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PRELIMINARY REMARKS

Concerning hydrodynamics & magnetohydro dynamics in nature,
where no one applies external electrical potentials.

Basic Point:

The dynamics of gases and magnetized plasmas 1s
described by the equations of Newton and Maxwell

Consider the large-scale bulk motion of gases, plasmas, and
magnetic field.
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Lonsider the necessary and sufficient conditions for applicability

gf hydrodynamics (HD) to the bulk motion within a cloud of
independently moving particles.

hmagine am-infinite space filled with partieles, each partiele moving
freely and independently along a straight path with its own
arbitrary constant velocity u;.

x(t)=x(0)+ut.

The initial mean particle density and/or the distribution of
individual particle velocities is nonuniform on a scale L, so that the

subsequent particle density N(x,,¢)varies with time on the same
scale.

What are the néhéessary and sufficient conditions that the bulk
motion v; is described by the continuum hydrodynamic equations?

An obvious necessary condition is that there are enough
particles that the local mean particle density N(x,,t)is

statistically well defined.



The local particle density N(x ,7) is defined as the mean over some
small scale / (<<L).

Hence, 1t is necessary that

NI’ >>1,

where / is chosen sufficiently small that the difference equations on
the grid spacing / provide a good approximation to the differential
equations. For most purposes it is sufficient that / <107 L.

Smaller / may be needed to treat the build up of shock fronts and
singular current sheets, of course.

50, given enough particles, the local density is well defined, and,
therefore , the local bulk velocity, momentum density, kinetic
energy density, etc, are all statistically well defined.

THEN ASSUME THAT THERE IS CONSERVATION OF
PARTICLES, MOMENTUM, AND ENERGY.

As we shall see, the familiar equations of HD are the result.
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Note that the time derivative of the density W of some conserved
quantity is equal to the negative divergence of the flux of W.
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This is the mathematical statement needed to treat the three
conserved quantities: particles, momentum, and energy.



Let u; = velocity of individual particle with
U;=V; + W;

v; -local mean bulk velocity.

w; = thermal velocity relative to mean.

Compute mean over local volume V = P



Particle density N, particle flux)Nu;=Nv,
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Momentum density
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Flux of momentum density
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Flux of momentum density
NMvy +p, p = %mej

pij 1s pressure tensor = flux of momentum density carried
by thermal motions.



The time rate of change of the momentum density is equal to the
negative divergence of the flux of momentum density.
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Using the equation for conservation of particles, this reduces to the
familiar Euler equation,
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1. Newton’s equation of motion, recognizing that the momentum
flux p 1s equivalent to a force.

If an external force F (dynes/cm’) is introduced, the momentum
equation becomes

(ov v |  op,
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Density of momentum flux 1s

lZ Muu, = NMvy, + p,
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The flux of the density of momentum flux is
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with
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representing the heat tlow tensor, which is the flux of
p, transported by thermal motions.



Conservation of energy requires that
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reducing to
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The momentum equation can then be used to eliminate
ONMvy /0t, so that
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Now there are circumstances where there is energy input from a
radiation field, or from the dissipation of plasma waves or Altven
waves. To include an additional heat input, introduce the heat
source S, on the right hand side of the equation, where S, 1s

constructed to represent the appropriate heat input.
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The additional heat input S, often plays an essential role in the

dynamics, as, for instance, in the solar wind, where the extreme
supersonic velocity of the wind arises in large part from heat input
from the dissipation of plasmas waves beyond the sonic point.
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Adiabatic, collisionless
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For collision dominated gas p = Pn=DPs =D

1 dp 4 ov,
| P

y—1 dt | y—1" ox,
T'he off diagonal terms of p;; can be represented by a
suitable viscosity.
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Magneto Hydrodynamics

MHD 1s based on the concept that the magnetic field 1s
transported by the fluid

OB g
S V x (v x B) +dissipation terms.

Consider a gas with enough free electrons and i1ons that 1t

cannot support any significant electric field E in its own
frame of reference.

E =E +X>< B
- i
If E =0, then
E=——xB
&
and
e i (vxB)
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The result 1Is MHD, regardless of the details
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ELECTROMAGNETIC PRELIMINAIRES

Non relativistic (v° /¢’ << 1) Lorentz transformation of E and B.

E-g+"%8 p_p V*E
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E’, B' are the fields experienced in the reference frame with

velocity v relative to the frame in which the fields are E,B,
respectively.

A moving physical system experiences only the fields E’, B'in its
own reference frame.

There is a magnetic field of about half a Gauss filling this
room.

Is there an electric field 1in this room?



To determine the dynamical role of E, B consider
Poynting’s theorem for a collection of particles with mass
distribution p(r,7) and associated charge distribution &(r,7).
The individual particle has velocity v and
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Using Maxwell’s equations, it can be shown that
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where

E‘+B* EE +BB
y -———2 Maxwell stress tensor
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R =-pvy Reynolds stress tensor

ExB
C
47

Poynting vector



