Grad-Shafravov equatio
AN equatioi of reduced MHD that describes am equalibric two-dinersenal magretic freld.

Consider a 2-D magneti field of the form

$$
\underset{\sim}{B}=\left[B_{x}(x, y), B_{y}(x, y,), B_{z}(x, y)\right]
$$

thii is sometrmes called a $2-1 / 2-D \mathrm{mog}$. fièd (2 spafial dinerscios, 3 curponents of vector)
note that $\nabla_{\sim} \beta=0$ iuplies

$$
\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}=0
$$

We now define a function, A, similes to a stream function in fluid mechanics, such that

$$
\begin{align*}
& B_{x}=\frac{\partial A(x, y)}{\partial y} \\
& B_{y}=-\frac{\partial A(x, y)}{\partial x}
\end{align*}
$$

Note that this is a solutici to $D . B=0$ we also note that

$$
\begin{aligned}
& \text { also note that } \\
& \nabla \times(A \hat{z})=\frac{\partial A}{\partial y} \hat{x}-\frac{\partial A}{\partial x} \hat{y}=B_{x} \hat{x}+\hat{y} \hat{y}
\end{aligned}
$$

$\Rightarrow A$ is the z component of the rector potential Forthermonere, we have

$$
\begin{aligned}
B \cdot \nabla A & =B_{x} \frac{\partial A}{\partial x}+B_{y} \frac{\partial A}{\partial y} \\
& =-B_{x} B_{y}+B_{y} B_{x}=0
\end{aligned}
$$

$\Rightarrow A=$ constant along field fries
\therefore A defwés field Inès

Recall the MHD mom. equation in static equal. (ignoring gravity)

$$
\nabla p-\frac{1}{c} J_{\sim} \times B=0
$$

Recall from class notes ot $9 / 27 / 07$ pase 8

$$
\frac{1}{C} J \times B=-\nabla\left(B^{2} / 8 \pi\right)+\frac{1}{4 \pi}(B \cdot \nabla) B
$$

Look at x-component of mun eq.

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(p+\frac{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}{8 \pi}\right)-\frac{1}{4 \pi} B_{x} \frac{\partial B_{x}}{\partial x}-\frac{1}{4 \pi} B_{y} \frac{\partial B_{x}}{\partial y}=0 \\
\Rightarrow \quad & \frac{\partial}{\partial x}\left(p+\frac{B_{z}^{2}}{8 \pi}\right)+\frac{1}{4 \pi} B_{y} \frac{\partial B_{y}}{\partial x}-\frac{1}{4 \pi} B_{y} \frac{\partial B_{x}}{\partial x}=0
\end{aligned}
$$

substiate from above (x)

$$
\left.\begin{array}{l}
\frac{\partial}{\partial x}\left(p+\frac{B_{z}^{2}}{8 \pi}\right)-\frac{B_{y}}{4 \pi} \nabla^{2} A=0 \\
\text { Marly the y-coupowedt giver } \\
\frac{\partial}{\partial y}\left(p+\frac{B_{z}^{2}}{8 \pi}\right)+\frac{B x}{4 \pi} \nabla^{2} A=0
\end{array}\right\}(\forall \forall)
$$

multiply top eq. by B_{x} and the better ky B_{y}, to give (ave add)

$$
\begin{aligned}
& \underset{\sim}{B \cdot \nabla}\left(p+B z^{2} / 8 \pi\right)=0 \\
& \Rightarrow p+B_{z}^{2} / 8 \pi=\begin{array}{c}
\text { constant along } \\
\text { magnetic freed } \\
\text { liver }
\end{array}
\end{aligned}
$$

Also), tare B. [momention eq.] to find

$$
\begin{aligned}
& B \cdot \nabla p=0 \\
& \Rightarrow \quad k=\text { constant along field lives } \\
& \Rightarrow B_{z}=1 \% \quad \% \quad 1
\end{aligned}
$$

Because $A=$ constr allows teide lines, the $p \not B_{z}$ are both functeris of A

Definc: $\quad P=p+B r^{2} / 8 \pi$

$$
\begin{array}{rlrl}
\frac{\partial P}{\partial x} & =\frac{d P}{d A} \frac{\partial A}{\partial x} \quad j \quad \frac{\partial P}{\partial y} & =\frac{d P}{d A} \frac{\partial A}{\partial y} \\
& =-B_{y} \frac{d B}{d A} & & =B_{x} \frac{d B}{d A}
\end{array}
$$

Use these and combiwe woth (*) to give

$$
\begin{array}{r}
\frac{d}{d A}\left(p+\frac{B_{r}^{2}}{8 \pi}\right)+\frac{1}{4 \pi} \nabla^{2} A=0 \\
\Rightarrow \quad \nabla^{2} A+4 \pi \frac{d}{d A}\left(p+\frac{B_{i}^{2}}{8 \pi}\right)=0
\end{array}
$$

Grad-Shafranov eq.
Note the smilarit to Poisson's \& q. wh $\frac{d}{d A}\left(b+\mathrm{Bt}^{2} / 8 \pi\right)$ Heen'ng the "charge dewsith" and A being the "selar electustic potenteol"

The current deassly is

$$
\begin{aligned}
& J= \frac{c}{4 \pi} \nabla \times B=\frac{c}{4 \pi}\left(\frac{\partial B_{z}}{\partial y},-\frac{\partial B_{z}}{\partial x},-\nabla^{2} A\right) \\
& \vdots \\
& J=\frac{c}{4 \pi}\left(B \frac{d B_{z}}{d A}+4 \pi \frac{d p}{d A} \hat{z}\right)
\end{aligned}
$$

$\therefore \quad p=$ constant givier a foree-free ficid ($J \| B$) and $\frac{d b_{z}}{d /}$
is the constant α
Also, for a force-fice fid'd, Grad-shamando becmes

$$
\nabla^{2} A+\frac{d}{d t}\left(\frac{1}{2} B_{z}^{2}\right)=0
$$

Many solar physeis pablows shant weik this or fest their assumed ruadel for consestevcy with this

