we 4 + 4 1 2 we 2 uo2) 1/2

Mostro, 1,4 occurs ale when he ke when he

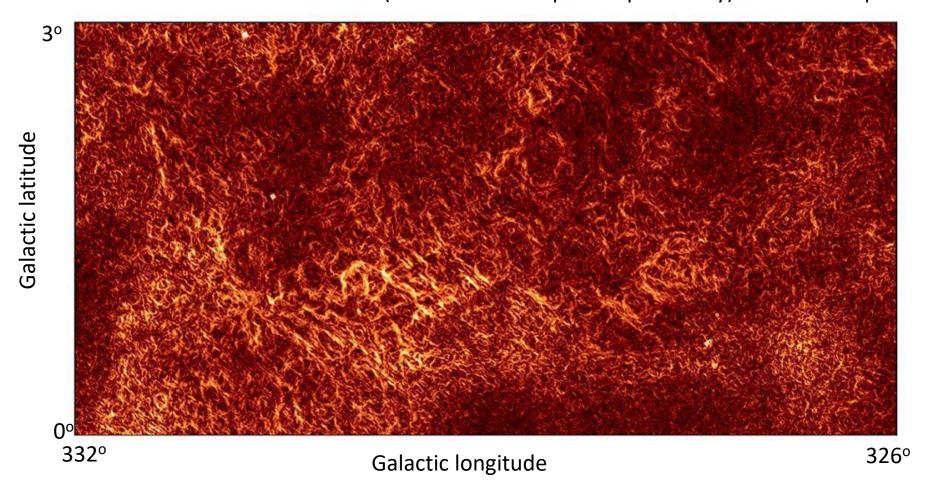
mare, growth occurs who die = 0, we find
this to happen at k = 13 up = k at has.

M ? to e k at has.

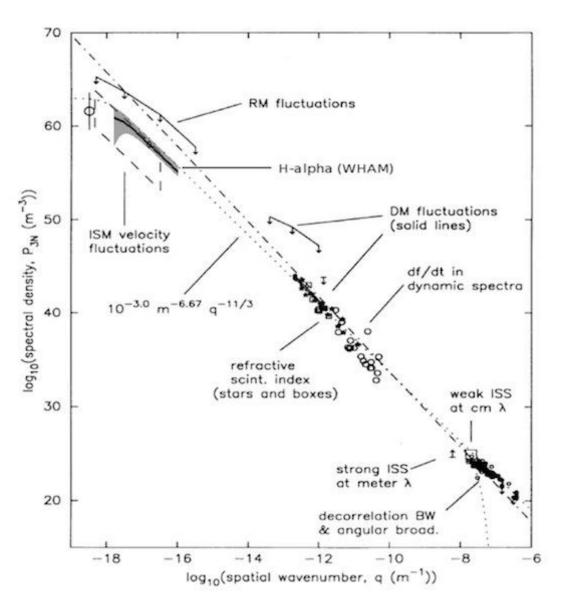
> growth rete of twe
8 = twe 8 > growth rete

Interstellar Turbulence

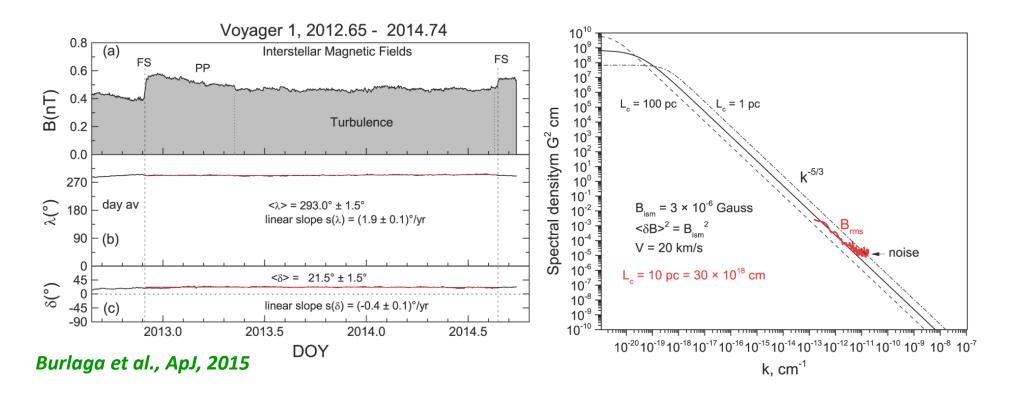
18-sq. deg. color-coded map of $|\nabla|$ P| (**P** is the 2-component Stokes polarization vector) for 1.4GHz radio observations from ATCA (Australia Telescope Compact Array) radio telescope



