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Cosmic Ray Transport: Part 1

. Cosmic Ray Transport Intro

. Particle motion in electric and magnetic fields
which vary on scales comparable to the particle
gyro-radii: pitch-angle scattering

. Spatial diffusion
. Energy change

. The Parker transport equation (also known as
the cosmic ray transport equation)
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Galactic Cosmic Rays and the Solar Cycle
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The solar minimum intensity of Galactic cosmic rays (GCRs) is enough
to exceed the current radiation limits for astronauts in low Earth orbit
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GCRs enter the heliosphere through a
combination of diffusion and drift. Heliosphere

T Trajectory

These motions are counteracted by
outward convection and the associated
cooling by the expansion of the wind.

Drift motions are very significant, and
depend on the solar magnetic cycle. The
pattern at right is for “A positive” (“A>0",
solar B is directed outward in northern
solar hemisphere)
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During solar minimum, the interplanetary field is During solar maximum, the

weaker, less solar-wind turbulence, fewer interplanetary field is stronger, more

“barriers” (e.g. CMEs, shocks and merged turbulence, numerous large-scale

interaction regions) and GCRs have easier access barriers (e.g. CMEs), and GCRs have

to 1 AU — higher GCR intensity difficulty entering the solar system —
Trajectory lower GCR intensity
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The sense of the particle drift changes from one sunspot cycle to the next.

For A>0, as GCRs enter the heliosphere, the drift brings them inward over the poles and
out along the current sheet.

The pattern is reversed for A<O (“A negative”)

Cosmic-Ray Transport in the Heliosphere
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The current sheet changes from
sunspot minimum to sunspot
maximum. This effects the GCR
intensity observed at 1AU
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Particle transport in the heliosphere is actually
the combination of four physical effects.
* Diffusion: caused by the scattering of the cosmic rays by the

irregularities in the magnetic field. The associated “diffusion” is
significantly larger along the magnetic field than normal to it.

e Convection: with the flow of the plasma.

* Guiding-center drifts: Such as gradient and curvature drifts, but also
arising from interaction with current sheets in the solar wind

* Enerqgy Change: caused by expansion/compression of the background
fluid.

All of these effects play important roles in GCR modulation (it is
difficult to isolate the effects — they are all important)

These are combined in Parker’s transport equation, first written
down nearly 50 years ago.



The Parker Transport Equation:
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Where the drift velocity due to the large scale curvature and
gradient of the average magnetic field is:

Va=152 v x [B]

And the symmetric part of the diffusion tensor is:
B;B;
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Ry = 105+ (k) = K1)

The Parker Transport Equation is valid whenever the anisotropy is small
(as observed for GCRs). It is widely used and remarkably general.



The Parker Transport Equation:
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Where the drift velocity due to the large scate_curvature and

gradient of the average magnetic field is:
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The Parker Transport Equation is valid whenever the anisotropy is small
(as observed for GCRs). It is widely used and remarkably general.




The Parker Transport Equation:
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Where the drift velocity due to the large scale curvature a>\d

gradient of the average magnetic field is:

Va=152 v x [B]
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And the symmetric part of the diffusion tensor is: lecture
B;B;
B2

Ry = 105+ (k) = K1)

The Parker Transport Equation is valid whenever the anisotropy is small
(as observed for GCRs). It is widely used and remarkably general.



Varying E and B fields
Case 1: Scale of variation >> gyroradius of particles
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Then other drifts enter, such as the “gradient” and “curvature”
drifts, which, under the approximation of a curl-free magnetic field

cW |
\eh= B xVB
“ qB3 Wi, W) Arethe components of the
2TV particle’s kinetic energy perpendicular and
Vo = il B x VB parallel to the average magnetic field

The general expression for motion of the center of gyration of the particle about the
field is given by (b is a unit vector along B)
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That, when averaged over an isotropic distribution of particles gives:

V4= (cmw?/q)V x (B/B?)



Varying E and B fields
Case 2: Scale of variation = gyroradius of particles
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* A “resonance” can occur such that the particles pitch angle is reversed. This is much like
a “scattering” event in scattering theory. The resonance condition is kwu = (), where k is
the wavenumber of the fluctuation, w is the particle speed, u is the cosine of the pitch
angle, and () is the particle cyclotron frequency.



A charged particle moving in a turbulent magnetic field

(numerical integration)
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Restrictions on particle motions imposed by artificially
limiting the dimensionality of the fields

Particle
Trajectory

Field Lines

e Charged particles are strictly

tied to magnetic lines offorce 1 & [l
in 1 and 2D electric and NS D) B

magnetic fields
 This can be proven rigorously S
and follows directly from the
equations of motion
Trajectory Field Lines
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