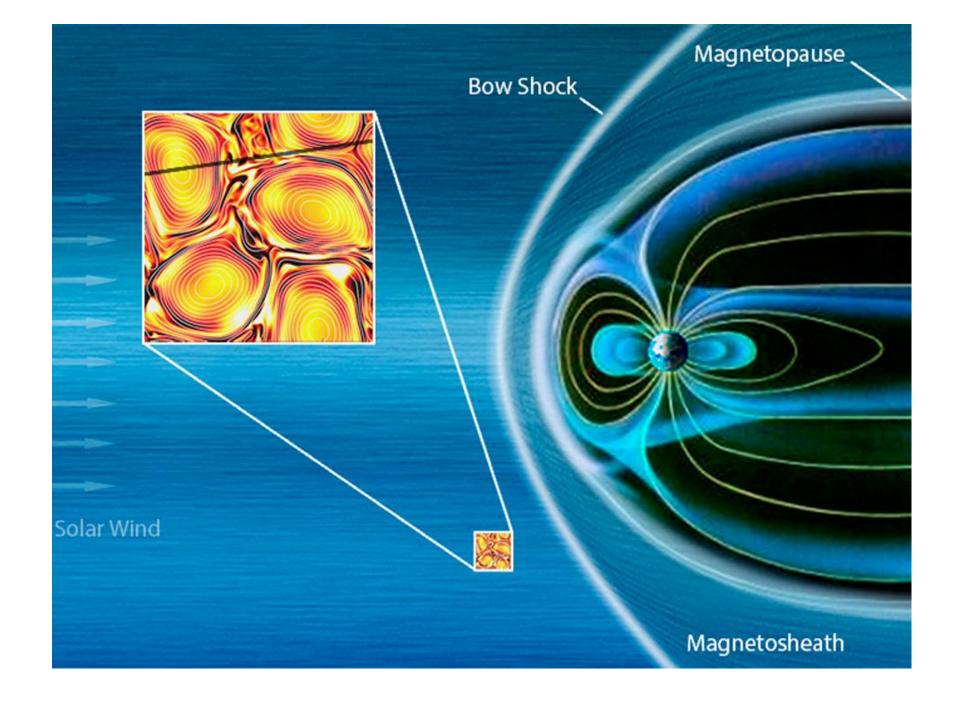
The "Great Power Law in the Sky" (S. Spangler, Univ. of Iowa)

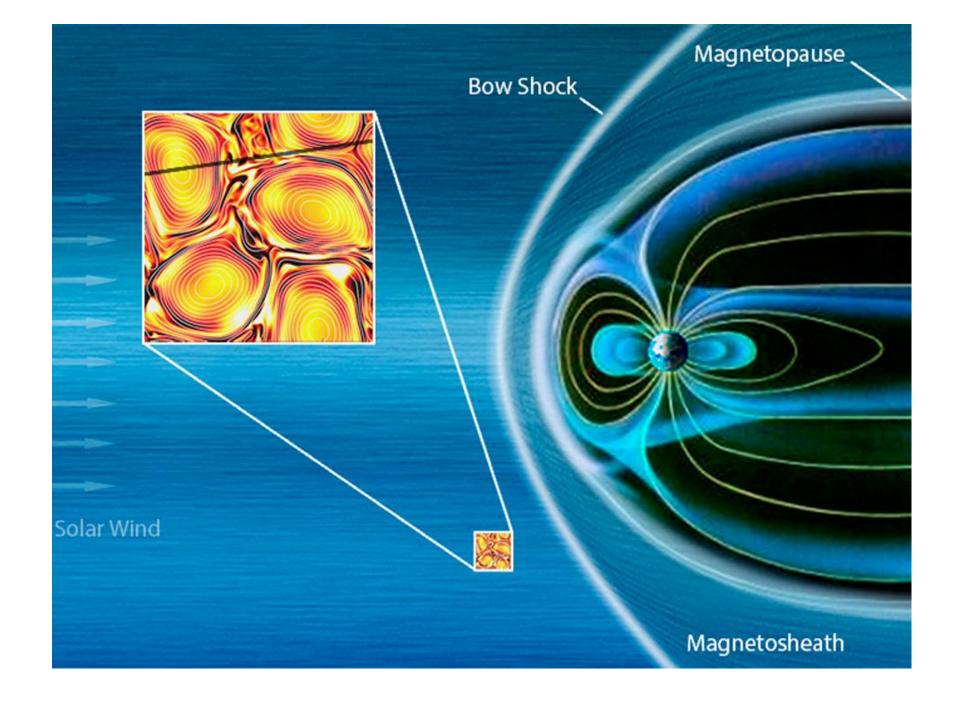


The magnetic field observed by Voyager 1 in the Local Interstellar Medium

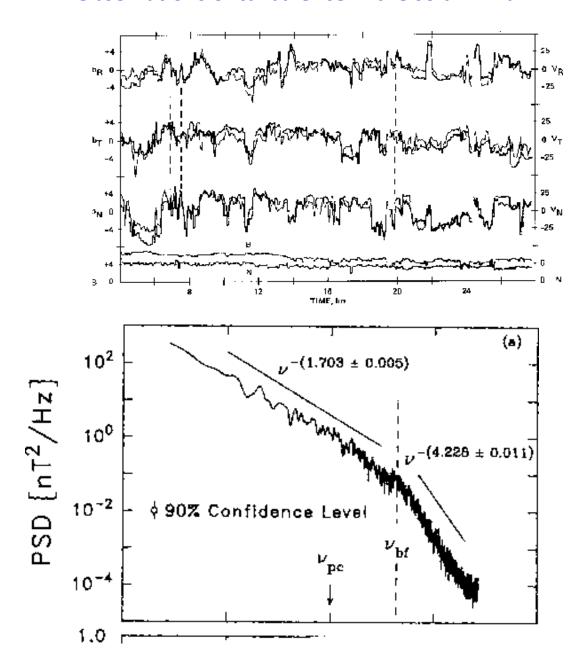


- Voyager 1 is measuring the short-wavelength end of the interstellar magnetic field turbulence spectrum
- Fluctuations are mostly in the <u>magnitude of the magnetic field</u>

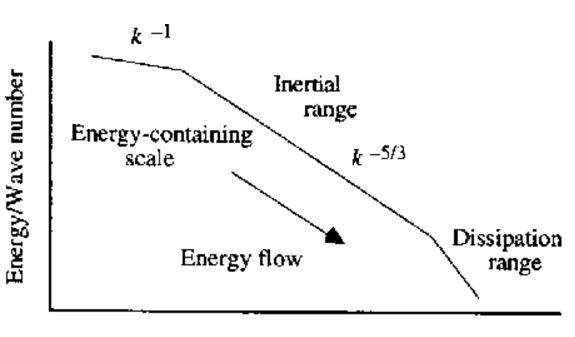




Observations of turbulence in the solar wind



Basic schematic of energy input, cascade to smaller scales, and dissipation



Wave number

Turbulence

PTYS 558 4/23/18 -1-Spring18

 $u(r,t) = \sum_{h=1}^{N_m} su_h e^{i\frac{h}{2m}r + i\frac{h}{2m}}$

if In is randonly durtubles och < 27

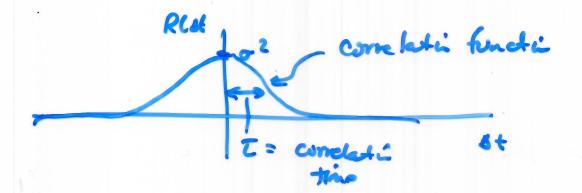
) get turbulouse (i) Non is large)

this is the only concrete connecti between waves & touthouse

Consider a time series of observable data (volvail)

- tiet t

 Consider this fortin



a reasonable estant of t is

$$T = \frac{\int_{\infty}^{\infty} R(\Delta t) \, dt}{\int_{-\infty}^{\infty} R(\Delta t) \, d\Delta t}$$
 correlation this

What don't other scales?

Wiener-Khindin treoren - the Spectral decondution of the correlation function is the power spectrum

$$P(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R(\delta t) e^{-i\omega \delta t}$$

framer transform
of corr. function

Can obso de this in spece

- Amman X ->

R(ax) = < u(x) u(x+ax)>

 $P(k) = \int_{-\infty}^{\infty} R(\Delta x) e^{-ik\Delta x} d\Delta x$

[P(L)] = u2 L

How does torbulence form?

Plesna instabilition, supermone explosions, Stream stream interesting stirring collections

High Reynolds obstacle

"lanswer " flow -> wondly no torbobuq

los usually subservice
Reynolds

Recall Reynolds # R = [P4.P4]

y u is large topicalle Ris large

I small Ris is small

= pu2/L

m 4/22

R = pLu

m

if R>>1 I wo viscogis has no effect.

The Campt substrupt

Gradients (viscosity

is a diffusiv

effect)

I argu Reynolds His

I high green flows K as a

of small scales, R is small - viscosity
smootes out

"dessipite"s

trustices

R & L

forbilence -> scale dependent.

-> large scales

Taylor, 1922

Combredge U. Press

Copplied to

Wester

Cospela

Co

How does their cascade happen in tems? waveloughe? what is the destribution of Scale?

Kolmogorov

postulates that P(b) only depends on the energy cascale rate and the scale.

PULS & (E) & B

E > energy cascade rate

le > wome number

of B > +.b.d.

P(k) = C & & B

$$[E] = \frac{e^2}{T^{2}} = \frac{V^2}{T^3}$$

$$(P(L)) = energy. L \cdot V^2 L = \frac{L^3}{T^2}$$

$$3 = 2 \times -\beta$$

$$-2 = -3 \times \Rightarrow \times = \frac{2}{3}$$

$$\Rightarrow \beta = 2(\frac{1}{3}) - 3$$

$$= \frac{4}{3} - \frac{9}{3} = -\frac{5}{3}$$

Kolmosoror

Francus "

5/3 Icw.

"inertal" ruge

P(E) ~ 16-53

P(k)

The solution of the solu

R=1@kdiss.

Kini = 27 how > INTediscole hair = 20